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Abstract—In this study, three robust predicting methods, namely 
artificial neural network (ANN), adaptive neuro fuzzy inference 
system (ANFIS) and support vector machine (SVM) were used for 
computing the resonant frequency of A-shaped compact microstrip 
antennas (ACMAs) operating at UHF band. Firstly, the resonant 
frequencies of 144 ACMAs with various dimensions and electrical 
parameters were simulated with the help of IE3D™ based on method 
of moment (MoM). The ANN, ANFIS and SVM models for 
computing the resonant frequency were then built by considering the 
simulation data. 124 simulated ACMAs were utilized for training and 
the remaining 20 ACMAs were used for testing the ANN, ANFIS and 
SVM models. The performance of the ANN, ANFIS and SVM 
models are compared in the training and test process. The average 
percentage errors (APE) regarding the computed resonant frequencies 
for training of the ANN, ANFIS and SVM were obtained as 0.457%, 
0.399% and 0.600%, respectively. The constructed models were then 
tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 
0.623% for SVM were achieved. The results obtained here show that 
ANN, ANFIS and SVM methods can be successfully applied to 
compute the resonant frequency of ACMAs, since they are useful and 
versatile methods that yield accurate results. 
 

Keywords—A-shaped compact microstrip antenna, Artificial 
Neural Network (ANN), adaptive Neuro-Fuzzy Inference System 
(ANFIS), Support Vector Machine (SVM). 

I. INTRODUCTION 

RESENT portable communication and handheld devices 
inherently need miniaturized microstrip antennas (MAs). 

By using the substrate materials with high dielectric constant, 
the smaller antennas can be achieved but this gives rise to 
decrease the bandwidth and efficiency performances [1]. Thus, 
it is difficult to carry out the requirements of mobile 
communication devices by using the traditional MAs. The 
compact geometry has been proved as an alternate 
methodology to design miniature microstrip antennas. The 
compact microstrip antennas (CMAs) are obtained by 
applying some modification such as slot-loading and shorting-
pin/wall on traditional MA structures [1]. Several slot loaded 
CMA configurations such as C [2]-[5], E [6]-[10], H [2], [3], 
[11]-[13], L [14], [15], annular ring [16]-[19] and rectangular 
ring [2], [20] shapes have been presented in the literature as an 
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alternative and effectively method to physically reduce the 
antenna size by increasing the effective resonant length. A-
shaped CMA (ACMA) is also one of the configurations 
obtained by using the method of slots loading on the patch. It 
is observed that the ACMAs show similar features with C, E, 
H, L, annular ring and rectangular ring CMAs. The antenna 
designers can make selection among these designs according 
to the devices to be placed inside. 

In analysis of the conventional MA, techniques such as 
cavity model [21] and transmission line model [22] are used. 
However, because of irregular shapes, CMAs may not be 
analyzed with use of these techniques. Simulation and 
experimental studies are therefore, carried out in analysis and 
design of CMAs, in general. Powerful simulation tools, which 
employ electromagnetic methods involving rigorous 
mathematical formulation and extensive numerical procedures 
such as finite difference time domain (FDTD) method [23] 
and method of moment (MoM) [24] are widely utilized; 
however, the design procedure may be highly time consuming 
using these tools. It is shown that the results of simulation 
tools are consistent with the experimental results in the 
literature [3]-[5], [8]-[10], [12], [13], [15], [17]-[20].  

It is well known that current advancements in wireless 
communication technology have led to increase the use of 
CMAs; hence, simple models should be utilized to analyze 
their performances such as bandwidth and resonant frequency. 
On the other hand, the resonant frequency is of crucial 
importance in the CMA design process because these antennas 
inherently suffer from the narrow bandwidth. Alternative 
simple ways should therefore be investigated by taking into 
consideration that the analysis of the microstrip patch is a 
complex problem because of the fringing fields at the edges. 
There exist several approaches which vary in accuracy and 
computational efforts have been proposed to analyze and 
design CMAs. The most widely used can be listed as 
formulation methods [2]-[4], [9], [12], [17] and artificial 
intelligent systems (AIs) [5], [10], [13], [15], [18]-[20]. 
Formulation methods are commonly derived with the aid of 
the optimization algorithm such as genetic, particle swarm, 
differential evolution etc. The most well-known artificial 
intelligent systems are the artificial neural network (ANN) 
[25]-[27] and the adaptive neuro-fuzzy interference system 
(ANFIS) [28]-[30] and the support vector machine (SVM) 
[31], [32]. 

This paper deals with the computing the resonant frequency 
of the ACMAs operate in UHF band suitable for miniaturized 
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mobile handsets, since that should take considerable attention 
in the design of any constructions of MA due to its having 
small bandwidth. In this work, a comparative study of ANN, 
ANFIS and SVM models for accurately computing the 
resonant frequencies of ACMAs is presented. A distinct 
advantage of ANN, ANFIS and SVM, is that it bypass the 
repeated use of complex formulations or process for a new 
case given to it after proper training. 

ANN attempt to model these poorly understood problems 
by employing a mathematical model of the brain’s structure. 
The brain consists of billions of densely interconnected 
neurons. The premise behind ANN models is that mimicking 
the brain’s structure of many highly connected processing 
elements will enable computers to tackle tasks they have not 
as of yet performed well. ANNs are mathematical models 
derived from this structure. Though biological plausibility is 
sometimes applied to ANN models, they are not intended to 
model the actual workings inside the brain or nervous system 
[25]. During the last decade, ANN models have been 
increasingly used in the design of antennas, microwave 
devices, and circuits due to their ability and adaptability to 
learn, generalization, smaller information requirement, fast 
real-time operation, and ease of implementation features. 
ANN models have been built for the design and analysis of 
microstrip antennas in various forms such as rectangular, 
circular, and equilateral triangle patch antennas. 

The ANFIS is a powerful predicting or estimating method, 
which capable of producing the accurate results for a given 
problem, and it has the advantages of the learning property of 
ANNs and the expert knowledge of the fuzzy inference 
systems (FISs) [28]. The ANN attempts to model nonlinear 
problems by employing a mathematical model of the structure 
of the brain. The idea behind ANN models is that take an 
example by the brain’s structure of many connected 
processing elements enables computers to tackle tasks. FISs 
are nonlinear systems capable of inferring complex nonlinear 
relationships between input and output variables. Linguistic 
expressions, which are the basis of the FIS, are optimized by 
the network and this provides ability of learning as well as 
data processing. Once the ANFIS model is properly trained 
according to the input data, the output can be accurately 
determined. While training process is completed in a few 
minutes, a new computation is done in a few seconds. The 
ability to associate both data and existing expert knowledge 
about the problems, accurate and fast learning, good 
generalization capability features have made neuro-fuzzy 
systems popular in the last decade.  

Machine learning methods that proposed to analyze data 
and recognize patterns are used in two different methods that 
supervised (classification and regression) and unsupervised 
(clustering). In machine learning, SVM is a new generation 
supervised learning model which used for classification and 
regression analysis. In another terms, SVM is a classification 
and regression prediction tool that uses machine learning 
theory to maximize predictive accuracy while automatically 
avoiding over-fit to the data. The SVM is an advanced 
nonlinear learning machine (so-called Vapnik-Chervonenkis 

theory) [31]. SVM is a machine learning method used for 
classification and regression implementations and also run 
supervised or semi-supervised way. In the nonlinear problems 
such as ours, SVM depends on the principle which is 
separation of two classes with a hyper plane that is occurred 
by transforming data to the higher dimensions. The functions 
that have various features are used during transform into the 
high dimension and these functions are called as Kernel 
functions. Some parameters in the mathematical expression of 
these functions need to be defined by the user for using Kernel 
functions. SVM has been formed on powerful theoretical 
foundations. 

In this study, the dominant resonant frequencies of ACMAs 
are accurately computed by using the new and effective 
applications of three methods mentioned above. To this end, 
the resonant frequency values of 144 ACMAs operating 
among 0.96–3.21 GHz were determined by the commercial 
electromagnetic simulator IE3D™ using on MoM. In order to 
provide the generality and stability of the ANN, ANFIS and 
SVM networks, the parameters of 124 randomly selected 
ACMAs were utilized to training the models and the 20 
remainings were employed to test the accuracy of the models. 
The results obtained by using the proposed models have been 
compared with each other and the simulated results. 

II. DESIGN AND SIMULATION OF ACMAS 

The geometry of the rectangular MA (RMA) and ACMA is 
given in Figs. 1 (a) and (b) respectively. The ACMA consists 
of an L x W rectangular patch given in Fig. 1 (b) with two 
identical slots in size of l x w on a dielectric substrate with h 
thickness on a metallic ground plane. The slots on the patch 
lead to an increase in the resonant length of the antenna; hence 
the patch size can be reduced.  
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 (a)   (b) 

Fig. 1 Geometry of RMA (a), Geometry of ACMA (b) 
 
Table I contains the simulation results of ACMA along with 

those of RMA having the same outer patch sizes. Feed points 
are used as shown Fig. 1 for ACMA and RMA at operating 
2.4 GHz. The slots on the patch of the ACMA lead to a 
reduction in the resonant frequency of 23%, compared with 
the RMA having the same size, therefore the patch size of the 
ACMA is 41% smaller than that of the RMA at fixed 2.4 GHz. 
These comparative results obviously show that the CMA has 
superiority over the conventional MA in points of patch size 
for a given resonant frequency. 
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TABLE I 
COMPARISONS FOR SIMULATED RESONANT FREQUENCIES AND BANDWIDTHS 

OF RMA AND ACMA 

Antenna 
Patch Dimensions (mm) 

εr 

Resonant 
frequencies 

(GHz) 

Bandwidth 
[MHZ] L W l w h 

ACMA 30.00 25.00 12 3 1.57 2.33 2.400 12.5 

RMA 39.85 32.35 ― ― 1.57 2.33 2.400 10 

RMA 30.00 25.00 ― ― 1.57 2.33 3.180 50 

 
Table I also shows that a narrow-band ACMA with smaller 

size is achievable, while wider band can be obtained at the 
cost of the bigger size than that of a RMA operating at the 
same resonant frequency. This provides that the designer can 
make a trade-off between the smallness and wideband 
properties. 

The ACMA is a novel design hence; some analysis results 
hereby are presented. The simulated surface current 
distributions of the antenna at the frequency of 2.4 GHz is 
shown in Fig. 2. From Fig. 2, the current is mostly 
concentrated upper and lower sides of the slots. Especially, the 
current crosses at the edge to the slots. Therefore, the radiation 
is effectively taken place between these edges and the ground 
plane. On the other hand, the simulated radiation patterns 
operating at 2.4 GHz for x-z plane (ϕ = 0°) and y-z plane (ϕ = 
90°) are given in Fig. 3 (a). It is seen that the radiation patterns 
have good performance and approach omni-directional 
radiation characteristic. The simulated gain plot of that 
antenna is given in Fig. 4. The peak gain 4.30 dBi occurs 
about the frequency of 2.4 GHz with the radiation efficiency 
exceeding 75% as is expected. 

 

 

Fig. 2 Simulated surface current distribution at 2.4 GHz 
 

 

 (a)  (b) 

Fig. 3 The simulated radiation pattern at 2.4 GHz: (a) in x-z plane 
and (b) in y-z plane 
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Fig. 4 The simulated gain graph 
 
The topology of the simulation process is illustrated in Fig. 

5. It is seen that the parameters groups given in Table II, 
which include the various dimensions and the electrical 
parameters of the ACMAs, are used to generate resonant 
frequency values with the aid of IE3D™ software. In the 
simulations, maximum frequency and cell/wavelength rate 
were assumed as 4 GHz and 40, respectively. A 50 ohm probe 
feed was applied. Optimization module in IE3D™ based on 
genetic algorithm was utilized to define the feed point for |S11| 
< – 10 dB objective function, resulting in the best return loss 
value. 

 

IE3D™
 

L

W

l

w

h

fIE3D

εr  
Fig. 5 Simulation process of ACMAs 

 
TABLE II 

DIMENSIONS AND DIELECTRIC CONSTANTS OF SIMULATED ACMAS 

Number of 
simulations 

Antenna dimensions (mm)   

L W l w h εr 

3 x 48 

30 25 3, 6, 9, 12 3, 6, 9, 12 1.57 2.33, 4.5, 6.15 

40 30 4, 8, 12, 16 4, 8, 12, 16 2.5 2.33, 4.5, 6.15 

50 35 5, 10, 15, 20 5, 10, 15, 20 3.17 2.33, 4.5, 6.15 

III. COMPUTATION THE RESONANT FREQUENCY OF ACMA 

WITH ANN, ANFIS, AND SVM MODELS 

A. Training Process of the ANN, ANFIS, and SVM Models 

The topology of the training process and computation of the 
average percentage error (APE) are illustrated for ANN, 
ANFIS and SVM in Fig. 6. The ANN, ANFIS and SVM 
models were trained as the parameters of 124 simulated 
antennas together with the corresponding resonant frequencies 
were introduced as the inputs. It should be noted that the 
antennas to be used in training process was randomly selected 
from whole simulations in order to represent the entire 
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solution space. 
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Fig. 6 The topology of the calculating APE for ANN, ANFIS and 

SVM models 
 

A block diagram for running of the ANN model is given in 
Fig. 7. The ANN model based on multilayer perceptron (MLP) 
consisting of 1 hidden layer with 3 neurons was constructed in 
this work. “Tangent sigmoid” function was used for input and 
hidden layers while “purelin” function was utilized for output 
layer. The Levenberg-Marquardt (LM) algorithm was used in 
the ANN model as training algorithm, since it is capable of 
fast learning and good convergence. The parameters of the 
ANN model used in this work are tabulated in Table III. 
According to (1), the value of the average percentage errors 
(APE) for the resonant frequencies computed by the ANN 
model was obtained as 0.457% for the 124 ACMAs’ training 
data. 
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Fig. 7 Block diagram of the ANN model 
 

TABLE III 
THE ANN PARAMETERS 

Parameters Value 

Number of input 6 

Number of output 1 

Epochs 300 

Seed value 1249359025 

Minimum gradient descent 10-10 

Momentum parameter (µ) 0.0001 

µ increment 4 

µ decrement  0.1 

Maximum µ  1010 

A block diagram for the running of the ANFIS model that 
uses Sugeno type FIS built is given in Fig. 8. In the training 
process for ANFIS, Gaussian function for the inputs and linear 
function for the output were chosen as membership functions 
(MFs). For the ANFIS network, the hybrid-learning algorithm 
was used. The hybrid-learning algorithm that consubstantiates 
the backpropagation algorithm (BP) and the least-square 
method (LSM) is utilized to assign the parameters of ANFIS. 
The parameters of the ANFIS model used in this work are 
tabulated in Table IV. ANN defines the membership degrees 
of the input/output variables of the FIS in ANFIS architecture. 
It does this process by training FIS structure with an ANN 
algorithm. In the every run process of ANFIS model, results 
can be different in each run because initial weights of ANN 
are used randomly. The seed value should be fixed to get same 
result in every run. For this purpose the seed in the run which 
is error obtained under desired value is saved. Initial weights 
of ANN are fixed by replacing the saved seed value in the 
program. This method takes time during finding the proper 
seed value, but after getting the proper seed value, it gives 
results in a few seconds. The results of ANFIS model are in 
very good harmony with those of the simulations and APE 
was computed as 0.399% for the training data. 
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Fig. 8 Block diagram of the ANFIS model 

 
TABLE IV 

THE ANFIS PARAMETERS 

Parameters Set type/value 
Input MF type Gaussian 
Output MF type Linear 
Number of input 6 
Number of output 1 
Number of fuzzy rules 37 
Number of MFs 37 
Seed value 1979332410 
Epochs 50 
Range of influence 0.5 
Squash factor 1.25 
Accept ratio 0.5 
Reject ratio 0.15 
Number of nonlinear parameters 6 x 37 x 2 =444 
Number of linear parameters 7 x 37 = 259 
Number of nodes 527 
Number of training data pairs 130 
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In addition ANN and ANFIS also SVM model was used for 
computing the resonant frequency of ACMAs and the block 
diagram of SVM model is shown in Fig. 9. The parameters of 
the SVM model used in this work are tabulated in Table V. 
The APE for the resonant frequencies computed by the model 
was obtained as 0.600% for the 124 ACMAs’ training data. 
The gaussian kernel function was used in SVM. The used 
gaussian kernel function is given as in (2). 
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Fig. 9 Block diagram of the SVM model 
 

TABLE V 
THE SVM PARAMETERS 

Parameters Set type/value 

Kernel function Gaussian 

Kernel function coefficient (σ) 28 

Penalty weight (C) 1000000 

Slack variables (epsilon-ξ) 0.001 

Number of input 6 

Number of output 1 

 

As it was seen from the Fig. 10, the results of ANN, ANFIS 
and SVM models are in very good agreement with those of the 
simulations. The best performance was achieved by ANFIS, 
however, it should be noted that ANN and SVM models also 
were obtained remarkable results in the training process.  
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Fig. 10 Comparative results of the simulation, ANN, ANFIS and 
SVM 

B. Test Process of the ANN, ANFIS and SVM Models 

To verify the ANN, ANFIS and SVM models, 20 simulated 
ACMAs, which were randomly selected from a total of 144 
antennas before the training process so as to represent the 
solution space, were used in the test process. Electrical and 
psychical parameters of 20 selected ACMAs listed in Table 
VI. The simulated and computed resonant frequency values, 
and calculated APEs are given in Table VII. APEs were 
obtained respectively as 0.601%, 0.744% and 0.623% for the 
ANN, ANFIS and SVM over 20 ACMAs. 

 
TABLE VI 

ELECTRICAL AND PSYCHICAL PARAMETERS OF 14 SIMULATED ACMAS FOR 

TEST PROCESS 

ACMAs 
Patch dimensions (mm) 

εr 
L W l w h 

1 30 25 3 6 1.57 2.33 
2 30 25 3 12 1.57 2.33 
3 30 25 6 9 1.57 2.33 
4 30 25 9 6 1.57 2.33 
5 30 25 9 12 1.57 4.5 
6 30 25 12 12 1.57 4.5 
7 30 25 9 6 1.57 6.15 
8 30 25 12 3 1.57 6.15 
9 40 30 4 12 2.5 2.33 
10 40 30 16 12 2.5 2.33 
11 40 30 4 16 2.5 4.5 
12 40 30 16 4 2.5 4.5 
13 40 30 8 16 2.5 6.15 
14 40 30 16 8 2.5 6.15 
15 50 35 5 10 3.17 2.33 
16 50 35 15 20 3.17 2.33 
17 50 35 5 15 3.17 4.5 
18 50 35 20 15 3.17 4.5 
19 50 35 10 5 3.17 6.15 
20 50 35 20 15 3.17 6.15 

 
TABLE VII 

THE RESONANT FREQUENCIES AND APE VALUES FOR TESTING PROCESS 

ACMA 
Resonant frequencies (GHz) Percentage Errors (%) 

Simulated ANN ANFIS SVM ANN ANFIS SVM 

1 3.182 3.161 3.205 3.169 0.648 0.716 0.418 

2 2.955 2.963 2.949 2.957 0.281 0.176 0.069 

3 3.070 3.081 3.066 3.053 0.347 0.132 0.555 

4 2.744 2.767 2.724 2.813 0.838 0.744 2.488 

5 2.004 2.044 1.992 2.006 2.041 0.574 0.133 

6 1.609 1.612 1.615 1.621 0.158 0.338 0.733 

7 1.751 1.751 1.739 1.778 0.005 0.703 1.498 

8 1.557 1.544 1.576 1.583 0.823 1.213 1.676 

9 2.345 2.338 2.376 2.334 0.312 1.339 0.483 

10 1.809 1.766 1.801 1.806 2.361 0.448 0.189 

11 1.641 1.642 1.624 1.631 0.056 1.010 0.615 

12 1.457 1.457 1.457 1.461 0.034 0.001 0.294 

13 1.412 1.423 1.430 1.404 0.789 1.278 0.511 

14 1.180 1.164 1.192 1.181 1.355 0.992 0.092 

15 1.907 1.903 1.892 1.910 0.214 0.796 0.138 

16 1.769 1.778 1.764 1.760 0.490 0.301 0.472 

17 1.367 1.371 1.369 1.369 0.271 0.168 0.145 

18 1.114 1.117 1.133 1.119 0.228 1.682 0.455 

19 1.200 1.193 1.208 1.195 0.579 0.662 0.411 

20 0.958 0.957 0.974 0.969 0.188 1.607 1.085 

APE         0.601 0.744 0.623 
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As it seen, the resonant frequency results computed by our 
models are much closer to the simulated ones. The results that 
are close to each other shows that there models can be used 
successfully for computing the resonant frequency of ACMAs. 
These models provide the more accurate and relatively simple 
way since they require neither sophisticated functions of 
mathematical transformations nor rigorous expertness to 
determine the unknown parameters in any problem including 
highly nonlinearity. The training process is once completed in 
a few minutes by properly choosing the network parameters; 
one can easily compute any parameters of interest in 
microseconds. 

IV. CONCLUSION 

In this paper, applications of ANN, ANFIS and SVM 
models are successfully implemented for the computation of 
resonant frequency of ACMAs. IE3D™ simulation software 
based on MoM was used to define resonant frequency of 144 
ACMAs. The physically and electrical parameters of 124 
ACMAs were utilized for training the ANN, ANFIS and SVM 
models, 20 ACMAs were also utilized for the test. It was seen 
that computed results with ANN, ANFIS and SVM for 
training and test data are in a good agreement with the 
simulation results. Among the three methods, the best 
performance was obtained by ANFIS model for training 
process, but ANN model yields the better results than those of 
the ANFIS and SVM in the test process. The ANN, ANFIS 
and SVM approaches are simple and fast modeling which 
produces more accurate results for the resonant frequency of 
the ACMAs with less computational time and least errors. The 
most important advantages of these models are accuracy and 
easy to implement for the engineering problems which include 
the high nonlinearity. 
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