
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1566


Abstract—The growing number of computer viruses and the

detection of zero day malware have been the concern for security
researchers for a large period of time. Existing antivirus products
(AVs) rely on detecting virus signatures which do not provide a full
solution to the problems associated with these viruses. The use of
logic formulae to model the behaviour of viruses is one of the most
encouraging recent developments in virus research, which provides
alternatives to classic virus detection methods. In this paper, we
proposed a comparative study about different virus detection
techniques. This paper provides the advantages and drawbacks of
different detection techniques. Different techniques will be used in
this paper to provide a discussion about what technique is more
effective to detect computer viruses.

Keywords—computer viruses, virus detection, signature-based,

behaviour-based, heuristic-based.

I. INTRODUCTION

INCE they first appeared, computer viruses have caused
disruption to private and public organisations, governments

and computer users, as they attempt to remove, modify or steal
sensitive data. It is highly recommended that virus researchers
should be aware of new trends, which virus writers will exploit
whenever they have the opportunity. The success that attackers
enjoy demonstrates that there needs to be a novel and robust
detection system to prevent attacks. Therefore, a novel system
is needed in order to minimise damages caused by these viruses
and to defeat the new techniques used by skilful attackers.
Existing antivirus (AV) products provide detection techniques
which are based on signatures that have been collected from
previous SEEN viruses and then added to an AV database. Prior
to the arriving of a virus to the system, its signature will be
compared with those stored in the database and if there is a
match, the virus will be detected; otherwise, the system will
run normally [1]. Thus, zero day viruses will not be detected by
traditional detection systems unless this new virus is received
by the antivirus company and the virus signature is stored in its
own database.

Signature-based detection systems need databases in order to
store the signatures. As the number of viruses increases every
day, ever larger databases are needed to store all their
signatures, so that more storage space will be needed in the
near future [3], [2], [13]. The large database will also affect the
speed of searching for signatures, and, thus, affect the
performance of the system. These disadvantages mean that the

S. A. Al Amro is with Computer Science (CS) Department, Qassim

University, Buraydah, Qassim, 51452, KSA (e-mail: samro@qu.edu.sa).
A. A. Alkhalifah is with Information Technology (IT) Department, at

Qassim University, Buraydah, Qassim, 51452, KSA (e-mail:
a.alkhalifah@qu.edu.sa).

signature-based detection techniques will soon be inadequate to
protect computer systems.

Behaviour-based virus detection systems have been
developed recently. They do not rely on a database of
signatures, but instead concentrate on the behaviour of the
system. They have come to light in order to overcome the
problems associated with traditional signature-based detection.
The principle behind this approach is first to observe the
normal behaviour of the system, after which any deviation
from it will be classified as an intrusion [5]. The second is to
predefine virus behaviour, so that any process which resembles
virus activity can be identified as a potential virus. However,
there are difficulties associated with behaviour-based detection,
the greatest of which is how to define the behaviours that will
detect known and novel viruses without confusing them with
normal processes running in the system (known as false
positives). In addition, some existing virus behaviour detection
techniques rely on detecting subclasses of viruses. In general,
behaviour-based detection techniques rely on identifying virus
characteristics in order to detect these viruses and other viruses
sharing the same characteristics in the future. One of the
objectives of this research is to look into the Application
Programing Interface (API) calls issued by computer viruses in
order to specify virus behaviour that will be used in this
research.

This paper provides an overview of computer viruses. It
starts with a background about computer viruses that tries to
answer a number of important questions which should be asked
about computer viruses, such as what they are, how they are
able to spread and harm individual computers, who writes
them, what they wish to accomplish and what techniques have
been used to defend our systems from viruses. Then,
definitions of some terms that will be significant in this
research will be provided. After that, more details about
computer viruses and the famous types of computer viruses
will be discussed. Section V will discuss different techniques
used to detect computer viruses besides their advantages and
drawbacks.

II. BACKGROUND

Since the late 1980s, when the first serious computer virus
appeared, a war has been waged between virus generators and
the antivirus community [5]. This struggle continues to this
day, thanks to the daily discovery of new techniques for
generating viruses and defending systems against them. In
April 2006, Kaspersky [6] reported that every month, there
were over 10 thousand updates to a particular antivirus (AV)
program in response to the discovery of new viruses. Early in
the same year, the FBI calculated the cost of computer crime
for several companies and reported that computer viruses

A Comparative Study of Virus Detection Techniques
Sulaiman Al Amro, Ali Alkhalifah

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1567

caused the greatest losses (67% of overall losses) [7]. Indeed, it
is apparent that computer viruses have a high cost for both
individuals and organisations. Therefore, dealing with them is
an essential, never-ending task and research in the antivirus
field is required in order to minimise the associated threats and
losses.

III. TAXONOMY OF MALICIOUS SOFTWARE

According to [5], there are a number of terms in the field of
computer viruses which might be confused, such as Trojan
horse, backdoor, worm and malicious software. The following
paragraphs offer definitions of these types of malware and
explanations of the terminology [5], [8].

Malware is an abbreviation of the phrase ‘malicious
software’, which can be defined as a computer program which
attempts to harm the system without the knowledge of the
computer user. There are several categories of malware,
including worms, viruses, Trojan horses, backdoors, bombs
and rootkits [1].

A Trojan horse is a program that appears to be legal and
which once executed gives the attacker unauthorised remote
access to a system or can be extended to download more
malicious software.

A virus is a code that recursively replicates a possibly
evolved a copy of itself. In other words, it is a computer
program that attaches itself to other files or processes.

A worm is a program that is designed to infect host
machines by individually replicating itself across networks.

Rootkits are special tools used by an attacker after breaking
into a computer system, in order to obtain root-level access.

A backdoor is a program that attempts to bypass the defense
system in order to gain unauthorised access to a computer.

In addition to these definitions there is another classification
of malware which includes programs like adware and spyware
that are not dangerous in themselves but still harm the system
by reducing its performance, exposing new vulnerabilities and
weakening it in ways that might affect its usability. This
malware is called grayware [5].

Identification is not always accurate, so the performance of a
computer security system should be considered in terms of the
extent of false positives and false negatives. False positives
occur when normal (benign) programs are identified by a
defender as malicious, while false negatives are when
malicious programs are not detected but rather classified as
normal.

There are many subcategories of malware other than the five
most common ones, which have been defined here. In order to
give a clear definition and to distinguish them clearly from
other malicious software, the next section offers a
comprehensive examination of computer viruses.

IV. COMPUTER VIRUSES

Since their emergence in the 1980s, a large number of
definitions have been put forward by many researchers as to
what constitutes a computer virus. Fred Cohen, who invented
the technique of defence against computer viruses, defined a

virus as a program that can ‘infect’ other programs by
modifying them to include a (possibly evolved) version of itself
[9]. Later, in 2005, Peter Szor claimed that the former
definition is incomplete because it does not incorporate all
viruses. He defines a computer virus as “A program that
recursively and explicitly copies a possibly evolved version of
itself” [1].

A virus must attach itself to other programs because it is
unable to be executed by itself and that is one of its main
characteristics [10]. Computer viruses have succeeded in
satisfying the desires of their writers, especially in spreading,
causing damage and bypassing detection. Nowadays, because
computers have become very important to individuals,
governments and organisations, computer viruses constitute a
major problem of daily life and it is one of the fundamental
aspects of computing that people should be aware of [1], [4].

One of the earliest papers on computer viruses was written
by Cohen and Adleman [11], [12]. Cohen was the first to use
the term ‘virus’ and using Turing machines, he also proposed
the first formal definition of computer viruses [11]. Cohen
states that the only way to be fully protected against viruses is
by isolating the system, but notes that this cannot be practically
implemented. He concludes that for a system to be secured
against viruses, it must be protected from interference with
both outgoing and incoming information flows.

Adleman built upon Cohen’s work by inventing more formal
definitions and classifications of computer viruses. His
conclusion was that any program which has been infected will
cause one of the three following types of damage [12]: first,
impairment of the system by doing an injury to it; second, harm
to the system by replicating itself in other programs; finally,
producing an imitation of itself when it cannot find a file to
infect.

Computer viruses have been classified as simple and
complex [5]. Simple viruses have been the backbone of
malicious software for the last 25 years and can be divided into
three types: file viruses, boot sector viruses and macro viruses.
Within these groups, a wide range of strategies are used by
virus writers in order to infect files [1], [4].

Overwriting viruses: In this method, the target code will be
removed by the virus and an infected file is replaced with it.

Fig. 1 Overwriting virus

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1568

Parasitic viruses: Here, a virus code will be inserted into
the existing file to gain control of it. Parasitic viruses include
appending and prepending types.

Fig. 2 Appending virus

Fig. 3 Prepending virus

Fig. 4 Cavity virus

Companion viruses: The target file will be duplicated by a

companion giving a copy of the original file that contains the
virus in it.

Link viruses: A link to the virus file will be incorporated
into the target file.

Application source code viruses: An active virus can be
included in the source code of some applications during their
installation.

Cavity viruses: These are viruses that do not increase the
size of the infected file, but instead overwrite part of it by
including the virus code.

Compressing viruses: As their name suggests, these viruses
compress the content of the host program. The purpose of this
technique is to hide the increase in the file’s size after an
infection has occurred.

Fig. 5 Compressing virus

The master boot record, which is a type of boot sector, is

normally infected with what is called a boot sector virus. The
final simple virus type is the macro virus or shortcut virus,
which normally repeats itself. Despite the fact that the use of
these macros can be very helpful, they can also cause great
damage to the system [5]. Macros can be loaded automatically
when Microsoft Office applications are loaded. Therefore, the
virus has an excellent opportunity to launch without notifying
the user. For example, a user might receive an email contacting
an attached Microsoft Word document. When the attached file
is opened, the Word document launches and the macro virus is
loaded on the target system. On the other hand, there are the
complex or advanced viruses which have been invented by
virus writers in order to evade detection techniques [1], [5].
With the evolution of defence techniques, virus writers are
forced to invent viruses that are difficult for antivirus systems
to detect. These can be classified into the following
subcategories [1], [5]:

Encrypted viruses are encrypted in order to avoid antivirus
software. This type comprises the first attempt to generate a
complex virus. It was a successful technique to avoid the old
signature-based detection techniques.

Oligomorphic viruses: This is the next decrypting
technique which is normally detected by AV programs, where
the decryption technique is randomly generated. It differs from
basic encryption by having a set of decryptors rather than only
one.

Polymorphic viruses: This is the most common decrypting
technique ever used. The idea is that it can change its
decryptors, which can take an unlimited number of forms.
Polymorphic viruses have proved to be the hardest type for
antivirus programs to detect.

Metamorphic viruses differ from the others in not having a
decryptor; rather, they have the ability to construct new

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1569

generations that look different. The significant feature of
metamorphic viruses is that they do not change the whole code,
but only its functionality.

Entry-point obscuring viruses: The idea of this technique
is that a code is randomly written to a location within an
existing program and appears to give an update to this program.
The trick is that when the trusted program is executed, the
system automatically executes the virus code.

A virus can spread from program to program in the same
system and can also be transferred from user to user via a
network [9]. With the rapid evolution and improvement of the
Internet, there have been various ways in which a virus can
spread and infect systems [5], one of the best known being by
email. This happens when a file is attached to a message in the
mailbox; once a user clicks to open this attachment, the virus
spreads. In addition to emails, downloads from the Internet,
especially malicious websites, are important in spreading
viruses. Removable media such as floppy disks, CDs and USBs
can also cause great damage by carrying viruses in them. Users
should be aware of these methods.

Computer viruses can cause low to very high damage to a
system, including the removal of all information on the hard
drive [1], [9], [10]. A common type of virus damage is denial
of service, where the computer’s resources are kept so busy
that the system is unavailable to the user. Some viruses are
constructed to damage certain hardware by removing all
information from it (formatting), overwriting it or even
destroying it. Another risk is the stealing of data from a system.
Some virus writers make money by accessing individual’s
systems and stealing their credit card numbers and other
important information in phishing attacks, using backdoor
features, for example [1]. However, this research will only
concentrate on those which infect other files or programs.
Therefore, any virus that follows the theory of attachment and
infect another file within the operating system, such malware
would be targeted and detected by the present approach.

V. COMPUTER VIRUS DETECTION

In the late 1980s and early 1990s, writing antivirus software
was not very hard because at that time many individuals could
create one. Two papers [11], [12] opened a path for computer
virus researchers to establish a number of studies in the field of
virus detection. Despite this, antivirus techniques have been
developed successfully in dealing with computer viruses during
the last 25 years. Virus detection techniques can be defined
according to how the presence of a virus can be identified in an
object [13].

A great number of detection techniques have been discussed
[30], with their advantages and disadvantages. However, there
are two basic detection techniques which can be distinguished,
namely manual (on-demand scanning) and on-access (real-time
scanning) [1], [5].

On-demand scanning is a simple virus detection technique
where the user initiates the scan. This technique is not
sufficient to deal with dynamic malwares such as macro
viruses. In addition, it is an offline scan that cannot detect a
virus unless the user is aware of it and allows scanning;

otherwise, the virus will infect the system. Most AV products
use this type of detection as a secondary capability [5]. The
other type of scanning, which is called on-access, dynamic or
real-time scanning, is a more powerful technique because of its
ability to detect more complex viruses [4]. This type of
detection normally happens without the knowledge of the user.
The AV product scans the system memory and the hard disk
looking for viruses, as the computer user browses email, opens
an application or downloads cyber-content. In this technique, if
a virus is detected the malicious activity will be halted, then the
user will be notified and advised to take action. This type of
detection is commonly used in the commercial market today.

A. Signature-Based Detection

Signature-based detection works by searching for particular
sequences of bytes within an object in order to identify
exceptionally a particular version of a virus [13]. Also known
as string scanning, it is the simplest form of scanning,
constructed upon databases which have virus signatures. When
a new virus emerges, its binary form will be specifically and
uniquely analysed by a virus researcher and its sequences of
bytes will be added to the virus database [13]. A virus is
identified by its sequences of bytes and what is called a virus
signature. In addition, a hash value is another type of
signatures. A large amount of data is converted into a single
value by a mathematical function or a procedure known as a
hash function [14].

Most AV products around the world use the signature-based
technique and are trying to develop it, despite the fact that it is
not sufficient for most viruses (as will be discussed later).
Indeed, it has certain limitations that make it not good enough
to meet the evolution and acceleration of new technologies [5].
One of its greatest weaknesses is that it is based on signature
databases, which need to be updated regularly. Therefore, two
actions are required: a list of signatures must be produced by
the vendor, then downloaded and installed by the consumer.
Another important drawback of this approach is that it needs a
large database in order to store the signatures. As the number
of viruses increases every day, ever larger databases are needed
to store all their signatures, so that large storage space will be
needed in the near future. The large database will also affect
the speed of searching for signatures, and, thus, affect the
performance of the system. These disadvantages mean that the
signature-based detection techniques will soon be inadequate to

protect computer systems [15]. In addition, many viruses today
can mutate in various ways, including polymorphic and
metamorphic viruses. Because signature-based detection can
only identify and detect the signatures in its databases, these
viruses will normally defeat the engine and bypass the
defender. One of the important capabilities that signature-based
detection lacks is the detection of unknown and novel viruses.
For each new virus to be discovered and added to the consumer
update list, antivirus software companies will take at least
seven hours [16]. Meanwhile, any new virus which tries to
harm the system will certainly do so without being detected.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1570

B. Heuristic-Based Detection

The second type of on-access scanning is heuristic-based
detection, which was developed to overcome the limitations of
signature-based detection. While new viruses are being
discovered and analysed by the AV company, before it is able
to release a signature, the user has a basic defence [5]. This
type of detection monitors system behaviours and keystrokes,
searching for abnormal activity, rather than searching for
known signatures. Thus, some AV programs that use heuristic
analysis can be used and run without updating; no action is
required of either the vendor or the consumer [4]. Heuristic-
based detection can thus be utilised and applied without prior
knowledge of computer viruses, but it has several
shortcomings, one of the most annoying of which is the
creation of many more false positives than signature-based
systems [1]. This is less dangerous than a false negative, but
nonetheless annoying to the end-user. Such systems also need
more storage space and have more effect on the system
performance. Their final disadvantage is that in order to
perform the heuristic analysis, extra code is needed; besides a
third-party component, such as protocol parsers, needs also to
be included. As a result, buggier code and increase
vulnerabilities [5]. While heuristic-based detection can be
applied without prior knowledge of computer viruses, it still
needs previous knowledge of the vulnerability [17].

Nowadays, computer virus writers have the benefit of using
these packers to make their viruses run faster, as well as
avoiding detection systems. Furthermore, the methods of
packing make recognising and understanding viruses very
complicated both for detection systems and analysts, because
the authors can make small code modifications in order to
change a signature and so avoid detection. Packing also makes
analysis by researchers less easy, because to extract and
understand unpacked code requires a third party tool, beside a
deep and strong understanding of assembly language and the
kernel, which leads to a better understanding of low level
programming.

C. Behaviour-based Virus Detection

In behaviour-based detection, a program can be identified as
a virus or not by inspecting its execution behaviour [1], [18].
Unlike traditional detection techniques which rely on
signatures, in behaviour-based detection, normal and abnormal
measures are used in order to determine whether or not the
behaviour of a running process marks it as a virus [19]. When
unusual behaviour is observed, the execution of the program
will be terminated. Morales et al. [20] state that despite its
drawbacks, including false positives, behaviour-based detection
is still the most encouraging technique, especially in dealing
with novel and anonymous viruses. Therefore, behaviour-based
detection has been chosen as the topic of this research.

Ellis et al. [21] used behavioural signatures in order to
improve the automatic detection of worms. Signature-based
detection searches for fixed regular expressions in payloads.
Instead, and at a higher level of abstraction, behavioural
techniques detect patterns of executional behaviour. Ellis et al.
[21] define behavioural signatures as the description of aspects

of any specific behaviour of worms which are common across
the manifestations of a particular worm in which its node is
spanned in a temporal order. Even if a worm has not been
released previously, a behavioural signature can be used to
detect common implementations and the design of a worm. In
general, three characteristic patterns in a network identify
worm behaviour. The first is when similar data are sent
between two machines, the second is when tree-like structures
are observed to proliferate and the third is when a server
changes into a client. Ellis et al. [21] used the notion of
network application architecture (NAA), which affects the
sensitivity of behavioural signatures, as an approach to
distribute network applications. It is much more challenging if
an attacker wants to evade the behavioural signature, because a
fundamental change in behaviour is needed, rather than only in
its network footprint, which is a way of knowing the system’s
vulnerabilities and trying to find a method to intrude into the
system. In order to detect worms, [21] placed constraints on
network traffic which are violated by worm traffic patterns;
these violations have proven to be straightforward to detect.
They used the Abstract Communication Network (ACN)
model, which is a network theoretical approach to computer
networks and related data flows. The NAAs, behavioural
signatures and worm propagation network are all performed
within the framework of the ACN. Then, in order to identify
the spreading of worms across a network, the propagation of a
worm is built. The result of worm spread is the capture of a
communication pattern, which is identified by the offspring
relation between nodes in the spanning trees of worm
propagation. Two things were improved by this paper: first, the
detection of worms can now be done without previous
knowledge of worms; second, the work has shown an
improvement in worm detection sensitivity.

Even if [21] can be considered as behaviour-based malware
detection, its approach failed in the detection of unknown
malware as stated by [23], [24] due to the fact that its approach
relies on signatures to detect malware. Therefore, it can be said
that the main purpose of behaviour-based virus detection is to
detect anonymous malware which is missing in [21] approach.
The other limitation is that large amounts of state information
about network host behaviours need to be maintained by the
behavioural techniques. This could be quite expensive in
practice [25].

Later, Morales et al. [20] argue that detecting viruses in
terms of their behaviour does not need any subsequent training
analysis of known viruses and this means that less database
will be needed; therefore, less storage space will be used. Their
approach relies on detecting the behaviour of file viruses by
their attempts to replicate. They apply runtime detection by
monitoring executing processes that attempt to replicate. The
behaviour of the virus is characterised by a property called self-
replication, which happens when a process (virus) refers to
itself (known as a transitive relation) during its attempt to
replicate in read and write operation. Morales et al. use this
property to distinguish between non-malignant processes and
viruses.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1571

Implementation is done by a runtime monitoring prototype
called SRRAT, focusing on the tracking of Kernel mode
system services and system user mode Win32 API calls.
Despite the fact that the approach used in [20] has been shown
to be good at detecting known and novel viruses without the
need for prior knowledge of previous viruses, this detection
technique may be bypassed by various viruses which replicate
outside, across other directories within the same operating
system. Furthermore, it can be argued that the definition of
self-replication in Morales et al.’s approach is not complete due
to the fact that their results have shown that there are a huge
number of viruses in their analysis which did not follow their
theory [26]. In addition, [20] approach lacks parallel detection
in which they have two separate detections, one at the user
level and the other at the kernel level, leaving the system too
busy as claimed by [27]. The present research has the
advantage of being able to observe both user level’s API calls
and kernel level’s Native API calls at the same time.

D. Other Types of Detections

Among the many different techniques that have been used to
solve the problem of computer virus detection, most have
failed, have offered no advantages over existing ones or cannot
be used in the real world due to their impracticability, such as
file integrity checking [4]. Such unsuccessful techniques have
not been discussed in this paper.

VI. BEHAVIOUR-BASED VS. HEURISTIC-BASED DETECTION

It has been argued that heuristic-based detection is similar to
behaviour-based detection, the technique used in the present
research. In fact, there is a grey area between the two detection
techniques, but they differ substantially in their functionalities
and ways of detecting viruses. Heuristic products check the
code itself, trying to match it with known malware in order to
detect new variants, whereas behaviour-based detection looks
for the actions carried out by a program, intervening when it
observes malevolent behaviour [18].

Behaviour-based virus detetction can be used to solve the
problems associated with the heuristic-based virus detection by
tracking the lists of API calls. By providing a precise definition
of virus behaviours, the problem of false positives can be
solved. In addition, behaviour-based detection does not require
more space. As a result, less space is needed and therefore, less
effect on the system performance. Furthermore, due to the fact
that behaviour-based virus detection does not require a third
party component, there is no need to the extra code. Therefore,
the vulnerability problem associated with heuristic-based
detection can be solved.

VII. DISCUSSION

The study of computer viruses and their potential for
infecting a computer system is active research, especially in the
area of detecting anonymous viruses. Efficient implementation
techniques have been submitted by many recent works to
enhance their performance. Despite the fact that some of the
submitted new ideas might enhance the detection of computer
viruses based on their signature, at the same time their inability

to detect novel and unknown viruses make them inappropriate
for dealing with daily and new threats [15]. Even if the
signature-based approaches try to deal rapidly with the
unknown viruses by analysing them and updating their
database, this solution is not perfect due to very expensive
damage that can happen to the system during the update, and
hence, the system has already been inflicted by the virus [28].
Altaher et al. [29] state that “The inability of traditional
signature- based malware detection approaches to catch
polymorphic and new, previously unseen malwares has shifted
the focus of malware detection research to find more
generalised and scalable features that can identify malicious
behaviour as a process instead of a single static signature” [29].
On the other hand, heuristic-based detection techniques have
not provided a good solution due to the fact that they produce
many more false positives than signature-based systems.
Besides, they need more storage space and have more effect on
the system performance. Hence, detecting computer viruses in
terms of their behaviour will help with understanding their
actions, resulting in detecting unknown and newly released
viruses that are a threat to computer systems every day with a
better system performance.

Various frameworks have been proposed by researchers to
prove that behaviour-based virus detection can deal with
unknown viruses [30]-[33], but these are still hard to
understand and have some disadvantages. Moreover, some of
the proposed frameworks use more than one database that is
updated when a new virus is received, and thus the same
problem associated with traditional antivirus software
aforementioned is still unsolved. However, some of these
approaches concentrate on only either the user or the kernel
level of Windows operating system and this single
concentration might result in infecting the system. Some
examples of behaviour-based virus detection will be explained
in the next subsection.

A. Examples of Behaviour-Based Virus Detection

Skormin et al. [31] designed an approach that intercepts API
calls while a program is running. They detect any attempt by a
malware to self-replicate at run-time. Their methodology was
to trace the behaviour of normal processes and analyse API
calls issued by each of them along with their input, outputs
argument and the execution result. The replication of a process
was modelled by the Gene of Self-Replication (GSR) based
upon building blocks. Each block in the GSR is considered as a
portion of the self -replication process which includes seeking
files and directories, writing to files, reading from files, and
closing and opening a file. This approach might detect several
viruses from different classes, but on the other hand, they
intercepted Native API calls in the kernel. As observed by [34],
[35] Native APIs are not fully documented and that means that
some viruses exist which might use some of these
undocumented APIs and attack the system. In addition,
Skormin [26] states that “while the number of malicious
computer programs that could be written is infinite, the number
of ways to implement self-replication is very limited".

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1572

Later, Alazab et al. [30] used a static analysis in order to
track API calls. They analysed malware to classify executable
programs as normal or malicious. They plugged in the
disassembler, IDA Pro [36] in their own Python program to
automatically extract API calls. They examined groups of virus
steps such as search, copy, delete, read and write. They found
that read and write files were mostly API calls used by
malwares to infect the program. However, Zwanger and
Freiling [37] stated that due to the fact that Alazab et al. [30]
based their approach on IDA Pro in their detection, they can
only deal with user level’s PE files [38]. Therefore, there are
some viruses that might not be detected by [30] because they
directly call the kernel by using Native API calls as mentioned
by [35] and in their approach they only intercept user API calls.

Recently, Veeramani and Rai [32] used statistical analysis
for Windows API calls to describe the behaviour of programs.
They used an automated framework for analysing and
categorising executables that rely on their relevant API calls.
They tried to increase the detection rate by using a Document
Class wise Frequency feature selection (DCFS) measure by
getting the information related to malware from the extracted
API calls. They categorised malware into groups and the
relevant APIs were extracted from these categories. DCFS
based feature selection measure is used to classify the
executable as malicious or benign. In the [32] approach, they
used a static technique to analyse malware however, as stated
by Bayer [38], due to the nature of computer viruses, they can
be designed to obfuscate the static analyser. Therefore, it can
be said that there might be something missing during their
analysis. In addition, their analysis and detection have been
done at the user level leaving the system liable to viruses that
can directly contact the kernel [35]. That means that [30]-[32]
approaches might have a number of false positives and
negatives because they rely on either kernel or user level [35],
[36]. This problem can be solved by combining and tracking
the Native and Win32 API calls coming from the user and
kernel level that will be used in this research and explained in
detail in this paper [22].

Latterly, Ravi and Manoharan [33] proposed a system which
utilised Windows API call sequence. They used a statistical
model called 3rd order Markov chain to model API calls. Their
system comprises 3 stages: Offline, Online and Iterative
learning stages. The Offline stage subsequently comprises
dataset, API call tracer, API index database, signature database,
rule generator and rule database. In addition, the online stage
respectively comprises the target process, API call tracer, API
index database and the classifier. Finally, in the iterative
learning phase, after each classification, the API call sequence
and the classification label of the target process is repetitively
added to the signature database to enhance the training model.
It can be shown that [33] used two different databases in their
approach, namely, database signature and the API index
database. The API calls are represented using integer IDs and
then stored in the API index database. In addition, the signature
database stores both the API call integer sequence and the
corresponding label of all the samples in the dataset.

Ravi and Manoharan claim that their detection accuracy is
better than several related approaches to their work. However,
they used more than one database to store their information to
catch malware. This may be acceptable as long as the detection
rate is high. On the other hand, they have two main drawbacks
as mentioned earlier. Firstly, they lack the detection of novel
and unknown viruses which is why the behaviour-based virus
detection was introduced [1], [39]. Secondly, they just intercept
Windows API calls at the user level and never monitor the
kernel level Native API calls, leaving their system liable to
malware that directly contact the low level of Windows
operating system [34]. These shortages mean that their system
has no advantages over the traditional signature-based virus
detection.

VIII. CONCLUSION AND FUTURE WORK

Behaviour-based virus detection is a very topical subject
area. It has been developed to overcome the problems
associated with traditional signature-based virus detection. In
this paper, a comprehensive description of computer viruses
with the differences between them and other types of malicious
software has been presented. The well-known signature-based
virus detection was detailed with its pros and cons. In addition
other techniques of virus detection with their positive and
negative effects in computer systems have been provided. This
paper has concentrated more on behaviour-based virus
detection as it is the main topic of this research. Different
works which have used this technique to detect computer
viruses have been discussed in this paper. In addition, the
system service, known as API, which can be used to analyse
and trace computer viruses in this research has been discussed.
Finally, related work to our research which has used this
system service has been described and criticised.

We believe that by merging more than one technique, a
better result can be provided. Therefore, our future work is to
develop this research by examining what can be done if two or
more techniques (signature, heuristic and behaviour) are used.

REFERENCES
[1] Szor, P., 2005. The art of computer virus research and defense. Addison-

Wesley Professional.
[2] Britt, W., Gopalaswamy, S., Hamilton, J. A., Dozier, G. V. and Chang,

K. H., 2007. Computer defense using artificial intelligence, Proceedings
of the 2007 spring simulation multiconference-Volume 3 2007, Society
for Computer Simulation International, pp. 378-386.

[3] Harmer, P. K., Williams, P. D., Gunsch, G. H. and Lamont, G. B., 2002.
An artificial immune system architecture for computer security
applications. Evolutionary Computation, IEEE Transactions on, 6(3), pp.
252-280.

[4] Filiol, E., 2005. Computer viruses: from theory to applications. Springer
Paris etc.

[5] Davis, M., Bodmer, S. and Lemasters, A., 2010. Hacking Exposed
Malware and Rootkits. McGraw-Hill, Inc.

[6] Kaspersky, E., 2006-last update, Problems for AV vendors: Some
thoughts (Homepage of Kaspersky Lab, Russia), (Online). Available:
http://www.virusbtn.com/virusbulletin/archive/2006/04/vb200604-
comment.dkb?mobile_on=yes (01/31, 2014).

[7] Evers, J., January 19, 2006, 2006-last update, Computer crimes cost 67
billion, FBI says (Homepage of Cnet), (Online). Available:
http://news.cnet.com/2100-7349_3-6028946.html (01/31, 2014).

[8] Siddiqui, M. A., 2008. Data mining methods for malware detection.
ProQuest.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1573

[9] Cohen, F. B. and Cohen, D. F., 1994. A short course on computer
viruses. John Wiley & Sons, Inc.

[10] Skoudis, E. and Zeltser, L., 2004. Malware: Fighting malicious code.
Prentice Hall PTR.

[11] Cohen, F., 1987. Computer viruses: theory and experiments. Computers
& Security, 6(1), pp. 22-35.

[12] Adleman, L., 1990. An abstract theory of computer viruses, Advances in
Cryptology—CRYPTO’88 1990, Springer, pp. 354-374.

[13] Morales, J.A., 2008. A behavior based approach to virus detection,
Florida International University.

[14] Rabah, K., 2005. Secure implementation of message digest,
authentication and digital signature. Information Technology Journal,
4(3), pp. 204-221.

[15] Yoo, I. S. and Ultes-Nitsche, U., 2006. Non-signature based virus
detection. Journal in Computer Virology, 2(3), pp. 163-186.

[16] Livingston, B., 23/02/2006, 2006-last update, How Long Must You Wait
for an Anti-Virus Fix? - eSecurity Planet. Available:
http://www.esecurityplanet.com/views/article.php/3316511/How-Long-
Must-You-Wait-for-an-AntiVirus-Fix.htm (2/2/2013).

[17] Christodorescu, M., Jha, S., Maughan, D., Song, D. and Wang, C., 2006.
Malware Detection. Springer.

[18] Conry-Murray, A., 2002. Behavior-blocking stops unknown malicious
code. Network Magazine.

[19] Messmer, E., 01/28/02, 2002-last update, Behavior blocking repels new
viruses (Homepage of Network World Fusion), (Online). Available:
http://www.networkworld.com/news/2002/0128antivirus.html
(02/02/2011).

[20] Morales, J. A., Clarke, P. J. and Deng, Y., 2010. Identification of file
infecting viruses through detection of self-reference replication. Journal
in computer virology, 6(2), pp. 161-180.

[21] Ellis, D. R., Aiken, J. G., Attwood, K. S. and Tenaglia, S. D., 2004. A
behavioral approach to worm detection, Proceedings of the 2004 ACM
workshop on Rapid malcode 2004, ACM, pp. 43-53.

[22] S. Al Amro, A. Cau, “Behaviour-based virus detection system using
Interval Temporal Logic,” Proceedings of the 6th IEEE International
Conference on Risks and Security of Internet and Systems, pp.1-6, Sept.
2011.

[23] Chiang, H. and Tsaur, W., 2010. Mobile Malware Behavioral Analysis
and Preventive Strategy Using Ontology, Social Computing
(SocialCom), 2010 IEEE Second International Conference on 2010,
IEEE, pp. 1080-1085.

[24] Idika, N. and Mathur, A.P., 2007. A survey of malware detection
techniques. Purdue University, pp. 48.

[25] Zhang, Q., 2008. Polymorphic and metamorphic malware detection.
ProQuest..

[26] Skormin, V.A., 2010. Server Level Analysis of Network Operation
Utilizing System Call Data. Binghamton Univ New York Dept of
Electrical and Computer Engineering. Blade API Monitor.
http://www.bladeapimonitor.com/, 2011.

[27] BOS, H., 2013-last update, D16 (D4. 2) Analysis Report of Behavioral
Features (Homepage of Wombat), (Online). Available:
http://www.wombat-project.eu/WP4/FP7-ICT-216026-
Wombat_WP4_D16_V01_Analysis-Report-of-Behavioral-features.pdf
(12/20/2012).

[28] Moskovitch, R., elovici, Y. and Rokach, L., 2008. Detection of unknown
computer worms based on behavioral classification of the host.
Computational Statistics & Data Analysis, 52(9), pp. 4544-4566.

[29] Altaher, A., Ramadass, S. and Ali, A., 2011. Computer virus detection
using features ranking and machine learning. Australian Journal of Basic
and Applied Sciences, 5(9), pp. 1482-1486.

[30] Alazab, M., Venkataraman, S. and Watters, P., 2010. Towards
Understanding Malware Behaviour by the Extraction of API Calls,
Second Cybercrime and Trustworthy Computing Workshop 2010, pp.
52-59.

[31] Skormin, V., Volynkin, A., Summerville, D. and Moronski, J., 2007.
Prevention of information attacks by run-time detection of self-
replication in computer codes. Journal of Computer Security, 15(2), pp.
273-302.

[32] Veeramani, R. and Rai, N., 2012. Windows API based Malware
Detection and Framework Analysis. International Journal of Scientific &
Engineering Research (IJSER), 3(3).

[33] Ravi, C. and Manoharan, R., 2012. Malware Detection using Windows
API Sequence and Machine Learning. International Journal of Computer
Applications, 43(17), pp. 12-16.

[34] Seifert, C., Steenson, R., Welch, I., Komisarczuk, P. and Endicott-
Popovsky, B., 2007. Capture–A behavioral analysis tool for applications
and documents. Digital investigation, 4, pp. 23-30.

[35] Russinovich, M., 2011-last update, Inside the Native API (Homepage of
Sysinternals), (Online). Available:
http://www.sysinternals.com/Information/NativeApi.html (1/22/2014).

[36] Rescue, D., 2006. IDA Pro Disassembler. 2006-10-20.
http://www.datarescue.com/idabase.

[37] Zwanger, V. and Freiling, F.C., 2013. Kernel mode API spectroscopy
for incident response and digital forensics, Proceedings of the 2nd ACM
SIGPLAN Program, Protection and Reverse Engineering Workshop
2013, ACM, pp. 3.

[38] Bayer, U., Moser, A., Kruegel, C. and Kirda, E., 2006. Dynamic analysis
of malicious code. Journal in Computer Virology, 2(1), pp. 67-77.

[39] Jacob, G., Debar, H. and Filiol, E., 2008. Behavioral detection of
malware: from a survey towards an established taxonomy. Journal in
Computer Virology, 4(3), pp. 251-266.

