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Abstract—During signal transmission, the combined effect of the 

transmitter filter, the transmission medium, and additive white 
Gaussian noise (AWGN) are included in the channel which distort 
and add noise to the signal. This causes the well defined signal 
constellation to spread causing errors in bit detection. A compact pi 
neural network with minimum number of nodes is proposed. The 
replacement of summation at each node by multiplication results in 
more powerful mapping. The resultant pi network is tested on six 
different channels. 
 

Keywords—Additive white Gaussian noise, digital 
communication system, multiplicative neuron, Pi neural network.  

I. INTRODUCTION 
HE most basic elements of a communication system is a 
source of signal, a channel which introduces distortion as 
well as noise and a receiver with a means of detecting 

errors caused by noise. As higher-level modulation becomes 
more desirable to cope with the need for high-speed data 
transmission, nonlinear distortion becomes a major factor, 
which limits the performance of communication systems. 
Additive Gaussian noise can disturb the digitally modulated 
signal during transmission. Additive superimposed noise 
normally has a constant power density and a Gaussian 
amplitude distribution throughout the bandwidth of a channel. 
The source in the communication system model generates a 4-
QAM complex valued symbol set. The combined effect of the 
transmitter filter, the transmission medium, and additive white 
Gaussian noise (AWGN) are included in the channel. A 
widely used channel model is a finite impulse response (FIR) 
model whose output at time instant k is given by [1]: 
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Where, )(ih are the channel tap values and nh
is the length 

of the FIR channel. Artificial neural network (ANN) is well 
known for its ability of performing classification tasks. It is 
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used at the receiver end for adaptive filtering of the signal and 
reducing the BER. 
 

 
Fig. 1 A digital communication system model 

 
 

This paper is organised as follows: Section II describes the 
pattern classification properties of ANN, in section III the 
learning rule for the pi neuron network is derived. Section IV 
discusses the experiments and the results and section V 
concludes the paper. 

II.  PATTERN CLASSIFICATION PROPERTY OF ANN 
The ANN consists of many nodes called neurons with 

weighted interconnections (links) between them. The 
incoming signals (xi) are multiplied by the corresponding 
weights (wi) of the links and a bias term (bi) is added. These 
terms are then multiplied to form the net input at the neuron, 
which is subjected to a nonlinear function like sigmoidal. The 
multiplicative neuron (π neuron) shown in figure 2 is defined 
as [2, 3]:  
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This differs by the standard perceptron defined by  
                  
 

                                                                                             (3) 
 
 

Feedforward (FF) neural networks incorporating product 
terms are known to have more powerful mapping abilities. 
These multiplicative networks present better approximation 
capability and faster learning time as compared to multi layer 
perceptron (which employs additive neurons only) because of 
its processing of higher order information [4]. Multiplicative 
neuron models are mainly employed in higher order neural 
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networks [5]. The network algorithm tunes the weights 
automatically to minimise an error function. This is 
implemented by learning from the past set of data fed to the 
network and to be able to apply this knowledge for future 
decision making (known as generalisation). The 4-QAM 
signal constellation is basically a 4 category classification 
problem, where the in phase and the quadrature component 
take on the values {-1, 1} + j*{-1, 1}, where j = sqrt (-1) [6]. 
The estimate of the transmitted signal with the help of a 
simple neuron can be computed as: 
 

(4)                          
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d is the decision delay and                     is the estimate  of the 
transmitted signal and F is a nonlinear function. 

 
Fig. 2  A singe multiplicative neuron   

III. LEARNING RULE FOR THE PI NEURON NETWORK 
The Pi neuron based ANN is shown in figure 3. In this 

network, each neuron first adds each of the weighted inputs in 
the space to an additional weight known as bias and then these 
summations are multiplied to provide a polynomial as the 
output of the neuron. This is fed to a bipolar sigmoidal 
activation function to create the final output. This kind of 
neuron itself looks complex in the first instance but when used 
to solve a complicated problem needs less number of 
parameters as compared to the existing conventional models.  
 

 
 

Fig. 3 Pi neuron based ANN 
 

 The symbols used are as follows: 
 
N o

is the number of inputs in the input layer. 
 
n is the number of hidden layers in the FF network. 
 
N n

is the number of neurons in the nth hidden layer. 
 
K is the number of outputs in the output layer. 
 

jn
is the jth neuron of the nth hidden layer. 

 

yn

jn
is the output of the jth neuron of the nth hidden layer. 

 

ydk
is the desired output of the kth neuron in the output layer. 

 

yk
 is the actual output of the kth neuron in the output layer. 

 

wjnjn 1−
is the weight of the connection between jth  neuron of  

the (n-1)th layer and the jth  neuron of the nth layer. 
 

b jnjn 1−
is the bias of the connection between jth  neuron of the 

(n-1)th layer and the jth  neuron of the nth layer. 
 
 
The output of the jth neuron in the first hidden layer is given as 
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for j1=1,2,….,N1 and x j0

represents jth input in the input layer 

and f(.) is the activation function defined by 
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The output of the jth neuron in the second hidden layer is 
given as 
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The output of the jth neuron in the nth hidden layer is given as: 
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                         (9) 
 
A simple gradient descent rule, using a mean square error 
function is used for computation of weight update. 
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Where y p

k
and y p

dk
are the actual and desired values, 

respectively, of the output of the kth neuron for the pth pattern 
in the output layer. P is the number of training patterns in the 
input space. The weights are updated as below. Weights 
between output layer and the nth hidden layer are given by: 
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Weights between nth and (n-1) th  hidden layer 
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Similarly, we can write equations for weight change between 
the hidden layer 1 and the input layer. 
 
The weights and biases are updated as 
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IV. EXPERIMENTS AND RESULT 

A.  BER Plots 
 

Six different channels were studied with the following 
normalised transfer function given in z-transform form: 
 
CH1: 0.1  

CH2: z 1894.0447.0 −+  

CH3: zz 21 209.0995.0209.0 −− ++  

CH4: zz 21 260.0930.0260.0 −− ++  

CH5: zz 21 304.0903.0304.0 −− ++  

CH6: zz 21 341.0876.0341.0 −− ++  
 

The channel CH1 has unity impulse response and no inter-
symbol interference (ISI). CH2 corresponds to non minimum 
phase channel. CH3, CH4, CH5 and CH6 correspond to eigen 
value ratio of the input correlation matrix as 2.9, 3.1, 3.3 and 
3.5 respectively. 3000 signal samples were used for training 
and 10000 signal samples were used for testing. The pi 
network consist of an input layer with 3 inputs, hidden layer 1 
with 4 nodes, hidden layer 2 with 2 nodes and an output layer 
with 1 output. The corresponding number of node 
computations for MLP or Chebyshev network is much higher 
[7]. However as the nonlinearity in the input space increases 
the complexity of the pi network also increases. The BER for 
various channels at varying signal to noise ratio (SNR) is 
plotted in figure 4. 
 
 

 
Fig. 4  BER for various channels   
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B. The eye patterns 
The eye patterns of the output values provide an indication 

of effectiveness of the noise reduction. The eye pattern for 
CH2 at 12 dB SNR is shown in figure 5. 
 

 
Fig. 5 (a) Nonlinear noisy channel output of 4 QAM signal          

 

 
Fig. 5 (b) 4 QAM signal output of pi network 

 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

V. CONCLUSION 
A compact pi network has been proposed for reducing BER 

in QAM signals transmitting through dispersive FIR channels. 
The simulation results for 6 different channels are plotted. It is 
observed that the multiplicative ANN structure is simple and 
fast for filtering noise even at very low values of SNR. 
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