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Abstract—Sometimes the amount of time available for testing 

could be considerably less than the expected lifetime of the 

component. To overcome such a problem, there is the accelerated 

life-testing alternative aimed at forcing components to fail by testing 

them at much higher-than-intended application conditions. These 

models are known as acceleration models. One possible way to 

translate test results obtained under accelerated conditions to normal 

using conditions could be through the application of the “Maxwell 

Distribution Law.” In this paper we will apply a combined approach 

of a sequential life testing and an accelerated life testing to a low 

alloy high-strength steel component used in the construction of 

overpasses in Brazil. The underlying sampling distribution will be 

three-parameter Inverse Weibull model. To estimate the three 

parameters of the Inverse Weibull model we will use a maximum 

likelihood approach for censored failure data. We will be assuming a 

linear acceleration condition. To evaluate the accuracy (significance) 

of the parameter values obtained under normal conditions for the 

underlying Inverse Weibull model we will apply to the expected 

normal failure times a sequential life testing using a truncation 

mechanism. An example will illustrate the application of this 

procedure. 

 

Keywords—Sequential Life Testing, Accelerated Life Testing, 

Underlying Three-Parameter Weibull Model, Maximum Likelihood 

Approach, Hypothesis Testing. 

I. INTRODUCTION 

HE Inverse Weibull model was developed by [2]. It has a 

minimum life (or location), a scale and a shape parameter. 

This model has been used in reliability estimation of some 

industrial components where it seems to have a better answer 

to the accuracy problem presented by the Weibull model, as 

shown by [1]. It happens that when the shape parameter of the 

Weibull model is greater than 7, the Weibull curve becomes 

highly pointed, resulting in some computational difficulty 

(accuracy) in calculating the component’s characteristics of 

interest values. The three-parameter Inverse Weibull model 

has a density function given by: 
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II. ACCELERATION MECHANISM 

The “Maxwell Distribution Law” is given by: 
 

TEM  = totM ×
KTEe−

                          (2) 

 

In (2) MTE represents the number of molecules at a 

particular absolute Kelvin temperature T (Kelvin = 273.16 

plus the temperature in Centigrade), that passes a kinetic 

energy greater than E among the total number of molecules 

present, Mtot; E is the energy of activation of the reaction and 

K represents the gas constant (1.986 calories per mole). 

Equation (1) expresses the probability of a molecule having 

energy in excess of E. The accelerating factor AF2/1 (or the 

ratio of the number of molecules at two different stress Kelvin 

temperatures T2 and T1; MTE(2)/MTE(1)), will be given by: 
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Applying natural logarithm to both sides of (3) and after 

some algebraic manipulation, we will obtain: 
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From (4) we can estimate the term E/K by testing at two 

different stress temperatures and computing the acceleration 

factor on the basis of the fitted distributions. Then: 
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The acceleration factor AF2/1 will be given by the 

relationship θ1/θ2, with θi representing a scale parameter or a 

percentile at a stress level corresponding to Ti. Once the term 

E/K is determined, the acceleration factor AF2/n to be applied 

at the normal stress temperature is obtained from (3) by 

replacing the stress temperature T1 with the temperature at 

normal condition of use Tn. Then: 
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De Souza [3] has shown that under a linear acceleration 

assumption, if a three-parameter Inverse Weibull model 

represents the life distribution at one stress level, a three-

parameter Inverse Weibull model also represents the life 

distribution at any other stress level. We will be assuming a 

linear acceleration condition. In general, the scale parameter 

and the minimum life can be estimated by using two different 

stress levels (temperature or cycles or miles, etc.), and their 

ratios will provide the desired value for the acceleration 

factors AFθ and AFϕ. Then: 
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n

θ
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AFϕ= 
a

n

ϕ
ϕ

                 (8) 

 

Now, based on papers by [1] and [3], for the three-

parameter Inverse Weibull model the cumulative distribution 

function at normal testing condition Fn(tn−ϕn) for a certain 

testing time t = tn, will be given by: 
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Equation (9) tells us that, under a linear acceleration 

assumption, if a three-parameter Inverse Weibull model 

represents the life distribution at one stress level, a three-

parameter Inverse Weibull model also represents the life 

distribution at any other stress level. The shape parameter 

remains the same while the accelerated scale parameter and 

the accelerated minimum life are multiplied by the 

acceleration factor. The equal shape parameter is a necessary 

mathematical consequence to the other two assumptions, that 

is; assuming a linear acceleration model and assuming a three-

parameter Inverse Weibull sampling distribution. If different 

stress levels yield data with very different shape parameters, 

then either the Inverse Weibull sampling distribution is the 

wrong model for the data or we do not have a linear 

acceleration condition. 

III. THE MAXIMUM LIKELIHOOD APPROACH 

The likelihood function for the shape, scale and minimum 

life parameters of an Inverse Weibull sampling distribution for 

censored Type II data (failure censored) will be given by: 
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The density function f(ti) will be given by: 
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The reliability function R(tr) will be: 
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Then, we will have: 
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The log likelihood function L = ( )[ ]ϕθβ ;;ln L  will be given 

by: 
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To find the value of θ and β that maximizes the log 

likelihood function, we take θ, β and ϕ derivatives and make 

them equal to zero. Then, we will have: 
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From (15) we obtain: 
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Notice that, when β = 1, (18) reduces to the maximum 

likelihood estimator for the inverse two-parameter exponential 

distribution. Using (18) for θ in (16) and (17) and applying 

some algebra, (16) and (17) reduce to: 
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Equations (19) and (20) must be solved iteratively. The 

problem was reduced to the simultaneous solution of the two 

iterative equations (19) and (20). The simultaneous solution of 

two iterative equations can be seen as relatively simple when 

compared to the arduous task of solving three simultaneous 

iterative equations (15)-(17) as outlined by [4]. Even though 

this is the present case, one possible simplification in solving 

for estimates when all three parameters are unknown could be 

the following approach proposed by [5]. For example, let us 

suppose that β̂  and θ̂  represent the good linear unbiased 

estimators (GLUEs) of the shape parameter β and of the scale 

parameter θ for a fixed value of the minimum life ϕ. We could 

choose an initial value for ϕ to obtain the estimators β̂ and θ̂ , 

and then apply these two values in (20), that is, the maximum 

likelihood equation for the minimum life ϕ. An estimate ϕ
⌣

 

can then be obtained from (20), then the GLUEs of β and of θ 

can be recalculated for the new estimate ϕ
⌣

, and a second 

estimate for the minimum life ϕ obtained from (20). 

Continuing this iteration would lead to approximate values of 

the maximum likelihood estimators. As we can notice, the 

advantage of using the GLUEs in this iteration is that only one 

equation must be solved implicitly. The existence of solutions 

to the above set of equations (19) and (20) has been frequently 

addressed by researchers as there can be more than one 

solution or none at all; see [6]. 

The standard maximum likelihood method for estimating 

the parameters of the three-parameter Wibull and Inverse 

Weibull models can have problems since the regularity 

conditions are not met, see [6], [7] and [8]. To overcome this 

regularity problem, one of the approaches proposed [9] is to 

replace (20) with the equation 
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Here, t1 is the first order statistic in a sample of size n. In 

solving the maximum likelihood equations, we will use this 

approach proposed by [9]. The derivation of (21) can be found 

in the Appendix. 

IV. HYPOTHESIS TESTING 

The hypothesis testing situations were given by [1], [10] 

and [11]: 

1. For the scale parameter θ: H0: θ ≥ θ0;   H1: θ < θ0 

The probability of accepting the null hypothesis H0 will be 

set at (1-α) if θ = θ0. Now, if θ = θ1 where θ1 <θ0, then the 

probability of accepting H0 will be set at a low level γ. H1 

represents the alternative hypothesis. 

2. For the shape parameter β: H0: β ≥ β0;   H1: β<β0 

The probability of accepting H0will be set again at (1-α)in 

the case of β = β0. Now, if β = β1, where β1<β0, then the 

probability of accepting H0 will also be set at a low level γ. 

3. For the minimum life parameterϕ. 

Again, the probability of accepting H0will be set at (1-α) if 

ϕ = ϕ0. Now, if ϕ = ϕ1 whereϕ<ϕ0, then the probability of 

accepting H0 will be once more set at a low level γ.  

Again, the probability of accepting H0 will be set at (1-α) if 

ϕ = ϕ0. Now, if ϕ = ϕ1 whereϕ<ϕ0, then the probability of 

accepting H0 will be once more set at a low level γ.  

V. SEQUENTIAL TESTING 

According to [1], [10] and [11], the development of a 

sequential test uses the likelihood ratio given by the following 

relationship: 

 

nLL
n ;0;1

           (22) 

 

The sequential probability ratio (SPR) will be given bySPR 

= L1,1,1,n / L0,0,0,n, or yet, according to [1], for the Inverse 

Weibull model, the sequential probability ratio (SPR) will be: 
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So, the continue region becomes A< SPR < B, where A = 

γ/(1-α) and B = (1-γ)/α.. We will accept the null hypothesis 

H0 if SPR ≥ B and we will reject H0if SPR ≤  A. Now, if we 

have A <SPR< B, we will take one more observation. Then, 

by taking the natural logarithm of each term in the above 

inequality and rearranging them, we get: 
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VI. EXPECTED SAMPLE SIZE 

According to [12] an approximate expression for the 

expected sample size E(n) of a sequential life testing will be 

given by: 
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Again, according to [12], the variate W*
n takes on only 

values in which W
*
n exceeds ln(A) or falls short of ln(B). 

When the true distribution is f (t;θ,β,ϕ), the probability that 

W
*

n takes the value ln(A) is P(θ,β,ϕ), while the probability that 

it takes the value ln(B) is equal to 1− P(θ,β,ϕ). Hence, with 

Again, according to [12], the variate W
*
n takes on only values 

in which W
*
n exceeds ln(A) or falls short of ln(B). When the 

true distribution is f (t;θ,β,ϕ), the probability that W
*

n takes the 

value ln(A) is P(θ,β,ϕ), while the probability that it takes the 

value ln(B) is equal to 1− P(θ,β,ϕ). Hence, with A = γ/(1-α) 

and also with B = (1-γ)/α, (26) becomes: 
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Equation (27) enables one to compare sequential tests with 

fixed sample size tests. The proofs of the existence of (26) to 

(29) can be found in [12], pp. 391-392. For a three-parameter 

Inverse Weibull sampling distribution, the expected value of 

(27) will be given by: 
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−it
E        (30) 

 

The solution for the components of (30) can be found in [1]. 

VII. EXAMPLE 

We are trying to determine the values of the shape, scale 

and minimum life parameters of an underlying three-

parameter Inverse Weibull model, representing the life cycle 

of a low alloy high-strength steel component used in the 

construction of overpasses in Brazil. Once a life curve for this 

steel component is determined, we will be able to verify using 

sequential life testing, if new units produced will have the 

necessary required characteristics. It happens that the amount 

of time available for testing is considerably less than the 

expected lifetime of the component. So, we will have to rely 

on an accelerated life testing procedure to obtain failure times 

used on the parameters estimation procedure. The steel 

component has a normal operating temperature of 296 K 

(about 23 degrees Centigrade). Under stress testing at 490 K, 

16 steel component items were subjected to testing, with the 

testing being truncated at the moment of occurrence of the 

twelfth failure. Table I shows these failure time data (hours 

multiply by10
-2

).  

 
TABLE I 

FAILURE TIMES (HOURS × 102
 ) OF STEEL COMPONENT ITEMS TESTED UNDER 

ACCELERATED TEMPERATURE CONDITIONS (490 K) 

661.1 687.6 683.1 

697.3 719.8 740.5 

753.6 785.2 792.8 

801.2 833.0 1,002.4 

 

Now, under stress testing at 530 K, 16 steel rail items were 

again subjected to testing, with the testing being truncated at 
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the moment of occurrence of the twelfth failure. Table II 

shows these failure time data (hours x 10
-2

). 

 
TABLE II 

FAILURE TIMES (HOURS × 102
 ) OF STEEL COMPONENT ITEMS TESTED UNDER 

ACCELERATED TEMPERATURE CONDITIONS (530 K) 

781.0 861.2 868.1 

880.2 895.6 909.6 

928.3 950.3 972.2 

993.5 1,035.8 1,147.0 

 

Using the maximum likelihood estimator approach for the 

shape parameter β, for the scale parameter θ and for the 

minimum life ϕ of the Inverse Weibull model for censored 

Type II data (failure censored), we obtain the following values 

for these three parameters under accelerated conditions of 

testing: 

 

At 490 K. 

β1 = βn = β= 8.38; θ1 = 655.7 x 10
2
 hours;  

ϕ1 = 120.3 x 10
2
 hours 

 

At 530 K. 

β2 = βn = β = 8.41; θ2 = 559.4 x 10
2
hours; 

ϕ2 = 102.3 x 10
2
 hours 

 

The shape parameter did not change with β≈ 8.4. The 

acceleration factor for the scale parameter AFθ2/1 will be given 

by: 

 

12θAF  = θ1/θ2 = 655.7/559.4 

 

Using (5), we can now estimate the term E/K. 

 

K

E
 = 

( )









−

21

1/2

11

ln

TT

AF
 = 

( )









−

530

1

490

1

4.5597.655ln
 = 1031.3 

 

Using (6), the acceleration factor for the scale parameter, to 

be applied at the normal stress temperature AFθ2/n, will be: 

 

nAF /2  = 



















−

2

11
exp

TTK

E

n

 

 

nAF /2 = 















−

530

1

296

1
3.031,1exp  = 4.66 

 

Therefore, the scale parameter of the component at normal 

operating temperatures is estimated to be: 

 

nθ = nAF /2 × θ2 = 4.66 × 559.4 x 10
2
 

 

nθ = 2,606.8 x 10
2
 hours 

 

The acceleration factor for the minimum life parameter 

AFφ2/1will be given by: 

 

12ϕAF  = 
2

1

ϕ
ϕ

 = 
3.102

3.120
 

 

Again applying (5), we can again estimate the term E/K. 

Then: 

 

K

E
 = 

( )









−

21

1/2

11

ln

TT

AF
 = 

( )









−

530

1

490

1

3.1023.120ln
 = 1,052.3 

 

Using once more (6), the acceleration factor for the 

minimum life parameter, to be applied at the normal stress 

temperature AFφ2/n, will be: 

 

nAF /2ϕ  = 















−

530

1

296

1
3.052,1exp  = 4.80 

 

Then, as we expected, AFθ = 4.66 ≈AFϕ= 4.80 ≈ AF = 4.7. 

Finally, the minimum life parameter of the component at 

normal operating temperatures is estimated to be: 

 

nϕ  = nAF /2ϕ  × ϕ2 = 4.7 × 102.3 x 10
2
 

 

nϕ = 480.8 x 10
2
 hours 

 

Then, the steel rail life when operating at normal use 

conditions could be represented by a three-parameter Inverse 

Weibull model having a shape parameter β of 8.4; a scale 

parameter θ of 2,606.8 x 10
2
 hours and a minimum life φ of 

480.8 x 10
2
 hours. To evaluate the accuracy (significance) of 

the three-parameter values obtained under normal conditions 

for the underlying Inverse Weibull model we will apply, to the 

expected normal failure times, a sequential life testing using a 

truncation mechanism developed by [1]. These expected 

normal failure times will be acquired by multiplying the 

twelve failure times obtained under accelerated testing 

conditions at 530 K given by Table II by the accelerating 

factor AF of 4.7. It was decided that the value of α was 0.05 

and γ was 0.10. In this example, the following values for the 

alternative and null parameters were chosen: alternative scale 

parameter θ1= 2,400 x 10
2
 hours, alternative shape parameter 

β1 = 7.8 and alternative location parameter ϕ1 = 420 x 10
2
 

hours; null scale parameter θ0 = 2,607 x 10
2
 hours, null shape 

parameter β0 = 8.4 and null minimum life parameter ϕ0 = 480 

x 10
2
 hours. Now electing P(θ,β,ϕ) to be 0.01, we can 

calculate the expected sample size E(n) of this sequential life 

testing under analysis. Using now (30), the expression for the 

expected sample size of the sequential life testing for 

truncation purpose E(n), we will have: 
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( )wE  = –5.439 + 9.4 ×7.702 –8.8×7.663 – 0.038 + 1= 0.4874 

 

Now, withP(θ, β, φ) = 0.01; also with  

 

( )Bln  = 
( )






 −
α

γ1
ln  = 

( )





 −
05.0

10.01
ln  = 2.8904, 

 

and having 

 

( )Aln  = 







−α
γ

1
ln  = 








− 05.01

10.0
ln = −2.2513,  

 

we will obtain: 

 

( ) ( ) ( )[ ] ( )BPAP ln,1ln, βθβθ −+  =  

 

= 8904.299.02513.201.0 ×+×−  = 2.8390 

 

Finally: ( )nE  = 
4874.0

8390.2
 = 5.825≈ 6 items 

 

Therefore, we could make a decision about accepting or 

rejecting the null hypothesis H0after the analysis of 

observation number 6. Using (24) and (25) and the twelve 

failure times obtained under accelerated conditions at 530 K 

given by Table II, multiplied by the accelerating factor AF of 

4.7, we calculate the sequential life testing limits. Table III 

shows these estimated failure times (hours x 10
-2

) under 

normal temperature conditions (296 K). 
 

TABLE III 
FAILURE TIMES (HOURS × 102

 ) OF STEEL COMPONENT ITEMS TESTED UNDER 

NORMAL TEMPERATURE CONDITIONS (296 K) 

3,130.7 3,231.7 3,210.6 

3,277.3 3,383.1 3,480.4 

3,541.9 3,690.4 3,726.2 

3,765.6 3,915.1 4,711.3 

VIII. EARLY TRUNCATION 

Fig. 1 below shows the sequential life-testing for the three-

parameter Inverse Weibull model. According to [10], when 

the truncation point is reached, a line partitioning the 

sequential graph can be drawn as shown in Fig. 1. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 V

 A

 L

 U

 E

 S

 O

 F

 X

TRUNCATION

      POINT

REJECT Ho

ACCEPT Ho

NUMBER OF ITEMS

 

Fig. 1 Sequential test graph for the three-parameter Inverse Weibull 

model 

 

This line is drawn through the origin of the graph parallel to 

the accept and reject lines. The decision to accept or reject H0 

simply depends on which side of the line the final outcome 

lies. Obviously this procedure changes the levels ofα and γ of 

the original test; however, the change is slight if the truncation 

point is not too small (less than four). But since we were able 

to make a decision about accepting or rejecting the null 

hypothesis H0 after the analysis of observation number 5, we 

do not have to analyze a number of observations 

corresponding to the truncation point (6 observations). As we 

can see in Fig. 1, the null hypothesis H0 should be accepted 

since the final observation (observation number 5) lays on the 

region related to the acceptance of H0.  

IX. CONCLUSIONS 

In this work we life-tested a new industrial component 

using an accelerated mechanism. We assumed a linear 

acceleration condition. To estimate the parameters of the 

three-parameter Inverse Weibull model we used a maximum 

likelihood approach for censored failure data, since the life-

testing will be terminated at the moment the truncation point is 

reached. The shape parameter remained the same while the 

accelerated scale parameter and the accelerated minimum life 

parameter were multiplied by the acceleration factor. The 

equal shape parameter is a necessary mathematical 

consequence of the other two assumptions; that is, assuming a 

linear acceleration model and a three-parameter Inverse 

Weibull sampling distribution. If different stress levels yield 

data with very different shape parameters, then either the 

three-parameter Inverse Weibull sampling distribution is the 

wrong model for the data or we do not have a linear 

acceleration condition. In order to translate test results 

obtained under accelerated conditions to normal using 

conditions we applied some reasoning given by the “Maxwell 

Distribution Law.” To evaluate the accuracy (significance) of 
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the three-parameter values estimated under normal conditions 

for the underlying Inverse Weibull model we employed, to the 

expected normal failure times, a sequential life testing using a 

truncation mechanism developed by [1]. These expected 

normal failure times were acquired by multiplying the twelve 

failure times obtained under accelerated testing conditions at 

530 K given by Table II, by the accelerating factor AF of 4.7. 

Since we were able to make a decision about accepting or 

rejecting the null hypothesis H0 after the analysis of 

observation number 5, we did not have to analyze a number of 

observations corresponding to the truncation point (6 

observations). As we saw in Fig. 1, the null hypothesis H0 

should be accepted since the final observation (observation 

number 5) lays on the region related to the acceptance of H0. 

Therefore, we accept the hypothesis that the friction-resistant 

low alloy-high strength steel rails life when operating at 

normal use conditions could be represented by a three-

parameter Inverse Weibull model having a shape parameter β 

of 8.4; a scale parameter θ of 2,606.8 x 10
2
 hours and a 

minimum life φ of 480.8 x 10
2
 hours. 

APPENDIX 

EQUATION FOR THE MINIMUM LIFE Φ 

The probability density function (pdf) of t1will be given by: 

 

( )1tf  = n ( )[ ] 1

1

−n
tR ( )

1
tf  

 

For the three-parameter Inverse Weibull sampling 

distribution, we will obtain: 
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The expected value of t1 is given by: 
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Letting U= 

β

ϕ
θ










−t
, we will have: 
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when t→∞,U→ 0; When t →ϕ , U →∞. Then, we will have: 
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− +
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1 ϕθ βUn [ ]n
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( )1tE = [ ] dueUn
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1 duen
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The above integrals have to be solved by using a numerical 

integration procedure, such as Simpson’s 1/3 rule. 

Remembering that Simpson’s 1/3 rule is given by: 
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Then, making the error = 0; and with i= 1,2,...,k+1, we will 

get:  
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Using (A) and (B), we will have: 
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Finally: 
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