
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

643

Abstract—Inherited complexity is one of the difficult tasks in

software engineering field. Further, it is said that there is no physical
laws or standard guidelines suit for designing different types of
software. Hence, to make the software engineering as a matured
engineering discipline like others, it is necessary that it has its own
theoretical frameworks and laws. Software designing and
development is a human effort which takes a lot of time and
considers various parameters for successful completion of the
software. The cognitive informatics plays an important role for
understanding the essential characteristics of the software. The aim of
this work is to consider the fundamental characteristics of the source
code of Object-Oriented software i.e. complexity and
understandability. The complexity of the programs is analyzed with
the help of extracted important attributes of the source code, which is
further utilized to evaluate the understandability factor. The
aforementioned characteristics are analyzed on the basis of 16 C++
programs by distributing them to forty MCA students. They all tried
to understand the source code of the given program and mean time is
taken as the actual time needed to understand the program. For
validation of this work, Briand’s framework is used and the presented
metric is also evaluated comparatively with existing metric which
proves its robustness.

Keywords—Software metrics, object-oriented, complexity,
cognitive weight, understandability, basic control structures.

I. INTRODUCTION

OFTWARE engineering is an applied discipline of
software science which acquires engineering approaches.

These approaches are very helpful for the researchers to
handle the software product, such as establishing
methodologies, processes, measurement, tools, architectures,
standards, organization and management methods, quality
assurance, quality controllable activities, seeking to high
productivity, low cost, measurable development time and
schedule [1]-[5]. These aforementioned software measurement
techniques are directly or indirectly related to the complexity
of the software. Definition of complexity according to IEEE is
“the degree to which a system or component has a design or
implementation that is difficult to understand and verify” [6].
Software complexity measures lead to attaining the accurate
estimation of the milestones that further helps the researchers
to improve the product quality. Software complexity measures
are also an important and determinant factor for the successful

Amit Kumar Jakhar is a Research Scholar in the Department of Computer

Science & Engineering, at Birla Institute of Technology, Mesra, Ranchi,
India-835215 (corresponding author; phone number +91-7033619733; e-mail:
amitjakahr69@gmail.com

Kumar Rajnish is now with the Department of Computer Science &
Engineering, at Birla Institute of Technology, Ranchi, India-835215 (e-mail:
krajnish@bitmesra.ac.in).

nature of the software or its failures and a higher risk involved
whenever these measures are ignored. Over the many years,
some research has been carried out to calculate the complexity
of software [9]-[21]. Most of the measures focus on increasing
the performance of prediction ability in many aspects like
effort, cost, quality, time/schedule or all these factors.
Generally, indirect measures help developers to understand the
information of software development processes through some
quantitative basis. These software measures are very important
for the software development for estimating and enhancing the
quality of the software. Quality defines the meaningful terms
for the users and the quality attributes are reliability,
maintainability, performance, and availability [7], which are
closely associated with the software complexity.

Over two decades, Object-Oriented (OO) approaches
dominate the software industry due to the maintainability of
the OO software. Design quality helps the researchers to
evaluate the maintainability of the software with the help of
some software metrics on the basis of quantification means.
Once the design has been finalized and implemented, then any
change in the design reflects higher difficulty and higher costs
at the end of the software development. To overcome the
above-mentioned problems, it is necessary to analyze the
design very carefully for finding its effectiveness before
finalizing it [8]. Variety of software metrics are available in
the literature to compute the complexity in various
perspective. Some among of them are mentioned as
Chidamber & Kermerer (CK) [9] metrics suite, metrics of OO
design (MOOD) [10], Lorenz and Kidd metrics [11], modified
CK metrics [12], product metrics for OO design [13], [14],
weighted class complexity metric [15], cognitive code
complexity of inheritance for OO software [16] and an OO
cognitive complexity metric [17]. Aforementioned software
metrics are related to the OO design software’s, which
indicates some quality attributes of software and these metrics
have their own benefits and limitations. Moreover, introducing
new software complexity measures or perhaps enhancing the
performance of existing one’s is always welcome to achieve
the higher quality software.

The OO approach is characterized by its classes and objects
and the class consists of data (attributes) and methods
(operations), and the methods are only responsible to access
the attributes of the class through objects. Thus, when the
number of methods in a class increased that means the
complexity of the class increases, which directly affect the
understandability factor of the software. The software is
nothing, but just a collection of information and the
information is the function of operands and operators, which

A Cognitive Measurement of Complexity and
Comprehension for Object-Oriented Code

Amit Kumar Jakhar, Kumar Rajnish

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

644

contributes to the complexity and also impose some difficulty
to understand it. According to Cognitive Informatics (CI), it is
observed that the functional complexity of a software system
depends on three aspects: input, output and internal
architecture [18].

Cognitive complexity refers to quantify the difficulties
faced by the personnel while understanding the source code or
the human efforts needed to perform a task. The cognitive
complexity measures emphasis on all the above mentioned
factors which makes difficult to comprehend the software.
Cognitive Functional Size (CFS) was proposed by Wang in
2003 and satisfy the rules of CI up to some limit [19]. In this
work, authors introduced a promising solution by assigning
the cognitive weights (Wc) to the possible Basic Control
Structures (BCSs) of the software. Wang verified and assigned
the cognitive weights for sub conscious function, meta-
cognitive function and higher cognitive function as 1, 2 and 3,
respectively. The most common possible BCSs that can be
incorporated in a software system are sequential, branch,
iteration, embedded and their respective Wc are one, two, three
and two. Wc of the each BCS describes the psychological
burden or the extent of difficulty imposed on the staff who
deals with the source code, i.e. developers, testers and the
maintainers. The higher cognitive weight of the BCS specifies
that a higher level of human effort or relative time needed to
comprehend the BCS and vice versa. However, the entire
cognitive complexity of the software is not only contributed
by the cognitive weight of BCSs but also along with some
other important attributes of the source code like operands,
operators, and their relationship. High cognitive complexity is
not desirable due to fault proneness and maintainability of the
software. A higher complexity value also indicates poor
design, which is not easily manageable by the personnel’s and
also causes to increase the effort drastically at the maintenance
phase [20].

In our previous work, the cognitive complexity of the
software is computed on the behalf of operands, operators,
cognitive weight and it was validated through Weyuker
property [17]. As an extension of the previous paper [17], we
extend our metric to calculate the understandability factor and
validate it through Briand property. It is also compared with
related existing work of Misra et al. to verify the outcome of
the proposed metric [15]. An experiment has been conducted
to understand the source code of the software. Forty MCA
students participated in this experiment. The source code of 16
concerned OO programs of are distributed among all the
students and they are asked to understand the source code and
what problem area the program has addressed, so that they can
modify the program very easily and effectively whenever
required [24]. The time taken by the students is recorded and
their mean time is considered an actual time needed to
understand the code. Thereafter, we apply some method to
estimate the time from the proposed complexity metric
attributes to achieve the recorded time, so that the Mean
Relative Error (MRE) is reduced and the estimation accuracy
increased. A correlation is also calculated for verifying the
actual and estimated time of all program and the result shows

that a good relation exists between the results of the proposed
metric and recorded data.

The rest of the paper is organized as follows: Section II
deals with the related work. Section III provides the detail of
the proposed metric and its validation with Briand framework.
Section IV gives the detail of the experimental results and the
comparative study. Conclusion and future work are discussed
in Section V.

II. RELATED WORK

This section consists of WCC metric and its evaluation to
calculate the cognitive complexity of the classes for OO
software’s.

A. WCC

The WCC metric has been devised by Misra et al. in 2008
to measure the cognitive complexity of the OO software [15].
It uses the summation of the cognitive weight of all the BCSs
to calculate the complexity of a method and the class
complexity is calculated by summing the complexity values of
all the methods and the number of attributes present in the
individual class. The WCC metric first calculates the
complexity of operations in the method by assigned cognitive
weight to each BCS by Wang [19]. Then, complexity values
of all the methods of the class are added to find the complexity
of the particular class and the entire complexity of the
software is calculated by addition of individual class
complexity values, which are generated as described in (1)-
(4).

The complexity of the individual method is defined as the
sum of the cognitive weight q linear blocks composed of
individual BCSs. Each block may consist of m layers of nested
BCSs and each layer with n linear BCSs. The total complexity
of a method of any class is calculated as in (1).

)],,([
1 1 1

ikjWMC
q

j

m

k

n

i
c

 (1)

where, MC is the method complexity and Wc is the cognitive
weight of the concerned BCS.

Equations (2) and (3) are used to calculate the complexity
of each class of the software. Equation (1) provides the
complexity of a single method, if there are many methods
incorporated in a class, then the complexity of each class is
calculated by the addition of MC value of all its methods. In
addition to it, a total number of attributes of a class is also
calculated and added to the result of (2). In (3) the total
number of attributes are represented with Na.

s

p
pMCAMC

1

 (2)

s

p
pa MCNWCC

1

 (3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

645

Further, if there are many classes embedded in the OO
code, then the overall complexity of the code is the summation
of the complexity values of the individual classes.

y

x
xWCCplexityedClassComTotalWeigh

1

 (4)

where, y indicates the number of classes present in the source
code of OO software.

It is important to note that the WCC metric considers only
the cognitive weight of the incorporated BCSs and the number
of attributes of the class, but it excludes the other occurrences
of attributes in the methods, i.e. the number of operators and
accessing same attributes by many methods of the class. These
parameters are also contributing and affect the complexity
level for both the man and the machine. Although software is
observed as formally a described design of information and
implementation of statements of computing applications
which also mean that software is just a collection of
information [21]. This equivalence between the software and
the information leads to the understanding the level of
difficulty in a software, it means that whenever a software
contains higher information contents inside the source code
then it is more difficult to understand. The software is a
mathematical entity and represents the computational
information. The entire information is represented by the
software as a function of operands (that hold the information)
and the operators (that carry out operations on operands).
Whenever information is manipulated by the operators, this
manipulated information is hard to handle and even harder to
understand. So, operators cannot be disregarded and it should
be included while measuring the cognitive complexity of the
software that helps to find the difficulty to understand the
code.

III. EVALUATION OF PROPOSED METRIC AND ITS VALIDATION

WITH BRIAND PROPERTY

A. Illustration of the Proposed Metric

The Object-Oriented software comprises of classes,
subclasses and objects where attributes, methods and
messages are their elements. Objects are the class instance,
which cooperates through message exchanges. The complexity
is defined as a function of the interaction between the set of
properties and in this case attributes and the methods are the
properties of the software [22]. These elements or properties
are defined in the class declaration and contribute to software
complexity. Among these elements, the methods play an
essential role because they operate on the attributes or data in
response to the messages. Even though the complexity of a
method directly affects the understandability (known as
program comprehension) of the code due to more information
content is incorporated into the method.

Most of the OO software metrics do not consider the
cognitive complexity of the software. Cognitive complexity
defines the mental burden supplied to the personnel while
dealing with the source code, i.e. developers, testers and

maintainers. Now, we can make the relation more clearly and
introduce a new complexity metric to calculate the complexity
as well as the understandability of the software. Our new
proposed metric calculates the complexity of the software on
the basis of cognitive weight (Wc) and the number of
operands, operators and the way to access the attributes by the
methods of the class. The cognitive weight (Wc) is calculated
as defined by Wang [19]. These cognitive weights of the BCSs
are assigned according to the difficulty level to comprehend
the given structure.

So, the understandability time of the program is calculated
by conducting an experiment with 40 MCA students.
Concerned programs are distributed among all the students
and they are asked to understand the code and their time is
recorded individually. The actual time is considered by
calculating the average time of all the students.

The proposed metric first calculates the complexity of a
method and the calculated complexity values of all the
methods of a particular class are summed to get the class
complexity. More formally, the class complexity (CC) is
calculated as:

ic

n

i

RASPWnInformatioCC)(
1

 (5)

where, CC denotes the cognitive complexity of a class and n
denotes the number of methods resides in the class. The
information represents the number of operands and operators
available in a given method, and Wc is the cognitive weight of
the BCSs (calculated as in (1)). The Ratio of Accessing
Similar Parameters (RASP) is calculated by the intersection of
the methods on the basis of used parameters of the concerned
class. The same is applied to all the methods and the resulted
sum is divided by the number of parameters of the class as
described in (7).

x

s
sCCECCC

1

 (6)

If there are x number of classes present in the software, then

Entire Cognitive Code Complexity (ECCC) is calculated by
summing the cognitive complexity weight of individual class
as provided in (5).

naMMRASP ji / (7)

where, M denotes the method of a class, i, j represents the
method numbers and na indicates the number of attributes
present in the same class.

nMAMP
n

i
i /)(

1

 (8)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

646

where, AMP represents Average Method Parameters, M
represents the method and n represent the number of methods
present in a class. AMP provides how each method accessed
the parameters of the class on an average.

The entire complexity of the software includes not only the
number of operands, operators and cognitive weight (Wc), but
it should also include the complexity of the main program.
When the CC value increases, then the entire program
complexity of the software increases. For validation of the
complexity metric results, an experiment is conducted and it is
found that the attributes of the proposed metric have
significance effect on the program comprehension. In this
experiment, 16 C++ programs are distributed among the
students and they are asked to analyze the source code of the
program and tried to understand it and their time is recorded to
achieve the comprehension factor. In addition to it, we have
also estimated the time to understand the code with the help of
complexity values of the proposed metric. Equation (9) is used
to find out the comprehension time by using some important
parameters of the source code.

 65.1/)12.0(inf

),02.0)((),27.0(

_tan

oramtion

AMPRASPW

timedablityUnders

C
 (9)

where, Wc indicates cognitive weights of all BCSs, RASP and
AMP are stated above and information represents the
combination of operands and operators of the entire program.
The outcome of (9) gives a numeric value that specifies the
required time in minutes to understand the program.

B. Evaluation of the Proposed Metric through Briand
Property

 Property Complexity 1: (Non-negative). The
complexity of a system S = <E, R> is non-negative if
complexity (S) ≥ 0.

Proof: As aforementioned that the proposed metric obtained
the complexity value by using the non-negative weights of the
BCSs, the number of operands and operators in the methods of
a given class. Without these above-said attributes, software
cannot do anything. So, this property is satisfied by the
proposed metric.
 Property Complexity 2: (Null value). The complexity of

a system S = <E, R> is null if R is empty. This can be
formulated as:

R = ∅ ⇒ Complexity (S) = 0.

Proof: If information attributes are not incorporated in the
system, then the cognitive complexity by proposed metric will
be null, means, operands, operators and BCSs are not present
in the methods of a class, then naturally the complexity of the
software system in terms of the cognitive weight is null.
 Property Complexity 3: (Symmetry). The complexity of

a system S = <E, R> does not depend on the convention
chosen to represent the relationships between its elements.

(Let S = < E, R > and S−1 = < E, R−1)
⇒	Complexity (S) = Complexity (S−1).

Proof: The proposed metric assigns the cognitive weight (Wc)
to a control structure and it does not depend on the sequence
order of their representation in the program. So, there will be
no influence on the cognitive complexity value, when
changing the sequence order or its representations. Hence, this
property is also satisfied by the proposed metric.
 Property Complexity: 4 (Module Monotonicity). The

complexity of a system S = <E, R> is no less than the sum
of the complexities of any two of its modules with no
relationships in common.

(Let S = <E, R> and m1 = <Em1, Rm1> and m2 = <Em2, Rm2>
and m1 ∪ m2 ⊆ S and Rm1 ∩ Rm2 = ∅)
⇒ Complexity (S) ≥ Complexity (m1) + Complexity (m2).

Proof: Whenever, the class S is divided into two sub-modules
(subclasses) m1 and m2 without modification implied to the
sub-modules or we can say a class S is divided into two
subclasses without any change, then the cognitive complexity
of the partitioned classes or subclasses will never be greater
than the complexity of the joined class. This property can be
proved by taking the example of Appendix I in [15], and the
cognitive complexity value of each class of the given program
according to WCC [15] and proposed metric is provided in
Table I. Five classes: Person-Employee-Student-Faculty-
Administrative are available in the given example of
Appendix I and these classes are partitioned into five
subclasses Person, Employee (Emp.), Student, Faculty and
Administrative. The cognitive complexity value of the entire
program of Appendix I is 93 and the partitioned subclasses is
provided in Table II. Therefore, the cognitive complexity of
the entire code is equal to the summation of the complexity
values of its subclasses. Hence, this property is also satisfied
by the proposed metric.

TABLE I
CALCULATED WCC AND PROPOSED METRIC COMPLEXITY VALUES FOR

SUBCLASSES OF APPENDIX I IN [15]

Class name Person Emp. Student Faculty Administrative

WCC 11 4 8 3 4

Proposed metric 46 8 24 5 10

 Property Complexity 5: (Disjoint Module Additivity).

The complexity of a system S = <E, R> composed of two
disjoint modules m1, m2, is equal to the sum of the
complexities of the two modules.

(S = <E, R> and S = m1 ∪ m2, and m1 ∩ m2 = ∅) ⇒

Complexity (S) = Complexity (m1) + Complexity (m2).

Proof: The cognitive complexity of the module m1 and m2 is
equal to the complexity of these concatenated modules into a
single class. In other words, if the two autonomous classes are
concatenated into a single program or class then the cognitive
weight of the concatenated classes is just by summation of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

647

individual class complexity values. Here, description of
property 4 is considered to prove this complexity property is
satisfied by the proposed metric. The cognitive complexity of
the combined and independent modules according to the
proposed metric is provided in Table I, which indicates that
the complexity of the entire program is equal to the
complexity of Person, Employee, Student, Faculty and
Administrative classes, i.e. (93 = 46 + 8 + 24 + 5 + 10)
respectively. Hence, this property is also satisfied by the
proposed metric.

Though, the analysis of the complexity properties 1 to 5, it
is found that all desired properties are satisfied by the
proposed metric to calculate the complexity of the OO
software.

Fig. 1 Class hierarchy of given OO code of Appendix I in [15]

TABLE II
CALCULATED WCC AND PROPOSED METRIC COMPLEXITY VALUES FOR

DIFFERENT COMBINATION OF OO CODE

Subclasses WCC Proposed metric
PERSON-STUDENT-EMPLOYEE-

FACULTY-ADMINISTRATIVE
30 93

PERSON- EMPLOYEE-FACULTY-
ADMINISTRATIVE

22 69

PERSON-EMPLOYEE-
ADMINISTRATIVE

19 64

PERSON- EMPLOYEE-FACULTY 18 59

PERSON-STUDENT 19 70

Weyuker property can be used to validate any complexity

metric theoretically. As described in our previous paper [17],
seven out of nine properties are satisfied by the proposed
metric. These properties are to be satisfied by any effective
complexity metric, but this does not provide the adequate
situation for overall validation. Since the practical success of
any new measure also depends upon some other important
issues like user understandability and the existing relation
between measures and its attributes. The proposed metric is an
indirect measure because it uses some important parameters of
source code in a different sequence to calculate the complexity
of OO programs. C. Karner provides a more suitable method
to validate the new measures [23]. The description of this
practical method of the proposed metric is provided here.

Measure’s purpose: the main purpose of our metric is to
calculate the cognitive complexity of the software and on the
basis of calculated complexity values the developers can
analyze the complexity of the software, whether it is
legitimate or not. If they find an unpredictable behavior, then
further action can be accommodated to overcome the problem
before it becomes critical with respect to product design and
quality.

Measure’s scope: the metric can be used after the
development of the source code of OO design software, but
not at earlier stages of the software development life cycle.
This metric is evaluated to estimate the comprehension time to
understand the source code and can also be used to estimate
the maintenance effort.

Identifying parameters to measure: this measure indicates
the quality of the source code, which is implemented by the
developers. The complexity of the source code indicates the
difficulty level to make changes and to understand the
program. Higher complexity value makes software less
manageable and increases required effort and lesser
complexity value indicates more skillful and manageable
software.

Measure’s instruments: complexity by the proposed metric
can be calculated manually or by using some automated tools.

Instrument natural variability when measurement: the
proposed metric calculates the complexity in a simple and
straightforward way and it is very easy to understand. Thus,
there will be no variability while measuring the attributes of
the proposed complexity metric.

The relation between parameters and the metric value: a
direct relation exists between the source code parameters and
the proposed metric values because when the C2M value
increases, it means the complexity of the software increases
and the quality of the product decreases with respect to time
and space. The proposed metric is a quality indicator for the
OO designed software, but not unique.

The effect of the automated instrument: once an automated
tool is developed for measuring the attributes of the proposed
metric, then there will be no need for personnel to calculate
the attributes of the proposed metric and only the automated
tool cost will be imposed on the company.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the applicability of the proposed metric has
been analyzed by applying it to the 16 C++ programs of [24]
and also to an OO example of Appendix I of [15] and its class
hierarchy is provided in Fig. 1. The proposed metric focuses
on some significant attributes of the source code and make
some arrangement to find out the more accurate results. This
metric considers the number of operands, operators, cognitive
weight (Wc), RASP and AMP to calculate the cognitive
complexity of the source code. In addition to it, the required
time to understand the source code of the program is also
calculated. The proposed metric is validated with the help of
Briand property and a comparative study is also done with a
similar metric WCC [15]. In WCC, only the cognitive weight
of BCSs and the class attributes are taken into account to find
out the complexity of the OO programs, but some other
remaining attributes also contribute to the complexity of the
program like other occurrences of information parameters,
accessing of similar parameters by different methods and the
complexity of the main program as well, for estimating the
complexity of the entire software. So, these aforementioned
parameters should be considered while calculating the
complexity of the software. After that, an experiment has been

Person

StudentEmployee

Faculty Administrative

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

648

conducted in which 40 MCA students took participate and
they are asked to understand the problem statement of the
source code. The time taken by the individual student is
recorded and their average time is considered an actual time
required to understand the source code and a formula is also
developed to estimate the time to understand the code with the
help of proposed complexity metric attributes and the formula
is described in (9). The constant values in the formula of (9)
are selected in such a way that the outcome reduces the error
between actual and estimated time. In Table III, actual time to
understand and estimated time to understand is denoted by
ATU and ETU respectively. Calculated complexity values of
all 16 C++ programs with ATU and ETU according to WCC
and proposed metric is provided in Table III and a graph
showed the ATU and ETU values in Fig. 3.

After measurement of ATU and ETU, the Error% is
calculated by using the following formula of (10). In this
equation, TIMEcalculated and TIMEactual specify the ETU and
ATU respectively and error between calculated and actual
time shows overestimation and underestimation.

100(%)

actual

actualcalculated

TIME

TIMETIME
Error (10)

Each program is analyzed in terms of a unit known as lines

of code (LOC) and the unit of proposed and WCC metric is
cognitive weight unit (CWU) as provided in Table III and
shown in Fig. 2.

The LOCs of software or the length of the source code can
be used as a predictor of program characteristics such as effort
and difficulty in maintenance. However, it characterizes the
software only in one specific aspect, i.e. static length or size
because it takes no account of the functionality and the other
limitations of this estimation are described in the previous
version of this paper by using a coding efficiency (CE)
method.

The value obtained by the proposed metric indicates that as
the CWU increases that means, the program will become more
complex to understand due to the inclusion of greater number
of operands, operators and greater number of methods that
increase the complexity of a class. Certain interesting
observations are made from Tables I-III, and Figs. 2-4, which
is as follows:
 Tables I and II and Fig. 1 provides the result of Appendix

I of [15].
 Table III contains the actual cognitive complexity values

for all classes. High complexity value indicates high
complexity attributes involved in the program, as it
involves greater number of operands, operators, BCSs
weight and ratio of accessing similar parameters of the
classes and vice-versa with low complexity value.

 From Table III, it is found that the trends for the proposed
metric and WCC follow basically the same pattern. As the
proposed metric value increases, so does the
corresponding WCC complexity value. It is noteworthy
that there are two points for which the proposed metric

generates identical complexity value at WCC (see painted
with red and bottle green row in Table III) i.e. 85/84 and
18 respectively. This indicates that these two programs
have higher information, BCSs, RASP and AMP to
implement the code as mentioned by BCSs weight Wc=
28/21, information = 49/51 with LOC = 48/60 and WCC
= 18/18. And, other similar highlighted colors indicate the
difference between the proposed metric and WCC metric
calculated complexity values in measuring the complexity
of the software. Somewhere smaller complexity value as
at WCC metric indicates higher complexity by proposed
metric due to many other important parameters embedded
into the source code, which is ignored by the WCC.

 Table III also contains the results of ATU and ETU
values. ATU is calculated by conducting a controlled
experiment with the help of 40 students of our institute
and all the 16 C++ programs are distributed among them
and they are asked to understand the source code. Their
analyzed time is recorded and the average time of all the
students is considered an actual time required in
understanding the program code. After that, a relation has
been formed between the utilized parameters of the
proposed metric to estimate the ETU as described in (9).
Both the calculated results of each program are provided
in Table III as corresponding to the program number.

 Another important result has been discovered of the
proposed metric and WCC metric values is that a linear
relationship exists between them and its result is provided
in Table III and shown in Fig. 2. The proposed metric of
this paper yield higher complexity value as a result than
WCC metric because of many other significant
parameters considered in the formation of our proposed
metric formula described in (6).

Fig. 2 Comparison chart of complexity values of proposed and WCC
metric

 Fig. 3 shows the result of ATU and ETU of all the 16

programs and ETU is calculated as in (9). Higher time
indicates that it is more difficult to understand the
program due to the complex structure and may be more
informative contents are present in the program body.
Hence, the comprehension time depends on the
complexity level of the program means higher complex
program requires much more time to understand than a
simple program.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

649

 Fig. 4 shows the error% according to as (10) with its
absolute values. It indicates the difference between ATU
and ETU and the result shows that there are only two
programs out of the 16 programs is near to 30% of error
and approximately 50% of the programs are under 10% of
error, which reveals the accuracy level of the estimated
result. The correlation between the ATU and ETU also

indicates the effectiveness of the proposed work of this
paper, and its correlation factor is 0.97.

From all analysis of the above experiments, it is found that
the proposed metric has a good capability to calculate the
complexity as well as the comprehension time of OO
programs and can qualify as a worthy complexity metric.

TABLE III

ANALYSIS OF METRICS VALUES FOR 16 C++ CLASSES

Program No. Information RASP AMP Wc LOC Proposed metric WCC ATU ETU Ref. Code
1 49 3 0.75 28 48 85 18 10.63 8.48 216-218

2 4 1 2.00 19 32 43 3 3.87 4.75 224-225

3 7 3 1.00 7 36 23 5 2.08 1.99 231-232

4 23 3 1.20 11 52 43 7 3.53 3.81 233-234

5 51 1 1.50 21 60 84 18 9.23 7.76 235-236

6 8 1 1.00 3 16 16 2 1.10 1.32 238-239

7 15 1 3.00 9 26 37 5 2.72 3.27 265-266

8 33 3.33 2.00 13 45 60.33 7 3.87 5.17 267-269

9 9 3 1.50 5 24 25 5 1.72 1.89 280-281

10 23 1 1.33 13 32 51 6 4.13 4.70 306-307

11 28 3 4.00 9 34 50 7 4.12 4.03 307-308

12 10 6 1.00 13 24 34 4 2.48 3.23 312-313

13 31 3 4.00 13 44 58 7 4.65 4.98 314-316

14 32 3 4.00 9 40 54 8 4.18 4.32 316-317

15 25 6 2.00 9 34 49 6 3.95 3.90 318-319

16 19 3 2.00 9 29 37 5 3.12 3.21 320-321

Fig. 3 Plot of ATU and ETU of all 16 C++ programs

Fig. 4 Error% of proposed metric estimated time

V. CONCLUSION AND FUTURE WORK

In this paper, an attempt has been made to develop a
complexity metric and further it is utilized to estimate the
comprehension time for OO programs. The metric is evaluated
analytically besides Briand property and validating
empirically against a set of 16 C++ classes and all the
complexity properties are satisfied by the proposed metric. A
validation has been carried out to analyze the relationship
between the proposed metric and WCC metric. From the
results and comparative study, it is observed that the proposed
approach is a good measure for OO program, which is based
on some important attributes of the source code. The reason to
generate more accurate results of the proposed metric is to
consider some significant parameters of the source code like
information, Nmethods, Wc, RASP and AMP values for all the
classes of the program. Moreover, the required time to
understand the program is also calculated by complexity value
of the proposed metric and when the complexity increases,
then the time to understand the program increases and vice
versa. ATU and ETU have good correlation factor, i.e. 0.97.
The comparative study of the proposed metric proves its
robustness.

The future scope focuses on some fundamental issues:
1) Attributes of the programs are calculated manually and it

became difficult for large programs as compared to our
small programs, so an automated tool for our metric can
be developed for fast calculation.

2) The metric results can be tested for validation on real
projects for complexity and understandability.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

650

3) This work can also be extended to measure the effort
required to test the software in testing and in the
maintenance phase.

4) Boundaries can be defined for the calculated complexity
values for the particular software designs.

REFERENCES
[1] F.L. Bauer, “Software Engineering”, Information Processing, 1972.
[2] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood

Cliffs, NJ, 1976
[3] F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software

Engineering”, IEEE Computer, vol. 20, no. 4, 1987, pp. 10-19.
[4] J.F. Peters and W. Pedrycz, Software Engineering: An Engineering

Approach, John Wiley & Sons, Inc., NY, 1998.
[5] Y. Wang, “Software Engineering Foundations: A Trans disciplinary and

Rigorous Perspective”, CRC Book Series in Software Engineering, Vol.
2, 2006.

[6] IEEE CS, “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Standard 610.12, (1990).

[7] I. Sommerville, Software Engineering, 8th edition, Boston, MA:
Addison-Wesley, 2007.

[8] R. Reißing, “Towards a model for object-oriented design measurement”,
In 5th International ECOOP workshop on quantitative approaches in
object-oriented software engineering, 2001, pp. 71-84.

[9] S.R. Chidamber and C.F. Kemerer, “A metrics suite for object oriented
design”, IEEE Transactions on Software Engineering, vol. 20, no. 6,
1994, pp. 476-493.

[10] R. Harrison, S.J. Counsell and R.V. Nithi, “An evaluation of the MOOD
set of object-oriented software metrics”, IEEE Transactions on Software
Engineering, vol. 24, no. 6, 1998, pp. 491-496.

[11] M. Lorenz, J. Kidd, Object-oriented software metrics, Englewood Cliffs,
New Jersey: Prentice Hall, 1994.

[12] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-
oriented design metrics as quality indicators”, IEEE Transactions on
Software Engineering, vol. 22, no. 10, 1996, pp. 751-761.

[13] S. Purao, and V. Vaishnavi, “Product metrics for object-oriented
systems”. ACM Computing Surveys (CSUR), vol. 35, no. 2, pp. 191-221.

[14] V.K. Vaishnavi, S. Purao, and J. Liegle, “Object-oriented product
metrics: A generic framework”, Information Sciences, vol. 177 no. 2,
2007, pp. 587-606.

[15] S. Misra and I. Akman, “Weighted class complexity: A measure of
complexity for object –oriented system” Journal of Information Science
and Engineering, vol. 24, 2008, pp. 1689-1708.

[16] S. Misra, I. Akman and M. Koyuncu, “An inheritance complexity metric
for object-oriented code: A cognitive approach”, Sadhana, vol. 36, no. 3,
2007, pp. 317-337.

[17] A.K. Jakhar and K. Rajnish, “Measure of Complexity for Object-
Oriented Programs: A Cognitive Approach”, In Proc. of 3rd
International Conf. on Advanced Computing, Networking and
Informatics: ICACNI, vol. 2, 2015, pp. 397-404.

[18] Y. Wang, “On the Cognitive Informatics Foundations of Software
Engineering”, Proc. of the 3rd IEEE International Conf. on Cognitive
Informatics, 2004, pp. 21-31.

[19] Y. Wang and J. Shao, “A new measure of software complexity based on
cognitive Weights”, IEEE Canadian Journal of Electrical and Computer
Engineering, vol. 28, no. 2, 2003, pp. 69-74.

[20] L.C. Briand and J. Wüst, “Modeling development effort in object-
oriented systems using design properties”, IEEE Transactions
on Software Engineering, vol. 27, no. 11, 2011, pp. 963-986.

[21] Y. Wang and J. Shao, “Measurement of the Cognitive Functional
Complexity of Software”, in Proc. of 2nd IEEE International Conf. on
Cognitive Informatics, 2003, pp. 69-74.

[22] D. Abbot, “A design complexity metric for object-oriented
development”, Unpublished Master’s Thesis, Department of Computer
Science, Clemson University, U.S.A, 1993.

[23] C. Kaner, “Software Engineering Metrics: What do they Measure and
how do we know?”, In In Metrics 2004, IEEE, CS.

[24] A. Kamthane, Object-Oriented Programming with ANSI & Turbo C++,
Pearson Education, Fourth Edition, India, 2003.

Amit Kumar Jakhar, is currently pursuing his doctoral degree from Birla
Institute of Technology, Mesra, Ranchi, Jharkhand, India. He received his
Master’s degree in Computer Science & Engineering from PEC University of
Technology, Chandigarh, India in the year of 2010. He received his Bachelor
degree in Computer Science (Honours) from MDU, Rohtak, Haryana, India in
the year of 2008. His research interest area is software engineering. He has
various publication in international journals and conferences. He can be
contacted by email at amitjakhar69@gmail.com.

Kumar Rajnish is an Assistant Professor in the Department of Computer
Science and Engineering at Birla Institute of Technology, Mesra, Ranchi,
Jharkhand, India. He received his PhD in Engineering from BIT Mesra,
Ranchi, Jharkhand, India in the year of 2009. He received his MCA Degree
from MMM Engineering College, Gorakhpur, State of Uttar Pradesh, India.
He received his B.Sc. Mathematics (Honours) from Ranchi College Ranchi,
India in the year 1998. He has 35 International and National Research
Publications. His Research area is Object-Oriented Metrics, Object-Oriented
Software Engineering, Software Quality Metrics, Programming languages,
Software Estimation, and Cognitive Approach in Software Engg. He can be
contacted by email at krajnish@bitmesra.ac.in.

