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A Class of Recurrent Sequences Exhibiting Some
Exciting Properties of Balancing Numbers
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Abstract—The balancing numbers are natural numbers n satisfying
the Diophantine equation 1 +2+3+---+(n—1) = (n+ 1) +
(n4+2)+ -+ (n+r); r is the balancer corresponding to the
balancing number n.The n'* balancing number is denoted by B,
and the sequence { B, }52 satisfies the recurrence relation By41 =
6B, — By—1. The balancing numbers posses some curious properties,
some like Fibonacci numbers and some others are more interesting.
This paper is a study of recurrent sequence {z, }5=; satisfying the
recurrence relation x,4+1 = Az, — Bx,—1 and possessing some
curious properties like the balancing numbers.
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[. INTRODUCTION

HE balancing numbers originally introduced by Behera

and Panda [1] are natural numbers n satisfying the
Diophantine equation 1 +2+ 3+ -+ (n—-1) = (n +
1)+ (n+2)+ -+ (n+r), where r is called the balancer
corresponding to the balancing number n. It is proved in
[1] (see also [3]) that the sequence of balancing numbers
{Bn}52, are solution of the second order linear recurrence
Yn+t1 = OYn — Yn—1,% = O%yl = 1. The Binet form of
this sequence is B, = i\\lliiz where A\; = 3 4+ /8 and
A2 = 3—+/8. In a subsequent paper Panda [2], unveiled some
fascinating properties of balancing numbers.These properties

are:

o The sum of first n odd balancing numbers is equal to the
square of the n** balancing numbers — a property similar
to the fact that the sum of first » odd natural numbers
is equal to n2. This property is neither satisfied by the
cobalancing numbers [3] nor by the Fibonacci numbers.

o The greatest common divisor of two balancing numbers is
a balancing number; in particular, the greatest common
divisor of B,, and B, is Bj where k is the greatest
common divider of m and n. This property is true for
Fibonacci numbers also.

e Bpmin = BnCp + C,, By, a property similar to sin(z +
y) = sinx cosy + cos x siny, where C,, = \/8B2 + 1 is
a sequence whose terms are known as Lucas balancing
numbers and satisfy a recurrence relation identical with
balancing numbers.

II. RESULTS

We consider a class of recurrent second order sequences
Tpi1 = Az — Bxp_1, 29 = 0,21 = 1 such that A> — 4B >
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0 and study conditions under which these sequences would
satisfy some of the fascinating properties of balancing numbers
mentioned in the last paragraph.

Let us start with a second order linear recurrence

Tpny1 = Axy — By, 20 =0,2; =1

where A and B are natural numbers such that A2 — 4B > 0.
The auxiliary equation of this recurrence is given by

a?—Aa+B =0

which has, because of the condition A2 —4B > 0, the unequal
real roots

A+ VA% -4B
= 5 ,
The general solution is given by

A—+A?2—-4B
— s

aq Qg =
tn = Pay + Qay,
and using the initial conditions, we get the Binet form

n mn
a; —

,n=0,1,2--.

I’H, e ——
ap — Q2
To find the conditions under which
_ .2
T+ T3+ +xop1 =T,
it is enough to find conditions for
2 2
Ton+1 = Tpypq — Ty

We note that a; + a9 = A and ajas = B and

2 2
an+1 _ an+1 a — ol
.2 o2 1 2 _ 1 2
ln-&-l ‘rn -

Q1 — a2 Q1 — Q2
OL%"+2 + a§7z+2 _ a%n _ a%n _ 2Bn+1 +2B"

(1 —az)?

and
2 2
Lon+1 = Tpy1 — Ty

is equivalent to

2n+1 2n+1y _  2n+42 2n+2 2 2
(o1 — az)(ay ") = + a3 —ay" —a3"
_ 2Bn+1 + 2Bn

which yields
B(a%” 4 agn) — a%n _ a%n + QBnJrl —9RB".
Further rearrangement converts the last equation to

(B=1[2B" — (oi" + 03")] =0
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and applying ajas = B the last equation finally reduces to

(B-1)(af —a3)* =0

which is possible if af = af or B = 1. If of = o3,
then a3 = @y or @y = —aw. But a; = ay corresponds to
A? — 4B = 0, which is forbidden by our initial assumption
and oy = —aq corresponds to a negative B, which is also

firbidden.Thus the only option left for us is B = 1.
Conversly, if B =1 then cyae = 1 and

2 2
n+1 n+1 n n
2 2 |9 T | T
‘fl"n-&-l Ty =

a1 — Q2 ap — Q2

a?n+2 + a§n+2 _ Oz%n _ a%n
B (o1 —a2)?
a%nJrl(oél _ 062) _ a§n+1(a1 _ 042)
B (o1 — az)?
a?nJrl . agnﬂ
B a1 — Qg
= T2n+1

leading to
r1+ T3+ -+ Toapn—1 :xi.

The above discussion proves the following theorem:
Theorem 2.1: Let z,11 = Az, — Bxy_1,20 = 0,27 =
1 be a second order linear recurrence such that A and B
are natural numbers satisfying A2 — 4B > 0. Then, for each
natural number n, a necessary and sufficient conditions for
1+ X3+ + Top_q :x% to hold is B = 1.
The balancing number also satisfies a relation

By+By+---+ By, =B, Bpy1-
We next investigate the conditions under which
To+Ty+ -+ Toy =TpTpiq.
It is enough to find conditions under which
TpTptl — Tn—1Ty = Tap.
This is equivalent to

xn(xn-kl - l‘n—l)

n n n+1 n+1 n—1 n—1
ol —af o™ —ah ol Tt = ad }

Qp — Qg Q] — Q2 ap — Qa2

2n—+1 2n+1 2n—1 2n—1
o o' —al" T — a5 — B (o + a2)

(1 —az)?
B" (ay + ag)
(1 —ag)?
a%” — a%”
- a1 — Qg '
On rearrangement we get
(a1 — ax)(ai" —03") = af"*! 4 a3t —ai" ! —adr

— Bn(()zl -+ 052) + B"fl(al + CKQ) .
which leads to

(B= 1)@ +a3") = B"(B - 1)(a1 +az)

which is possible for all n if B = 1.

Conversly, it can be easily seen that if B = 1, then
TpTpt1—Tn—1Tn = Topn. The above discussion together with
Theorem 2.1 proves

Theorem 2.2: Let x4 = Az, — Bxyp_1,20 = 0,21 =
1 be a second order linear recurrence such that A and B
are natural numbers satisfying A?> — 4B > 0. Then, for each
natural number n, a necessary and sufficient conditions for
To+ T4+ + 2oy =TpTpi1 is B=1

While the Binet form for balancing numbers is

AT — A3
B'"/ - )\1 _ )\2 )
where \; = 3+ /8 and )y = 3 — /8, the Binet form for the
Lucas balancing numbers is

A7 + A7
Gn = 2 2 .
Thus, if we define a new sequence
an Jr aﬂ,
T - 2

then it is easy to verify that

2Inyn = T2n,

a property similar to that of balancing numbers. In addition,we
observe that o — as = VA2 — 4B, so that

(Oél — Oég)2 = A2 — 4B

is a natural number. Thus in all cases where VA% — 4B is
irrational, we have

VA% — 4B m

Ym + fxm =aq,
leading to
A% — 4B VA% — 4B
2 2
" VA2 —4B
= OJT+ "= Ym4n + fl’mwbn'

Comparing rational and irrational parts from both sides,we get
A% — 4B

Ym+4+n = YmYn + 4

xma?nv

and
Tmtn = TmYn + YmTn.

The above discussion proves

Theorem 2.3: Let x,41 = Az, — Brp—1,20 = 0,21 =1
be a second order linear recurrence such that A and B are
natural numbers and Ai - §B is non-square and positive. If
Yn is defined as y,, = %
and n we have

, then for all natural numbers m

A% — 4B
4
Tmtn = TmYn + YmTn-

Ym+n = Ym¥Yn + T,

A well known connection between balancing and Lucas
balancing numbers is
CQ

n

=8B2% +1.
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We can except a similar relationship between the sequences
z, and y,. Indeed

2

o [ot=a3] ot sadr—2m
" lag—an | A? — 4B
Thus
(A2 —4B)a2 LB a4+ adn 4 2B"
4 - 4
2
ol + oy
2
=y

2
Writting D = 4 243 , the last equation can be written as

y2 = B" + Da2.

The above equation proves

Theorem 2.4: Let x,11 = Az, — Brp_1,20 =0,290 =1
be a second order linear recurrence such that A and B are
natural numbers and A% —AB > 0. If y,, is defined as vy, =
%, then y2 = B™ + D22 where D = ,42%13.

We now try to find a recurrence relation for y,. Since a;

and ay are roots of the equation
o> —Aa+B =0

it follows that
oz% — Aoy +B =0,

and
ag —Aaz+ B =0.

Multiplying the last two equations by o~ and o ' respec-
tively and rearranging,we get

att = Al + Ba !,
and

abtt = Aaj 4+ Bah .

Adding the last two equation and dividing by 2 we arrive at
Yn+1 = Ayn - By’nflv

It is clear that yg = 1 and y; = %. This shows that y,, satisfies
a recurrence relation identical with x,,. Further, if A is even
then y,, is an integer sequence.

Theorem 2.5: Let x,.1 = Az, — Brp_1,20 =0,20 = 1
be a second order linear recurrence such that A and B are
natural numbers and A2 — 4B > 0. If y,, is defined as y, =
%, the sequence {y, }5°_; satisfies the recurrence relation
Ynt1 = Ayn — Byn—_1. Further, y,, is an integer sequence if
A is even.

We now suppose that A is even and hence {y,}5>; an
integer sequence and choose B = 1 so that the greatest
common divisor of z,, and y, is 1 for each n. Let k and
n be two natural numbers such that n > 1. Then denoting the
greatest common divisor of a and b by (a, b),we have

(@, Tnk) = (Zk, ThYm—1)k + UkT—1)k) = (T, T(n—1)k)-

Iterating recursively, we arrive at
(Th, Tuk) = (Tk, T1) = Tk

This proves

Theorem 2.6: Let x, 11 = Axy, — 1,20 = 0,27 = 1
be a second order linear recurrence such that A is an even
natural number and A% — 4 is positive. If m and n are natural
numbers and m divides n then x,, divides x,,.

We now look at the converse of this theorem. Assume that
m and n are natural numbers such that x,, divides x,,. Then
definitely, m < n and by Euclid’s division algorithm [4], there
exist natural numbers k and 7 such that n = mk+r, k> 1,0 <
r < m. By Theorem 2.3

Ty = (-Z'maxn) = (-’L'mawmkwtr) = (-’L'mawmk:yr + ymk¢£r>~

Since m divides mk, by Theorem 2.6, x,, divides z,,; and
hence the last equation yields

Tm = (I'nmymer)

Further by Theorem 2.5 (Zmk,Ymk) = 1 and since z,
divides x,,; by Theorem 2.6, we arrive at the conclusion that
(Zm, Ymx) = 1. Thus the last equation results in

T = (T, Tr)-

Since r < m, this is impossible unless » = 0. Thus n = mk
showing that m divides n. This proves

Theorem 2.7: Let ©,41 = Azp — Tp—1,70 = 0,27 = 1
be a second order linear recurrence such that A is an even
natural number and A? — 4 is positive. If x,, divides x,, then
m divides n.

Let m and n are two natural numbers such that k& =
(m,n).Thus k divides both m and n. In view of Theorem 2.6,
xy, divides both z,, and x,, and hence xj, divides (z,,x,).
Further if s > k and x, divides z,, and z,,, then by Theorem
2.7, s divides both m and n and consequently, s divides &
which is a contradiction. Hence if & = (m,n), then k is
the largest number such that zj, divides both x,, and x,.The
discussion of this paragraph may be summarized as follows:

Theorem 2.8: Let ©,1 = Axp, — Tp—1,70 = 0,21 = 1
be a second order linear recurrence such that A is an even
natural number and A% —4 is positive. If m and n are natural
numbers then (T, Tn) = T(m,n)-
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