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Abstract—Cellular automata have been used for design of 

cryptosystems. Recently some secret sharing schemes based on linear 
memory cellular automata have been introduced which are used for 
both text and image.  In this paper, we illustrate that these secret 
sharing schemes are vulnerable to dishonest participants’ collusion.  
We propose a cheating model for the secret sharing schemes based 
on linear memory cellular automata. For this purpose we present a 
novel uniform model for representation of all secret sharing schemes 
based on cellular automata. Participants can cheat by means of 
sending bogus shares or bogus transition rules. Cheaters can 
cooperate to corrupt a shared secret and compute a cheating value 
added to it. Honest participants are not aware of cheating and 
suppose the incorrect secret as the valid one. We prove that cheaters 
can recover valid secret by removing the cheating value form the 
corrupted secret. We provide methods of calculating the cheating 
value. 
 

Keywords—Cellular Automata, Cheating Model, Secret Sharing, 
Threshold Scheme. 

I. INTRODUCTION 
ECRET sharing schemes are cryptographic procedures to 
share a secret among a set of participants in such a way 

that individual participants can not gain secret, but some 
qualified subsets of these participants can recover the secret.  
Secret sharing becomes indispensable whenever secret 
information needs to be kept collectively by group of 
participants in such a way that only a qualified subgroup is 
able to reconstruct the secret. The need for secret sharing 
arises if the storage system is not reliable, so there is a high 
likelihood that some pieces of information can be lost [1]. One 
of the most common secret sharing schemes is threshold 
scheme. Basic threshold schemes are articulated in [2], [3] 
where a threshold identifies the number of participants for 
recreation of the secret. The ),( nk  threshold secret sharing 
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scheme divides a secret (s) in to n pieces (shares) and 
distributes them among the participants, in such a way that 
any   k  of them can recover the secret, but any k-1 or fewer 
can not recover the secret. These schemes are normally set up 
by a trusted authority (Dealer) who computes shares iS  and 

assigns it to participants i  for a secret Ss ∈   where S  is a set 

of secrets ( nSSSSDealer ×××⎯→⎯ ...: 21 ). Secret 
sharing schemes should guarantee that s can only be recovered 
by a qualified subset of participants (who called active 
participants) and disqualified participants do not gain any 
information about the secret. A trusted combiner does the 
recovery of the secret. The combiner takes an arbitrary 
collection of shares in order to compute the secret 
( SSSCombiner

kii ⎯→⎯×× ...:
1

). 

Security of secret sharing schemes depends on both 
combiner and participants’ honesty. Unfortunately, the 
recovered secret can easily be corrupted if dishonest 
participants (cheaters) send their bogus shares instead of 
original one. Hence, in the presence of cheaters, the recovered 
secret is obviously different from the original one. The 
dishonest participants are able to compute the original secret, 
while honest participants are not aware of cheating. For 
instance, Tompa and Woll [4] discovered a way in which 
dishonest participants can cheat in ),( nk  Shamir secret 
sharing [3]. Therefore, cheating prevention is a desirable 
characteristic in secret sharing schemes. Some methods of 
cheating prevention are introduced in [5], [6]. 

In this paper, we propose a cheating model for the secret 
sharing schemes based on Linear Memory Cellular Automata 
(LMCA). Several secret sharing schemes were proposed by 
utilizing one/two dimensional Cellular Automata (CA) for 
both text [7] and image [8], [9], [10]. We present a novel 
uniform model for representation of all these secret sharing 
schemes. We generalize these schemes using row major 
numbering method. Each of those schemes can be derived 
from our generalized scheme. We illustrate proposed cheating 
model is not contingent upon the neighborhood topology and 
dimension of CA. We show that collusion of cheaters corrupts 
the recovered secret. Our cheating model introduces two 
possible attacks. In the first attack, cheaters send bogus shares 
and in the second attack they send bogus transition rules of 
CA. We prove that cheaters are able to compute the cheating 
value by giving their bogus shares or bogus transition rules 
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and recover the correct secret. 
The rest of this paper is organized as follows. Section 2 

demonstrates all secret sharing schemes based on cellular 
automata. Section 3 outlines our proposed cheating model. 
The paper is concluded with Section 4 which contains brief 
recapitulation of the main points and further works. 

II. GENERALIZED SECRET SHARING SCHEMES BASED ON 
CELLULAR AUTOMATA  

A cellular automaton [11] consists of a regular array of 
cells, each in one of finite number of states, which could be 
represented by {0, 1, 2, …, c-1} where c is the number of 
states. The state of i-th cell at time t  is )(t

ia . The array can be 
in any finite number of dimensions. Neighborhood of radius r 
for every cell in one dimensional CA is   
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with radius one for cell (i,j) in two dimensional  yx × CA is : 
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The state of a cell at time 1+t  in one dimensional CA is a 
function of the states of a finite number of cells at time t  as 
follow: 

  )( )()1( t
i

t
i Vfa =+                             (1) 

The transition function of two-dimensional CA is defined as 
follow: 

1-yj0   1,-xi0      ),( )(
,

)1(
, ≤≤≤≤=+ t

ji
t
ji Vfa           (2) 

The configuration vector of CA at time t is represented by 
),...,( )(

1
)(

0
)( t

n
tt aaC −= . The sequence kt

tC ≤≤0
)( }{  is called 

the evolution of order k of the CA. Suppose ζ  is the set of all 
possible configurations of the CA, the global function of the 
CA is a transformation which is defined as follow: 

)(,: )()1( tt CC φζζφ =⎯→⎯ +
                 (3) 

If  φ   is bijective then there exists inverse cellular 

automaton with global function 1−φ . Therefore, backward 
evolution is possible. 

In order to define a generalized notion we use row major 
numbering method. If row major numbering method is used, 
all CA transition rules can be considered like formula (1). The 
only difference is in defining neighborhood. In this numbering 
method, every cell can be identified by unique 
index CANi0  where, ≤≤i . CAN  is the number of cells in 
CA array. For example, Moore neighborhood with radius one  
in yx ×   CA can be rewritten like this: 
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vI is a set of offsets for cell’s neighbors in row major 
numbering. 

Therefore, without loss of generality we can use formula (1) 
for all CA transition rules regardless of dimension and 
neighborhood. In the reminder of paper, CA represents any  n 
dimensional cellular automata and  1≥n . From now on, we 
use our generalize notation.  

Local transition function for Linear Cellular Automata 
(LCA) is of the following form: 

10)mod(  )()1( −≤≤= ∑
∈

+
+ nicaa

vIv

t
viv

t
i α             (4) 

vα is effect of cell’s neighbor in computing next state. 
According to above transition function, the state of every 

cell at time 1+t  depends on the states of its neighbors at time 
t. In memory cellular automata (MCA) [12], [13], the state of 
every cell at time 1+t  is dependent on the states of cells at 
time t and also some preceded time steps like ,...2,1 −− tt . 
In k-th order linear MCA (LMCA), the local transition 
function is of the following form: 
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Fd 
klfl ≤≤1, , is the local transition function of  k  LCA. 

Note that the initial configurations of a LMCA is formed by k   
configurations )1()0( ,..., −kCC . Evolution starts from these 
initial configurations. A particular type of reversible LMCA 
with local transition function (5) is introduced in [7], [8]. They 
formally proved that the LMCA with formula (5) is reversible 
if following condition is held: 

)1()1( )( +−+− = kt
i
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And the reverse is: 
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Equation (7) can be rewritten as follows:  
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Secret sharing schemes based on CA are ),( nk  threshold 
schemes, in which text or image to be shared, s, is one of the  
initial configurations of a k-th order LMCA.  In [7] one 
dimensional CA and in [8], [9], [10] two dimensional CA is 
used. The rest 1−k  initial configurations, )1()1( ,..., −kCC , 
are random vectors of the same size as s. The shares to be 
distributed among the n participants are n last consecutive 
configurations of the evolution of the LMCA. The mentioned 
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schemes [7], [8], [9], [10] are formed by three phases, which 
are listed below:  
1) The set up phase- The dealer specifies a random 

reversible transition function for LMCA that satisfies 
formula (5) and (6). The secret is considered as the initial 
configuration ( sC =)0( ). The dealer generates 1−k    
random configurations to complete the initial 
configurations ( )1()1( ,..., −kCC ). Afterwards, the dealer 
also distributes transition functions to the participants. 

2) The sharing phase- The dealer chooses an integer 
number m, such that km ≥  in order to avoid possible 
overlaps between the initial conditions and the shares. 
The dealer computes the ( 1−+ nm )-th order evolution 
of the LMCA: 

},...,,...,,,...,{ )1()()()1()0( −+− nmmkk CCCCC . The   
shares are distributed securely among n participants 
( )1(

1
)(

0 ,..., −+
− == nm

n
m CSCS ). Participants can 

construct the reverse function via formula (7). 
3) The recovery phase- To recover the secret ( )0(C ), a set 

of  k (of n ) consecutive shares of the following form is 
needed. 

knCSCS km
k

m −≤≤== −++
−+

+ αα
α

α
α 0,,..., )1(

1
)(

Taking )(
1

)1(
0

~,...,~ αα +
−

−++ == m
k

km CSCS , and 

iterating  1−++ km α  times the inverse LMCA, the 

secret initial configuration, )0(C , is obtained. 

III. PROPOSED CHEATING MODEL 
In this section we show that the discussed schemes are not 

secure. Security means correct behavior in face of an 
intelligent adversary or adversaries [14]. Three important 
properties in security include confidentiality, integrity, and 
availability. We show that generalized scheme is not secure in 
confidentiality and integrity (and therefore schemes in [7], [8], 
[9], [10] are not secure) since cheater gain correct value of 
secret and honest participant assumed the corrupted secret as a 
correct one. We propose a model in which collusion of 
dishonest participants in the recovery of secret can deceive 
other participants. In secret recovery phase, honest 
participants send their valid shares while cheaters send their 
bogus shares. Cheaters can compute the cheating value 
contributing in the secret acquired. Cheaters to attain the valid 
secret can use this value. Honest participant are not aware of 
cheating and receive corrupted secret assuming it as correct 
one.  

We proposed two different approaches for cheating. The 
first approach assumes that cheaters fabricate new shares by 
adding a cheating vector to it. In the second approach, 
cheaters send bogus transition rules. In both approaches, 
cheaters convince honest participants of an incorrect secret. In 
both approaches, we prove that presence of one cheater can 
corrupt the schemes. If more than one cheater exists, they 

have to collude in order to obtain the correct secret. 

A. Cheating with Bogus Shares  
In this attack, participants’ shares are represented by set C  

where iC  is i-th participant’s share. We suppose that cheaters 

change their valid assigned shares, lC  

to ) mod( cC ll Δ+  in which ),...,( 1 nl δδ=Δ  is 

cheating vector of participant l. In fact lC  is original 
configuration of CA obtained in sharing phase for participant l 
and lΔ  is cheating vector, added to that configuration by 
cheaters. 

Similar to forward function, value of  )1( +t
ia  in reverse 

function depends on its neighbors in previous configurations. 
If some participants cheat and send their bogus shares, )1( +t

ia   

will have cheating value )1( +t
iδ  that can be shown by equation 

below: 
)(mod' )1()1()1( caa t

i
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i
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+++ += δ                       (9) 

According to reverse function, cheaters can compute the 
cheating value for every cell in every step. Theorem 1 shows 
the cheating value can be computed in first step of reverse 
function. Computation in other steps to obtain the secret is 
likewise, after computing preceded configurations. 

Theorem 1 – If L is a set of cheaters which is a subset of 
active participants, and  j

iv  is neighbors of cell i in 

configuration j, then cheating value of )1( +t
ia (state of cell i in 

the configuration t+1) can be computed with this formula: 
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Proof: First, we assume that only one cheater exists 
between participants. Computing configurations toward the 
initial configurations (secret value) is done with the aim of 
reverse function according to (8): 
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Above formula shows the cheating value can be computed 
in the presence of one cheater in this fashion: 
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If more than one cheater exists between participants their 
effect on the cheating value can be easily aggregated:  
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It is noticeable that above formula is obtained regardless of 
dimension and neighborhood topology of CA. The only 
condition is that CA use linear transition functions. 

With the aim of above theorem, L cheaters ( kL ≤ ), 
contributing in the secret sharing method based on LMCA can 
obtain the correct secret with computing cheating value while 
others receive corrupted share without knowing that cheating 
is done in the background. 

B. Cheating with Bogus Transition Rules 
In this attack, cheaters send invalid transition rules. 

Applying invalid transition rules in recovery phase makes 
preceded configurations toward secret incorrect. We suppose 
f ′  as a bogus transition rule that is constructed by addingω . 

ω is a cheating vector added to transition rule’s parameters. 
f ′ can be computed as follow: 
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ψ is cheating function that is determined byω .  
During backward evolution, bogus transition rules corrupt 

configurations. Thus, cheaters should consider both bogus 
shares and transitions rules while computing the cheating 
value. Suppose F be the set of invalid configurations and 
R be the set of bogus transition rules. As a result of applying 
invalid transition rule, configuration set is partitioned into four 
separated subsets. Configurations that have: 

1. Valid transition rules and valid shares ( RF ′∩′ ). 
2. Valid transition rules and invalid shares ( RF − ). 
3. Bogus transition rules and valid shares ( FR − ). 
4. Bogus transition rules and invalid shares ( RF ∩ ). 

Therefore, the next state of i-th cell should be computed as 
follow.  
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Theorem 2- If L is set of cheaters which is a subset of 
active participants, who can send bogus transition rules or 
invalid shares, then cheating value of )1( +t

ia  can be computed 
with this formula: 
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Proof: Because of linearity of transition functions in (11), it 
can be concluded easily )()()( 2121 VfVfVVf +=+  and 

)()()( 2121 VVVV ψψψ +=+ .  
Therefore, equation (12) can be rewritten as follow: 
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 Therefore, the cheating value can be computed as follow:  
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Dimension and neighborhood topology of CA do not affect 
the obtained formula. 

L cheaters ( kL ≤ ) can compute the cheating value in 
discussed secret sharing schemes. This value can be used to 
obtain the valid secret from corrupted one. Honest participants 
receive corrupted share unaware of cheating. 

IV. CONCLUSION AND FUTURE WORK 
Cellular automata have a very simple structure and can 

produces very complex emergent behavior with simple 
transition rules. These features make CA very interesting tool 
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in the field of cryptography. For instance, some secret sharing 
schemes have been employed recently. In this paper we 
proposed a new uniform model for representing all secret 
sharing schemes based on Linear Memory Cellular Automata 
(LMCA) without considering dimension or neighborhood 
topology. We used this uniform representation for proposing a 
cheating model, in which two attacks have been introduced. 
Salient feature of our cheating model is that it can be applied 
to all existing secret sharing schemes based on LMCA. 
Cheaters can diffuse cheating value by corrupting their shares 
or their local transition rules, along configurations back to 
shared secret. While honest participants assume that the 
corrupted secret is valid, cheaters can compute cheating value 
in shared secret and obtain the valid secret. We showed that 
how a set of cheaters can work together to compute the 
cheating value in the initial configurations of cellular 
automata in both attacks.  Methods of preventing and 
detecting the cheating need to be investigated. Also, other 
existing cryptological schemes based on CA suspect to be 
vulnerable to similar attacks. It is worth to revise these 
cryptological schemes too. We are currently working on 
designing more secure secret sharing schemes based other 
models of CA such as heterogeneous CA and nonlinear CA. 
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