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Abstract—This paper presents the findings from a numerical 

simulation of the flow in 37-rod fuel assembly models spaced by a 
double-wire trapezoidal wrapping as applied to the BREST-OD-300 
experimental nuclear reactor. Data on a high static pressure 
distribution within the models, and equations for determining the fuel 
bundle flow friction factors have been obtained. Recommendations 
are provided on using the closing turbulence models available in the 
ANSYS Fluent. A comparative analysis has been performed against 
the existing empirical equations for determining the flow friction 
factors. The calculated and experimental data fit has been shown. 

An analysis into the experimental data and results of the numerical 
simulation of the BREST-OD-300 fuel rod assembly hydrodynamic 
performance are presented. 
 

Keywords—BREST-OD-300, ware-spaces, fuel assembly, 
computation fluid dynamics. 

I. INTRODUCTION 
HE core of the BREST-OD-300 lead-cooled experimental 
nuclear reactor [1], [2] uses two types of fuel assemblies 

(FA): the central zone (CZ) assemblies and the peripheral zone 
(PZ) assemblies. The only structural difference between said 
fuel assemblies are the diameters of the fuel rods spaced inside 
a regular triangular lattice.  

One of the fuel element spacing options is a double-wire 
trapezoidal wrapping (a ‘rib-on-rib’ spacing type). For the CZ 
FAs and the PZ FAs respectively, the relative fuel element 
pitch (S/d) is 1.33 and 1.23, and the relative wrapping pitch 
(T/d) is 20.6 and 19. 

Out of a great deal of theoretical and experimental data on 
hydrodynamics of fuel rod bundles (both bare and wrapped) 
[3]-[6], there is only a limited number of those meeting the 
requirement for the proximity of the major geometrical 
characteristics (in terms of spacing method, relative fuel 
element pitch (S/d), and relative wrapping pitch (T/d)), 
required for the BREST-OD-300 fuel assemblies. 

A topical task is therefore to acquire new experimental data 
and generalize the numerical simulation analysis of the flow in 
the fuel rod bundles spaced by a double-wire trapezoidal 
wrapping so that to define more accurately their hydraulic 
characteristics. 
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II. EXPERIMENTAL MODELS AND RESULTS 
The 37-rod models of the CZ and PZ assemblies have been 

made at the Bauman Moscow State Technical University 
(BMSTU). The model rod diameters have been scaled at ~2:1. 
The rod bundle length is 1040 mm. The rod bundle is enclosed 
within a hexagonal housing with the inside width across flats 
of 173 mm. The rods are spaced by a double-wire trapezoidal 
wrapping of the ‘rib-on-rib’ type. 

Table I gives the major geometrical characteristics of the 
CZ and PZ FAs. 

 
TABLE I 

GEOMETRICAL CHARACTERISTICS OF THE CZ AND PZ FA MODELS 

Symbol Quantity 
Value for 

CZ FA PZ FA 
d (mm) fuel rod simulator outer diameter 20.81 22.53 
h1 (mm) trapezoidal wrapping lower base 4.29 3.65 
h2 (mm) trapezoidal wrapping upper base 2.15 
h0 (mm) trapezoidal wrapping height 3.38 2.52 
D (mm) fuel rod simulator width across corners 27.47 
S (mm) fuel rod simulator pitch 27.57 
T (mm) spacer wire pitch 429 
δ1 (mm) biggest gap between two adjoining spacer wires 0.1 
δ2 (mm) biggest gap between housing and spacer wires 1.0 
L (mm) fuel rod simulator length 1040 

S/d relative fuel rod simulator pitch 1.33 1.23 
T/d relative trapezoidal wrapping pitch 20.6 19.0 

dc,ex 
hydraulic diameter (rod bundle flow passage, 
excluding housing) 17.37 13.84 

dc,in 
hydraulic diameter (rod bundle flow passage, 
including housing) 14.34 12.28 

 
The experiments included measurements of the static 

pressure (р) distribution along two housing facets on the 
generators between two adjoining peripheral rods using 
pressure take-offs and the data measuring system of BMSTU’s 
Nuclear Reactors and Plants Department. With a given flow 
rate, 19 pressure values were measured along the model height 
(z). 

The results of the experiments have been generalized by the 
following equations to determine the flow friction factors: 
- CZ FA model: 

244.0Re311.0 −×=λ , %6=Δ .         (1) 
 

- PZ FA model: 
153.0Re154.0 −×=λ , %5=Δ .          (2) 
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The experience of using this model shows a better (as 
compared against the Standard k-ɛ model) fit of the calculated 
and experimental data, specifically for the flows with a 
heavily curved current line. 

The Realizable k- ɛ model [13] is also recommended for 
flows with the current lines heavily curved and the flow 
heavily swirled. The model uses a mean vortex motion 
transfer equation and eliminates the negative values for the 

quantity 
2
ju′  when the average rate distributions are heavily 

deformed. The model’s parameter Сμ depends on the flow 
characteristics. 

The Reynolds stress model (RSM) [14], [15] does not use 
the turbulent viscosity hypothesis. Instead, differential transfer 
equations are solved for each Reynolds stress tensor 
component and the transfer equation is solved for the 
turbulence kinetic energy dissipation rate ɛ. This basically 
makes it possible to take into account the anisotropy of 
turbulent pulsation which extends considerably the model’s 
application region, including for flows with the current lines 
heavily curved and the flow swirled. The drawback of the 
model is the approximate simulation of multiple correlations 
arising when the transfer equations are derived. 

The Spalart-Allmaras (SA) model [16] contains one 
differential transfer equation for the modified kinetic turbulent 
viscosity ν~  related to the ‘internal’ turbulent viscosity 

ρμν tt =  through algebraic equations that contain the 

parameter νν~ , where ν is the kinematic viscosity, and a 
number of constants [7]. 

For ɛ, instead of the transfer equation, the Standard k- ω 
model [17] uses the vortex motion equation kεω = , which 
leads in a number of problems to a better fit with the 
experimental data than the Standard k- ɛ model. 

The SST k- ω Menter model [18], [19] is a combination of 
Standard k- ɛ models and k- ω models. These models are 
merged through the empiric function F1, which ensures that 
the integrated model is close to the k- ɛ model away from 
solid walls and to the k- ω model in the near-wall flow. The 
turbulence viscosity determination uses the Bradshaw 
hypothesis [20] on the proportionality of the shear stress in the 
near-wall portion of the turbulent pulsation energy boundary 
layer, which helps avoid the separation delay representative of 
the k- ɛ models. 

When the mesh in the near-wall calculation region is not 
detailed enough, a Standard near-wall function [21] was used 
for each of the presented models. 

V. RESULTS 
The results of the static pressure experimental 

determination and the calculated static pressure values 
obtained using different turbulence models for the flows in the 
CZ and PZ FA models, are presented in Figs. 3 and 4 
respectively. 

 

 
Fig. 3 Axial static pressure distribution in the CZ FA model 

 
A comparison of the numerical flow simulation results for 

the CZ FA model against the experimental data shows that the 
static pressure is higher at the bundle outlet than that assumed 
in the calculation, which stems from the effects of the outlet 
spacer grid not having been taken into account. Therefore, the 
calculation and experiment fit was analyzed based on the static 
pressure gradient values as given in Table II. 

 
TABLE II 

AVERAGE STATIC PRESSURE GRADIENT VALUES FOR THE CZ FA MODEL 
Parameter Experiment k-ε Standard RNG k-ε  k- ε Realizable k-ω Standard k-ω SST RSM SA 

Average Static Pressure Gradient, 
(Pa/m) 3.225 3.326 3.194 3.342 3.343 3.329 3.344 3.556 

Flow friction factor 0.02949 0.03041 0.02921 0.03056 0.03139 0.03044 0.03058 0.03252 

 
All turbulence models have been shown to fit the 

experimental data well enough, excluding the SA model. For 
the Standard k- ɛ model, and for the RNG k- ɛ and SST k- ω 
models, the calculation accuracy does not exceed 3 %. The 

accuracy was 3.5% in the event of the Realizable k- ɛ and 
RSM models, and 6% in the event of the Standard k- ω model. 
The worst variant was obtained with the use of the SA model 
intended primarily for the external flow problems. 

A comparison of the numerical simulation results for the 
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flow in the PZ FA model against the experimental data (Fig. 
4) shows the static pressure at the rod bundle outlet is a bit 
higher than the experimental pressure. The latter has been 
caused by the pressure recovery in the stream flow beyond the 
outlet spacer grid. The experimental static pressures in the rod 
bundle outlet region may be caused by a deviation of the rib 
geometry from the nominal geometry. 

 

 
Fig. 4 Axial static pressure distribution in the PZ FA model 

 
Table III presents a comparison of the static pressure 

gradients for the PZ FA model. The experimental gradient 
values have been defined using the initial 11 experimental 
points. 

The SST k- ω model yields the best results. The accuracies 
of results obtained using the k- ɛ Standard, RNG k- ɛ, 

Realizable k- ɛ and RSM models do not exceed 5 %. The k- ω 
and SA models yield the biggest deviations from the 
experimental data. 

Therefore, the Standard k- ɛ model, the RNG k- ɛ model or 
the SST k- ω model may be recommended for calculating the 
hydraulic loss in the BREST-OD-300 CZ and PZ fuel rod 
bundles. The use of the Standard k- ɛ model yields the 
calculation accuracy within a range of 3% as compared against 
MSTU’s experiments. 

 

 
Fig. 5 Values of the flow friction factors for the CZ FA model test 

conditions 

 
TABLE III 

AVERAGE STATIC PRESSURE GRADIENT VALUES FOR THE PZ FA MODEL 
Parameter Experiment k- ɛ Standard RNG k- ɛ k- ɛ Realizable k-ω Standard k-ω SST RSM SA 

Average Static Pressure Gradient, 
(Pa/m) 5.7822 5.873 5.601 5.392 5.848 5.842 5.873 6.246 

Flow friction factor 0.02767 0.0281 0.0268 0.0258 0.02798 0.02795 0.0281 0.02989 
 
Generalizations of the MSTU-produced experimental data 

have been compared against the available research data on 
flow friction in the rod bundles spaced by helical ribs. It 
should be noted that [22], [23] do not contain geometrical 
characteristics of bundles. In experiments [24]-[26], the 
parameter values are S/d < 1.3 and T/d ~ 8. In experiments 
[27], the rods are spaced by a single-wire wrapping of the ‘rib-
on-cladding” type. In experiments [28], the rod number ranges 
from 19 to 217, and the parameters S/d and T/d are in the 
required intervals, but there is no data on the shape and 
number of the spacer ribs, likewise on the selection of the 

determining geometrical parameters for the flow friction 
factors and the Reynolds number. 

A comparison against equations [22]-[28] is shown in Figs. 
5 and 6 for the test conditions of the CZ and PZ FA models 
respectively. 

For the CZ FA model, an acceptable fit with the 
experiments is provided by the Markley model [26] and the 
Rehme model [27]: 14 and 19 % respectively (given that the 
accuracy of empirical equations is in the limits of 30%). 
Besides, it should be also taken into account that the Sobolev 
model [24] (aka the FEI formula recommended for the 
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calculation in the Technical Guides [25]) gives a conservative 
friction factor value of about 28%.  

 

 
Fig. 6 Values of the flow friction factors for the PZ FA model test 

conditions 
 
In the event of the PZ FA model, a fairly good fit (in the 

limits of 11%) is observed for all equations that have been 
considered, excluding the Bishop model [22]. 

VI. CONCLUSION 
The experimentally obtained equations of flow friction 

factors (1) and (2) in 37-rod models of the BREST-OD-300 
core CZ and PZ FAs fore the central zone geometry conditions 
are close to the flow conditions in a smooth tube (the Blasius 
formula 25.0Re3164.0 −×=λ  [7]), and are close to the 
Cheng and Todreas equations [23] ( 18.0Re−×= fCλ ) for the 

conditions of the peripheral zone geometry. A conclusion may 
be made that an increase in the rib height leads to a decrease in 
the rib eddying effects on the rod bundle hydraulic loss, and 
the flow develops in the same way as in an equivalent round 
smooth tube. On the contrary, a shorter rib height gives an 
increased role to the rib eddying effects of the self-similar 
local loss type, with the equation on the Reynolds number 
being weakened. 

The numerical simulation results, which fit well the 
experimental data obtained, show that there are periodic 
components in the static pressure variation in the quasi-steady 
flow resulting from flow swirling by the spacer ribs. 

The Standard k- ɛ model, and the RNG k- ɛ and SST k- ω 
models may be recommended for the numerical simulation of 

flow in rod bundles of the geometry considered for the 
BREST-OD-300 core FAs. 
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