
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1814

Abstract—Many metrics were proposed to evaluate the

characteristics of the analysis and design model of a given product

which in turn help to assess the quality of the product. Function point

metric is a measure of the ‘functionality’ delivery by the software.

This paper presents an analysis of a set of programs of a project

developed in C++ through Function Points metric. Function points

are measured for a Data Flow Diagram (DFD) of the case developed

at initial stage. Lines of Codes (LOCs) and possible errors are

calculated with the help of measured Function Points (FPs). The

calculations are performed using suitable established functions.

Calculated LOCs and errors are compared with actual LOCs and

errors found at the time of analysis & design review, implementation

and testing. It has been observed that actual found errors are more

than calculated errors. On the basis of analysis and observations,

authors conclude that function point provides useful insight and helps

to analyze the drawbacks in the development process.

Keywords—Function Points, Data Flow Diagram, Lines of

Codes.

I. INTRODUCTION

UALITY assurance is to verify that applicable

procedures and standards are being followed. Quality

assurance consists of a set of auditing and reporting functions

that assess the effectiveness and completeness of quality

control activities. To achieve a high quality product, we

want to correct as many as errors as possible before the end

users encounter them and declare as defects.

 Software metrics provide a quantitative way to assess the

quality of internal product attributes thereby enabling a

software engineer to assess quality before the product is built.

Metric is a quantitative measure of the degree to which a

system, component or process possesses a given attribute [13].

Many metrics were proposed to evaluate the characteristics

of object-oriented design, i) evaluate the characteristics of

UML, ii) estimate the development effort, and for several

other purposes. Among the proposed metrics, a number of

approaches undertook the adaptation of the principles of

Function Point Analysis to object-oriented systems.

This paper aims at developing some experimental evidence

concerning Function Point as object-oriented metrics through

the application of such metrics to a set of programs. The

Neelam Bawane is with PES Institute of Technology, Bangalore, India

(phone: 09945516241; e-mail: neelambawane@yahoo.com).

C. V. Srikrishna is with PES Institute of Technology, Bangalore, India

(phone: 09448107190; e-mail: cvsrikrishna@yahoo.co.in).

measured programs were developed in a quite homogeneous

environment, with no relevant external bias affecting the

results of measurements. The present analysis is restricted to

relatively small size of the program.

However, the development process and the quality of the

product were quite representative for applications to typical

object-oriented systems. Thus the results presented here can

be considered valid for average object-oriented products.

The paper is organized in two parts.

First part describes the literature survey about metrics

specifically about the function point metrics. Second part

describes a case study which shows the validity of function

points (calculated for DFD at analysis phase) to calculate the

LOCs and possible errors in design and implementation.

II. FUNCTION-BASED METRICS

 The function point metric (FP), first proposed by Albrecht,

can be used effectively as a means for measuring the

functionality delivered by a system.

 Function Points are a measure of the size of computer

applications. The size is measured from a functional, or user

point of view. It is independent of the computer language,

development methodology, technology or capability of the

project team used to develop the application. Regardless of

language, development method, or hardware platform used,

the number of function points for a system will remain

constant [2]. The only variable is the amount of effort needed

to deliver a given set of function points. Although function

point metric does not satisfy the consistent and objective

attribute which should be present in effective software metric,

it provides useful insight and widely used [3].

 Function points can also be used to predict the number of

possible errors likely to occur at different phases such as

analysis& design review, unit and integration testing.

Function points [5], [24] are derived using an empirical

relationship based on countable measures of software’s

information domain and assessments of software complexity.

Information domain values are defined in the following

manner:

Number of external inputs (EIs): Each external input

originates from a user or is transmitted from another

application. Inputs are often used to update internal logical

files (ILFs). Inputs should be distinguished from inquiries,

which are counted separately. E.g. transaction types

A Case Study to Assess the Validity of Function

Points

Neelam Bawane nee’ Singhal, and C. V. Srikrishna

Q

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1815

Number of external outputs (EOs): Each external output

is derived within the application and provides the information

to the user, e.g. reports, screens error messages etc. Individual

data items within a report are not counted separately.

Number of external inquiries (EQs): An external inquiry

is defined as an online input that results in the generation of

some intermediate software response in the form of an online

output.

Number of internal logical files (ILFs): Each internal

logical file is a logical grouping of data that resides within the

application boundary and is maintained via external inputs.

Number of external interface files (ELFs): Each external

logical file is a logical grouping of data that resides external to

the application but provides the data that may be of use to the

application.

A complexity value is associated with each count. The

determination of complexity is subjective. Organizations that

use function point methods develop criteria for determining

whether a particular entry is simple, average, or complex.

The complexity classification of each component is based

on a set of standards that define complexity in terms of

objective guidelines.

First, the function counts (FCs) can be calculated with the

help of weighting factors based on the equation (1) & Table I:

 *
5

1

3

1

ij

i j

ij xwFC (1)

where wij are the weighting factors of the five components by

complexity level (low, average, high) and xij are the numbers

of each component in the application.

TABLE I

COMPUTING FUNCTION POINTS

Information

Domain Value

Count Weighting factor

Simple Average Complex Total

External

Inputs (EIs)

No. X 3 4 6 =

External

Outputs (EOs)

No. X 4 5 7 =

External

Inquiries

(EQs)

No. X 3 4 6 =

Internal

Logical Files

(ILFs)

No. X 7 10 15 =

External

interface Files

(EIFs)

No. X 5 7 10 =

Count total

The Fi (i=1 to 14) are value adjustment factors (VAF)

based on responses to the following characteristics that ranges

from 0 (not important or applicable) to 5 (absolutely

essential).

Data communications

Distributed functions

Performance

Heavily used configuration

Transaction rate

Online data entry

End-user efficiency

Online update

Complex processing

Reusability

Installation ease

Operational ease

Multiple sites

Facilitation of change

Second, the value adjustment factor (VAF) can be

calculated by summing up the scores (ranging from 0 to 5) for

these characteristics based on the equation (2):

01.065.0

14

1i

ciVAF
 (2)

where the value adjustment factor (VAF) is the score for

general system characteristic. Finally, the number of function

points is obtained by multiplying function counts and the

value adjustment factor using equation (3):

 * VAFFCFP (3)

Based on the projected FP value derived from the analysis

model, the project team can estimate the overall implemented

size of the Project. Past data indicate that one FP translates

into 60 lines of code if an object oriented language is used.

These historical data provide the project manager with

important planning information that is based on the analysis

model rather than preliminary estimates. Past projects have

also found an average of three errors per function point during

analysis and design reviews and four errors per function point

during unit and integration testing. These data can help

software engineers assess the completeness of their review

and testing activities

III. A CASE STUDY – LIBRARY SYSTEM

Problem Definition

Present case study is carried out to assess the following:

Can function point analysis be used as the method for

calculating the software size in terms of LOCs and possible

errors?

Method of Evaluation

The informal requirements for the basic version of the

library management programs were the following:

A register of accredited users is maintained by an

administrator, who can add, remove and change user

privileges. Users get access to the system via the typical

login/logout mechanism. A logged-in user can search for the

books in the catalogues based on author names or titles of the

books. Librarian can issue and return the books after verifying

the member and book details.

The specifications of the library system were considered

and measured. The specification of the system was given to

students by means of an informal text. In order to support the

computation of Function Points, we translated the original

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1816

specifications into a data flow diagram. In order to remain as

independent as possible from the UML-based techniques, the

measurement was based on the data-flow diagrams. A

simplified version of such DFD is reported in Fig. 1.

Function point computation

Function types were identified, and their complexity was

evaluated: the values are reported in Table I. Function points

are derived using an empirical relationship [Eq.1] based on

countable measure of software’s information domain and

assessments of software complexity [20], [24]

Referring to DFD (Fig. 1)

Number of external inputs (EIs): 8

Member_id

Member_name

Book_id

Book_title

Author_name

Publisher_name

Library_card_no

Issue_date

Number of external outputs (EOs): 3

Issue_date

return_date

fine_amount

Number of external inquiries (EQs): 2

Search catalogue by author

Search catalogue by book title

Number of internal logical files (ILFs): 5

Book database

Member database

Library_card details database

Issue_return database

Fine database

Number of external interface files (ELFs): 1

Member

TABLE II

COMPUTING FUNCTION POINTS

Function

type

Lo

w

Average High Total

EIs 8 * 3 0 * 4 0 * 6 24

Eos 3 * 4 0 *5 0 * 7 12

EQs 2 * 3 0 * 4 0 * 6 06

ILFs 3 * 5 0 * 7 0 * 15 15

ELFs 1 * 7 0 * 10 0 * 10 07

 Total FPs 64

Each of 14 questions (mentioned in literature) is answered

using a scale of 0 to 5. We assume that Ci is 48 (a

moderately complex product). The count total must be

adjusted using equation (2) & (3):

]*01.0065.0[* iCcounttotalFP

 count total =64 from Table II

Therefore,

7232.72

)]48*01.0(65.0[*64FP

Assumptions & Results

Past date indicate that one FP translate into 60 times of

code (if an OOP language is to be used)

 LOCs = 60 * 72

 = 4320 (approximately)

Past project have found an average of 3 errors per function

point during analysis and design reviews and 4 errors per

function point during unit and integration testing.

Thus, possible number of errors in analysis and design

reviews should be 3*72 i.e. 216. At the time of testing

possible number of errors should be 4*72 i.e. 288. Thus total

possible number of errors should be 504.

Verification of Results

After implementation it was found that lines of code are

4870, which is more than calculated LOCs (on the basis of

FPs in analysis phase) by a value of 550.

Errors found at the time of analysis and design reviews are

196 and errors found at the time of testing are 325. Thus total

errors found are 521 which is more than calculated by a value

of 17.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1817

IV. CONCLUSION

Above analysis and observations shows that function points

is an important tool to measure the probable errors at the all

the development stages. However, errors found may be more

if development process is not matured, thus an indication to

improve the process.

ACKNOWLEDGMENT

The authors acknowledge the support given by the

management to do the research work.

REFERENCES

[1] Alain Abran, Pierre N. Robillard, “Function Points Analysis: An

Empirical Study of Its Measurement Processes”, IEEE Transactions on

Software Engineering,, Volume 22, Issue 12, December 1996

[2] C. R. Symons, “Function Point Analysis: Difficulties and

Improvements”, IEEE Transactions on Software Engineering, Volume

14, Issue 1, January 1988

[3] Chris F. Kemerer, “Reliability of function points measurement: a field

experiment”, Communications of the ACM, Volume 36, Issue 2,

February 1993

[4] Chris F. Kemerer, Benjamin S. Porter, “Improving the Reliability of

Function Point Measurement: An Empirical Study”, IEEE Transactions

on Software Engineering, Volume18, Issue 11, November 1992

[5] Futrell, Robert T., Shafer Donald F. and Shafer, Linda I., “Quality

Software Project Management,” Pearson Education Pte. Ltd., Delhi, 1st

edition, 2002.

[6] G. Antoniol, R. Fiutem, C. Lokan, “Object-Oriented Function Points: An

Empirical Validation”, Empirical Software Engineering, Volume 8, Issue

3, September 2003

[7] Giuliano Antoniol, Chris Lokan, Gianluigi Caldiera, Roberto Fiutem, “A

Function Point-Like Measure for Object-Oriented Software Empirical

Software Engineering, Volume4, Issue 3, September 1999

[8] Godbole, Nina S., “Software Quality Assurance: Principles and

Practices”, Alpha Science International Ltd., 2004.

[9] Graham C. Low, D. R. Jeffery, “Function Points in the Estimation and

Evaluation of the Software Process”, IEEE Transactions on Software

Engineering, Volume 16, Issue 1, January 1990

[10] http://en.wikipedia.org/wiki/Function_point

[11] http://en.wikipedia.org/wiki/Software_testing

[12] http://jira.atlassian.com/secure/attachment/17146/sqa+activities.txt

[13] http://www.isb.wa.gov/policies/portfolio/tr25/tr25_l2e.html

[14] http://www.softwareqatest.com/qatfaq1.html

[15] http://www.softwareqatest.com/qatfaq2.html

[16] http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectTyp

e=ART&ObjectId=6331

[17] IEEE Standards Collection: Software Engineering, IEEE Standard

[18] J. E. Matson, B. E. Barrett, J. M. Mellichamp, “Software Development

Cost Estimation Using Function Points”, IEEE Transactions on Software

Engineering, Volume 20, Issue 4, April 1994

[19] Jalote, Pankaj, “CMM in Practice,” Pearson Education Pte. Ltd., 1st

edition. 2004.

[20] Kan, Stephen H., “Metrics and Models in Software Quality

Engineering,” Pearson Education Pte. Ltd., Delhi, 2nd edition, 2004.

[21] McCall, J. P. Richards and G Walters, “Factors in software Quality,”

NTIS AA-A049-014, 015, 055 Nov 1977

[22] Mohammed Abdullah Al-Hajri, Abdul Azim Abdul Ghani, Md Nasir

Sulaiman, Mohd Hasan Selamat, “Modification of standard function

point complexity weights system”, IEEE Transactions on Software

Engineering, Volume 19, Issue 7, July 1993

[23] Mohammed Abdullah Al-Hajri, Abdul Azim Abdul Ghani, Md Nasir

Sulaiman, Mohd Hasan Selamat, “Modification of standard function

point complexity weights system”, Journal of Systems and Software,

Volume74, Issue 2, January 2005

[24] Pressman, Roger S., “Software Engineering: A Practitioner Approach,”

McGraw-Hill Companies, Inc., 4th edition, 1997.

[25] R. Rask, P. Laamanen, K. Lyyttinen, “Simulation and Comparison of

Albrecht's Function Point and DeMarco's Function Bang Metrics in a

CASE Environment”, IEEE Transactions on Software Engineering,

Volume 19, Issue 7, July 1993

[26] Sebastian Kiebusch, Bogdan Franczyk, “Process family points versus

(full) function points”, EDSER '06: Proceedings of the 2006

international workshop on Economics driven software engineering

research, May 2006

[27] Shinji Kusumoto, Masahiro Imagawa, Katsuro Inoue, Shuuma

Morimoto, Kouji Matsusita, Michio Tsuda, “Function point

measurement from Java programs May 2002 ICSE '02: Proceedings of

the 24th International Conference on Software Engineering”, Journal of

Systems and Software, Volume 74, Issue 2, January 2005

[28] Silvia Abrahão, Geert Poels, “Experimental evaluation of an object-

oriented function point measurement procedure”, Information and

Software Technology, Volume 49, Issue 4, April 2007

[29] Wei Xia, Luiz Fernando Capretz, Danny Ho, Faheem Ahmed, “A new

calibration for Function Point complexity weights”, Information and

Software Technology, Volume 50, Issue 7-8, June 2008

[30] Wendy W.Peng, Dolores R. Wallace, “Software Error Analysis”, NIST

Special Publication 500-209

