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Abstract—Bootstrapping has gained popularity in differerdtse
of hypotheses as an alternative in using asympdagicibution if one
is not sure of the distribution of the test statistnder a null
hypothesis. This method, in general, has two vsian the
parametric and the nonparametric approaches. Howegies on
reliability of this method always arise in many BApgtions. This
paper addresses the issue on reliability by estaibly a reliability
measure in terms of quantiles with respect to asgtiepdistribution,
when this is approximately correct. The test ofdtjpses used is F-
test. The simulated results show that using nompetréc
bootstrapping in F-test gives better reliabilityath parametric
bootstrapping with relatively higher degrees oéftem.
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|. INTRODUCTION

THE fundamental notion of every hypothesis testds t
assess the position of the computed value of a t
statistic, sayt, using the distribution off under the assumed

null hypothesis and perform an inference whetherehis
sufficient evidence not to reject the null relatit@ certain
margins [5]. Whilst many distributions of test &tts have
proved to be reliable when the underlying distidutunder
the null hypothesis is known and can perform ekests, there
are still cases in which the characteristics of th#er
distribution are quite unclear or, in extreme casgnown. In
consequence, one will have to asgessa distribution that is
just approximately correct which may lead to urataie
results
Consider the observed values of a sample data=

(1, -, yk) which is an outcome of
identically distributed random variale= (Y, ..., Y;).

Assume thatT is an estimator, satisfying some established

properties, of a paramet@r If Y is distributed to some known
probability distribution, then one is confident tgse in
inference a valid asymptotic distribution tifafollows under
a null hypothesis. Indeed, the suitable assumpiioK is the
ideal thing to do to get reliable results. Howevers evident
that in many applications, one can be fairly, ewveut,
confident in a particular known distributidh has. Hence, in
this case, using standard asymptotic distributiorinference
would give undesirable results [6].

Simulation based testing is a straightforward apphoto
address these limitations which makes advantagbeovery
fast development of computing.
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This approach is to generate a large number of lated
values of the test statistic and compareith the generated
distribution. A particular method of this testings i
bootstrapping. Politis [8] has exemplified thate'tavailability
of valid nonparametric inference procedures basedres
sampling and/or sub-sampling has freed practit®ffiem the
necessity of resorting to simplifying assumptionscts as
normality or linearity that may be misleading.” Agrpntly,
this method gains attractiveness on its applicatidttowever
it is, in general, neither as easy nor as reli@slaisers often
seem to believe [5].

This paper tries to deal with the issue on religbibf
bootstrapping, both parametric and nonparametrigests of
hypotheses relative to the established distribstidrom
asymptotic theory. The test to be considered is Rkest
which is widely used in many tests of hypotheses. |

rticular, the objectives of this paper are adovad: (a)

etermine the bias and varianceFdf whereF”* is the set of
bootstrap replicates, from the two bootstrappingraaches;
(b) estimate the quantiles af* on different number of
iterations; (c) assess the reliability ©f relative to asymptotic
distribution in terms of quantiles and (d) make som
inferences based on the reliability percentagelteesu

This paper is organized as follows. Section 2 dessrthe
tests of hypotheses and how these tests are pedorihe
principles behind bootstrapping are presented aticge 3. It
also illustrates parametric and nonparametric nuthdn
section 4, simulation methodology is given. SecBqirovides
results and discussions and the summary, concluaith
recommendation are given in Section 6.

Il. TESTINGA HYPOTHESIS

A statistical hypothesis test is a method of malstagistical
decisions using sample data. This will be donedyputing
a statistic and examine its position to the thécakt
distribution it will follow if the null assumptiois true. There
are certain levels of significance a test can baluated by
which decisions can then be drawn whether or nogjiect a
null hypothesis. Hypothesis testing defined in tgesneral
procedure follows a “frequentist” statistical indfece
framework.

Common tests are one-sample & two-sample z-teses; o
sample & paired t-tests, pooled t-test, one proporz-test,
pooled z-test, two-sample F-test and many more.

The model of the F-test which will be used throughthis
paper is in a form

Q1 /n
) /m

@)
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whereQ, =Y, X2, Q, =™, Y? X~iidN(0,1) and 5:%2{11@;,1’: 1,...B )
Y~iidN(0,1). The variablesn and m are the degrees of

. 2 Furthermore, this empirical mean can be used topcben
freedom for X and Y respectively. Also,Q;~x*(n) and the empirical bias which is defined as

Qz~x*(m). _
biasy =0 — 6,i=1,..,B (3)
[Il. BOOTSTRAPPING . - . . .
Finally, the empirical variance is denoted as thag{n
A. Basic Concepts formula
Bootstrapping is a direct approach in generating a 2 1 ws (5 =\ .
probability distribution for a statistic that care lused for Og= zﬁziﬂ (91 -0 ) i=1..B )

statistical inference [3]. Given a sample data=
(y1, -, Yn), @ statisticc can be computed. Bootstrap samples

denoted asy* = (y1,...,¥n) are generated fromy in
performing bootstrapping procedure. These bootsteapple

are then mapped to a functional form tofto produce the
bootstrap replicates denoted &s The number of replicates sometimes unclear and vary among different writers.

depends on how many times the iteration is beimfppeed Barlow and Proschan have defined mathematicalbjnagle

in t.he. process. In buiIding. a distribution_ of bclqip generalized quantity which, when appropriately siezed,
replications, the nonparametric and parametric SIBIPING  \yi|| yield most of the fundamental quantities ofiagility
are the two general approaches to use. theory [2]. Their definition is

E. A Reliability Measure on Bootstrapping

There is a variety of labels in literature desigdatto
s problems on reliability. Such labels are reliaijliavailability,
interval  availability, efficiency, effectiveness, tce
Unfortunately, the definitions given in the liteweds are

B. Nonparametric Bootstrapping
. ) Assume a system whose state at time t is described by
Supposey = (y4, ..., V) is an outcome of independent and X(t) = (X,(£), .. X,(t)), @& vector-valued random

o e et 118 vanale. X, bg arandom vk, wl bgevered
» SayG, ' by a distribution function, F = (xy, ..., x,,: t); explicitly,

estimate ofG is the empirical distribution function (EDF) F=(x . i

. . ¥ = (x, ..., x,: t) equals the probability that X, (t) <
[7]. The rqle of the .EDF is theAfoundat_lcl)n Sf norgoaetric X1, X, (t) < x,. Now, corresponding to any state
bootstrapping. This is defined &%u) =n Aizlh(yi <u), x = (x4, ...,%,), there is a gain, or payoff, g(x). The
where h(-) is an indicator function. Sincé places equal expected gain G(t) at time ¢ will be the quantity of

probabilities on the original sampje then each element yrt : . _ _
is independently sampled at random from these dalizes. Interest; it may be calculated from G(¢) Eg(X(t))

: . s X )AF = (x4, o0, X1 t)
Therefore the simulated sam@g, ..., Y, is a random sample [ J g e 2) -1 n
taken with replacement from the data. This simplids For the purpose of this paper, the bootstrap réiliab

. asure relative to F asymptotic distributi@igb) maybe
special to the case of a homogenous sample but m . n
extensions are straightforward [3]. a[ﬁzught of as a state at bootstrap iteratiorwhere R(b) =

(1 = |ftasy) = fépar smonyp|/ Fasyy) X 100. The notationf;,s,,

is denoted as the critical value@t= 1 — p of F distribution.
Moreover, ify assumes a particular parametric model theM/hile f(par/monys iS the(B + 1)pt" ordered value of * from

exists an estimatg of the parameteg of G. This estimate bootstrap empirical distribution, whepe= j/(B + 1) andf;;,

serves as a substitute parametrically in the fitlistribution  denotes thg¢!" ordered value. It is also of interest to calculate

Gpar- Thus,G,q, Will be used in generating bootstrap samplethe E(R(b)), but this is not included in the scope of thisgrap

y*. For instance, consider as an outcome from a normal

C.Parametric Bootstrapping

distribution. G,o,ma With parameterst and s? generates IV.  ALGORITHMS FORSIMULATION
¥ = (1, ..., yn) Which in turn used to compute the replicates. The following are the algorithms established todguthe
This approach is parametric bootstrapping. simulation process.
D.Empirical Mean, Bias and Variance of the Replications A. Algorithmin Constructing Baseline Quantiles based from
Getting an unbiased and consistent estimator isobriee Asymptotic Distribution
main goals in statistical estimation. Consider adghé random 1. Select desired degrees of freedom.
sampley = (y;, .., ¥,). Estimating the parametér can be 2. Compute the critical values of f in the®9®5" and 9¢'
done by calculating a statisticfrom the random sample. The quantiles. These computed values will serve as the
value of statistic from the random sample is dethaist. For baseline values in computing for bootstrap’s réligb

every bootstrap sample, the same statistic caraloelated to
obtain the bootstrap replications dof as 6; =T, =
t(Xy, -, X2), i=1,..,B. Hence, a straightforward
computation of the empirical mean of the replicagias by
using the formula
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B. Algorithmin Constructing Quantiles from Parametric
Bootstrapping

1.

ok

Draw random samples = (x4, ..., X,,) andy =

(y1, -, V) from N(0,1). These sets are assumed to

be the observed samples.

. CalculateX, sZ,Y, sy and f. These values will serve

as observed statistics.
Samplex*? = (x;?, ..., x;P) andy
1, ., yaD) from N (X, s2) andN (Y, s2)

*b=

respectively. These sets are the bootstrap samples.

Computef*b. This value is a bootstrap replicate.
Repeat steps 3 through 4, B times.

CreateFz( f*), using the replicates, which is the
empirical distribution function of *.

Find f(?B+1)p) from Fz 1 (p) whereB is chosen so
that(B + 1)p is an integer. This value is the
estimateg" (B + 1) - quantiles.

C.Algorithmin Constructing Quantiles from
Nonparametric Bootstrapping

1.
2.

~w

Use the samples obtained from B.1.
Sample the sets in step 1 with replacement to

getx™? = (x;?, ..., x;P) andy*? = (y;?, ..., yP)
Computef *?.

Repeat steps 2 through 3, B times.
Createfiz ( f*), using the replicates, which is the
empirical distribution function of*.

Find f{(511yp) from Fz* (p) whereB is chosen so
that(B + 1)p is an integer. This value is the
estimateg®" (B + 1) - quantiles.

D.Algorithmin Computing the Empirical Biases and
Variances of F*

1.

E. Algorithmin Computing the Reliability of Bootstrapping

Usef andf*b to compute the empirical biasesFaf

—  yb i L
given in the formulbias = % —f.

. Usef*? to compute the empirical variancesrof

Lo — _ 1 fui
given in the formular? = EZ?=1 (f b -

zﬁ;lf*")z
ball)

Approaches

1. Denotef(4sy) as the critical value @ = 1 — p of F

distribution andfq;/mony» as the(B + 1p*"
ordered value of * from bootstrap empirical
distribution.

ComputeR (b) for parametric and nonparametric
bootstrapping.

R(b) = (1 - |f(asy) - f(;ar/non)bl/f(asy)) X

100 is the bootstrap reliability measurebeain percent
with respect to F asymptotic distribution.

V.RESULTS ANDDISCUSSIONS
A.Empirical Bias of F*
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Fig. 1 Empirical biases d¢¥ for p=0.90 under parametric
bootstrapping

Fig. 1 shows the behavior of the biases undernpetréc
bootstrapping. The bias ranges from -0.05 to 0.88 the
bootstrap replications are 19, 49, 99, 499 and 988.bias on
(n=20, m=20) departs from zero as b increases. r&gnto
this, bias on (n=20, m=40) approaches to zero iasfeases.
Among the three, bias on (n=40, m=100) converge®to the
fastest as b increases. This implies that the higteedegrees
of freedom, parametric bootstrapping produces (sggia
replicates as b increases.
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Fig. 2 Empirical biases ¢ for p=0.90 under nonparametric
bootstrapping

On the other hand, fig. 2 shows the empirical lsase-*
for p=0.90 under nonparametric bootstrapping. Tabkalior
of the biases of nonparametric bootstrapping is hmlilely
different from that of parametric bootstrapping.eTtiistance
from the bias on (n=20, m=20) to the bias of the tmoups is
very wide. This implies that relatively lower degge of
freedom produces biased replicates at all valuesb.of
Evidently, still the fastest rate of convergencezé&wo is the
bias from (n=40, m=100). It gives biases almosbzen all
values of b.
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B. Empirical Variance of F*
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Fig. 3 Empirical variances & for p=0.9 under parametric
bootstrapping

Fig. 3 displays the empirical variances Ff for p=0.90
under parametric bootstrapping. The distances ofiral
variances among the three dimensions of degreégedom
are clearly wide. Each dimension reveals charastiesi of
consistency of the bootstrapping processes. Thibwt of
consistency implies that if the variance approacteegzero
then the estimator is consistent. The empiricalaveres on
(n=40, m=100) display consistency as the data pa@nt near
to zero at all b.
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Fig. 4 Empirical variances & for p=0.90 under nonparametric

bootstrapping

Fig. 4 displays the empirical variances f for p=0.90
under nonparametric bootstrapping. Apparently, dis¢ances
of the empirical variances from (n=20, m=20) to 467

m=40) and (n=40, m=100) are wider compare to th

parametric bootstrapping counterpart. When b=4%ical

variances of (n=20, m=40) and (n=40, m=100) arselohile
the other values of b maintain a distance from emuth the
other points. Nevertheless, empirical variances (f40,

m=100) are nearer to zero at all b than its copartr Hence,
nonparametric bootstrapping gives favorable resuits
consistency.

C.Empirical Quantile of F*

4.0

35 B B
P ,Q-_:"'
& a* Ezaad

-
] > =& -~ parametric

CRITICAL VALUES
*
[
[
]
1
A

=M~ nonparametric

—i— foritical value

19 49 L 439 999

B

Fig. 5 Empirical quantiles df* versus f quantile from asymptotic
distribution for p=0.90 at n=20 and m=20

The graphs of the quantiles Bf seem to have an equal
level with respect to the critical valuebased from thd~
distribution as shown in fig. 5. Clearly, the eniat quantiles
from both bootstrapping approaches do not convergbef
critical value at all b. This means that the boafging
processes do not give good estimators of the dxaeantile.
Thef critical value is referred to as the solid lindigures 5, 6
&7.

3.0 =& --parametric

2.0 =<l --nonparametric

CRITICAL VALUES
=)
i
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Fig. 6 Empirical quantiles df* versus f quantile from asymptotic
distribution for p=0.90 at n=20 and m=40

Contrary to fig. 5, fig. 6 gives a different viewn dhe
empirical quantiles approaching to the baselirfe
Nonparametric  bootstrapping  outperforms  parametric
gootstrapping in terms of giving the right quarditelative to
baselinef. Although there is a “burst” at b=49, nonparaneetri
bootstrapping can give quantiles close to basdlireven at
b=19.
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Fig. 7 Empirical quantiles df* versus f quantile from asymptotic
distribution for p=0.90 at n=40 and m=100

Fig. 7 displays a surprising result. Parametriotsimapping
is very slow in converging td critical value even the
dimension of degrees of freedom is
Nonparametric bootstrapping maintains its clos¢adise, for
all b, from thef critical value.

D.Reliability Measure

RELIABILITY
n
=

W parametric

. Enponparametric

499 299

Fig. 8 Reliability measures for p=0.90 at n=20 and20

Fig. 8 shows the reliability measures with rangarfrO to
100 in percent. Should there be a negative relighiieasure,
it simply implies that there is a wide differencetween thd
quantile from asymptotic distribution arfd quantile from
bootstrapping. Hence, the reliability in this casenot good.
All of the measures on both approaches are less fifty
percent. Bootstrapping at relatively lower dimensiof
degrees of freedom does not give a satisfactoryltres
Parametric bootstrapping performs better than n@mpetric
bootstrapping in this case.
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Fig. 9 Reliability measures for p=0.90 at n=20 awe#0

relatively high.

Moreover, fig. 9 shows the reliability measures [ie0.90
at n=20 and m=40. All of the reliability measurese a
approaching to 100. Congruent to their variancegststency,
these reliability measures coincide with their fessat all b.
Nonparametric bootstrapping gives higher reliapifiteasures
compared to parametric bootstrapping where almbsif ¢he
measures are above 90.

RELIABILITY

| Mparametric

| Enonparamatric

18 49 99

499 999

Fig. 10 Reliability measures for p=0.90 at n=40 ar<lL00

Lastly, in fig. 10, there is a slight change of tevels of the
measures under both approaches. For instanceeglibility
measure under nonparametric bootstrapping at nIZd a
m=40 with b=999 is 99.48 while at n=40 and m=100dcs to
91.65. Further, the reliability measure under patain
bootstrapping at n=20 and m=40 with b=999 is 9InvB8e at
n=40 and m=100 lowers to 86.23. In general, nonpatac
bootstrapping performs well in this case at all b.

VI. SUMMARY, CONCLUSION AND RECOMMENDATION

Bootstrapping has gained popularity in differenstseof
hypotheses as an alternative in using asymptasiciloliition if
one is not sure of the test statistic’s distribotimnder a null
hypothesis. This method, in general, has two vésianthe
parametric and the nonparametric approaches. Haweve
issues on reliability of this method always arise many
applications.

This paper addresses the issue on reliability bgbtishing
reliability measure in terms of quantiles with resp to
asymptotic distribution when this is approximatelgrrect.
The two bootstrapping variants are then investijate their
respective reliability measures. Whereas therepaypeers, for
example [6], who claimed that parametric bootsthagp
performs well in many applications, this paper stdhat the
claim is not true in all cases. Parallel to thid,Highlights that
“the performance of parametric and nonparametric
bootstrapping are the same if the parameter ofdatés the
mean. Conversely, for the variance, the bootststpnation
depends on the sample kurtosis of the data.” Spaltif, the
bootstrapping reliability measures of both appreascbn F-
test, where the chi square random numbers came Ni@1),
vary depending on empirical biases, variances, neéxtd
degrees of freedom and iterations.

In the case where the degrees of freedom are nrd0 a
m=20 corresponding to the chi square random numhbers
numerator and denominator, respectively, the riiigb
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measures are not satisfactory. For n=20 and m=4&th b
approaches give above 50 percent reliability messuxmong
the two approaches, nonparametric bootstrappindonmmes
better than parametric bootstrapping in terms dialdity.
This result is also evident when n=40 and m=10& 3jread
of the empirical biases and variances, in this Hitmn,
influences the reliability measures. The consistenesult
from empirical variances gives satisfactory resubhs
reliability measures at all b. Relatively highergdees of
freedom improve the reliability measures which ange to
100 percent.

Using nonparametric bootstrapping in F-test giveste
reliability, in this paper, than parametric boasping with
relatively higher degrees of freedom.

Furthermore, it is recommended to extend this sttaly
other tests of hypotheses, include different nosupatric
bootstrapping approaches in investigating religbiland
explore reliability measures on dependent data.

REFERENCES

[1] S. Amiri, D. von Rosen, and S. Zwanzig, “On the panson of
parametric and nonparametric bootstrap,” Uppsala ivedsity
Department of Mathematics Report 2008:15. Uppsalaiveysity,
Uppsala, Sweden, 2008, unpublished.

[2] R. Barlow and F. Proschahlathematical Theory of Reliability, SIAM
Classics edition, 1996, pp. 5-6.

[3] A. Davison and D. HinkleyBootstrap Methods and their Applications.
Cambridge, United Kingdom: Cambridge University$;e1997, ch. 1.

[4] P. Good and J. HardirGommon Errors in Statistics: How to Avoid
Them. New Jersey: John Wiley & Sons, 2005.

[5] J. MacKinnon, “Bootstrap hypothesis testing,” Qusefconomics
Department Working Paper No. 1127, Queen’s UnitigrdDntario,
Canada, 2007, unpublished.

[6] J. MacKinnon and R. Davidson, “Improving the reiii@p of bootstrap
tests with the fast double bootstrap,” Queen’s Bouos Department
Working Paper No. 1044. Queen’s University, Onta@anada, 2006,
unpublished.

[7] B. Efron and R. TibshiranAn Introduction to the Bootstrap, New York:
Chapman & Hall, 1993, pp. 31-32.

[8] D. Politis, “The impact of bootstrap methods indiseries,"Satistical
Science, Vol. 18, No. 2, 2003, pp. 219-230.

171



