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Abstract—Bootstrapping has gained popularity in different tests 

of hypotheses as an alternative in using asymptotic distribution if one 
is not sure of the distribution of the test statistic under a null 
hypothesis. This method, in general, has two variants – the 
parametric and the nonparametric approaches. However, issues on 
reliability of this method always arise in many applications. This 
paper addresses the issue on reliability by establishing a reliability 
measure in terms of quantiles with respect to asymptotic distribution, 
when this is approximately correct. The test of hypotheses used is F-
test. The simulated results show that using nonparametric 
bootstrapping in F-test gives better reliability than parametric 
bootstrapping with relatively higher degrees of freedom. 
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I. INTRODUCTION 

HE fundamental notion of every hypothesis test is to 
assess the position of the computed value of a test 

statistic, say �, using the distribution of  � under the assumed 
null hypothesis and perform an inference whether there is 
sufficient evidence not to reject the null relative to certain 
margins [5]. Whilst many distributions of test statistics have 
proved to be reliable when the underlying distribution under 
the null hypothesis is known and can perform exact tests, there 
are still cases in which the characteristics of the latter 
distribution are quite unclear or, in extreme case, unknown. In 
consequence, one will have to assess � in a distribution that is 
just approximately correct which may lead to unreliable 
results 

Consider the observed values of a sample data  � �
���, … , ��� which is an outcome of independent and 
identically distributed random variable 
 � ���, … , ���. 
Assume that � is an estimator, satisfying some established 
properties, of a parameter �. If 
 is distributed to some known 
probability distribution, then one is confident to use in 
inference a valid asymptotic distribution that � follows under 
a null hypothesis. Indeed, the suitable assumption on 
 is the 
ideal thing to do to get reliable results. However, it is evident 
that in many applications, one can be fairly, even not, 
confident in a particular known distribution 
 has. Hence, in 
this case, using standard asymptotic distribution in inference 
would give undesirable results [6]. 

Simulation based testing is a straightforward approach to 
address these limitations which makes advantage of the very 
fast development of computing.  
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This approach is to generate a large number of simulated 

values of the test statistic and compare � with the generated 
distribution. A particular method of this testing is 
bootstrapping. Politis [8] has exemplified that “the availability 
of valid nonparametric inference procedures based on re-
sampling and/or sub-sampling has freed practitioners from the 
necessity of resorting to simplifying assumptions such as 
normality or linearity that may be misleading.” Apparently, 
this method gains attractiveness on its applications. However 
it is, in general, neither as easy nor as reliable as users often 
seem to believe [5].     

This paper tries to deal with the issue on reliability of 
bootstrapping, both parametric and nonparametric, on tests of 
hypotheses relative to the established distributions from 
asymptotic theory. The test to be considered is the F-test 
which is widely used in many tests of hypotheses. In 
particular, the objectives of this paper are as follows: (a) 
determine the bias and variance of ��, where �� is the set of f 
bootstrap replicates, from the two bootstrapping approaches; 
(b) estimate the quantiles of �� on different number of 
iterations; (c) assess the reliability of �� relative to asymptotic 
distribution in terms of quantiles and (d) make some 
inferences based on the reliability percentage results. 

This paper is organized as follows. Section 2 describes the 
tests of hypotheses and how these tests are performed. The 
principles behind bootstrapping are presented in section 3. It 
also illustrates parametric and nonparametric methods. In 
section 4, simulation methodology is given. Section 5 provides 
results and discussions and the summary, conclusion and 
recommendation are given in Section 6.  

II. TESTING A HYPOTHESIS 

A statistical hypothesis test is a method of making statistical 
decisions using sample data.  This will be done by computing 
a statistic and examine its position to the theoretical 
distribution it will follow if the null assumption is true. There 
are certain levels of significance a test can be evaluated by 
which decisions can then be drawn whether or not to reject a 
null hypothesis. Hypothesis testing defined in this general 
procedure follows a “frequentist” statistical inference 
framework.  

Common tests are one-sample & two-sample z-tests, one-
sample & paired t-tests, pooled t-test, one proportion z-test, 
pooled z-test, two-sample F-test and many more. 

The model of the F-test which will be used throughout this 
paper is in a form 

 

   � � �� ��
�� ��              (1) 
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where �� � ∑ ������� ,  �� � ∑ ������� , �~�� !�0,1� and 

�~�� !�0,1�. The variables n and m are the degrees of 
freedom for X and Y respectively. Also, ��~$��%� and 
��~$��&�. 

III.  BOOTSTRAPPING 

A. Basic Concepts 

Bootstrapping is a direct approach in generating a 
probability distribution for a statistic that can be used for 
statistical inference [3]. Given a sample data � �
���, … , ���, a statistic � can be computed. Bootstrap samples 
denoted as �� � ����, … , ���� are generated from � in 
performing bootstrapping procedure. These bootstrap samples 
are then mapped to a functional form of � to produce the 
bootstrap replicates denoted as ��. The number of replicates 
depends on how many times the iteration is being performed 
in the process. In building a distribution of bootstrap 
replications, the nonparametric and parametric bootstrapping 
are the two general approaches to use.  

B. Nonparametric Bootstrapping 

Suppose � � ���, … , ��� is an outcome of independent and 
identically distributed random variable � � ��, … , ��. If the 
distribution function of �, say ', is unknown, then a sensible 
estimate of ' is the empirical distribution function (EDF) '( 
[7]. The role of the EDF is the foundation of nonparametric 
bootstrapping. This is defined as '(�)� � %*� ∑ +��� , )����� , 
where +�·� is an indicator function. Since '( places equal 
probabilities on the original sample �, then each element in �� 
is independently sampled at random from these data values. 
Therefore the simulated sample ���, … , ��� is a random sample 
taken with replacement from the data. This simplicity is 
special to the case of a homogenous sample but many 
extensions are straightforward [3]. 

C. Parametric Bootstrapping 

Moreover, if � assumes a particular parametric model there 
exists an estimate .( of the parameter . of '. This estimate 
serves as a substitute parametrically in the fitted distribution 
'(/01. Thus, '(/01 will be used in generating bootstrap samples 
��. For instance, consider � as an outcome from a normal 
distribution. '(�21�03 with parameters 45 and 6� generates 
�� � ����, … , ���� which in turn used to compute the replicates. 
This approach is parametric bootstrapping. 

D. Empirical Mean, Bias and Variance of the Replications 

Getting an unbiased and consistent estimator is one of the 
main goals in statistical estimation. Consider again the random 
sample � � ��� , … , ���. Estimating the parameter � can be 
done by calculating a statistic � from the random sample. The 
value of statistic from the random sample is denoted as �. For 
every bootstrap sample, the same statistic can be calculated to 
obtain the bootstrap replications of � as �7�8 � ��� �
������ , … , ���� �, � � 1, … , 9. Hence, a straightforward 
computation of the empirical mean of the replications is by 
using the formula  

��8 � �
: ∑ �7�8:��� , � � 1, … , 9        (2) 

Furthermore, this empirical mean can be used to compute 
the empirical bias which is defined as 

;<=6>: � ��8 ?  �(, � � 1, … , 9       (3) 

Finally, the empirical variance is denoted as the plug-in 
formula 

@AB�8� � �
:*� ∑ C�7�8 ? ��8D�:��� , � � 1, … , 9   (4)  

E. A Reliability Measure on Bootstrapping 

There is a variety of labels in literature designated to 
problems on reliability. Such labels are reliability, availability, 
interval availability, efficiency, effectiveness, etc. 
Unfortunately, the definitions given in the literatures are 
sometimes unclear and vary among different writers. 

Barlow and Proschan have defined mathematically, a single 
generalized quantity which, when appropriately specialized, 
will yield most of the fundamental quantities of reliability 
theory [2]. Their definition is  

 
Assume a system whose state at time � is described by 
���� � E�����, … , �����F, a vector-valued random 
variable. ����, being a random variable, will be governed 
by a distribution function, � � �4�, … , 4�: ��; explicitly, 
� � �4�, … , 4�: �� equals the probability that ����� ,
4�, … , ����� , 4�. Now, corresponding to any state 
4 � �4�, … , 4��, there is a gain, or payoff, H�4�. The 
expected gain '��� at time � will be the quantity of 
interest; it may be calculated from '��� � IJE����F �
K … K H� 4�, … , 4�� � � �4�, … , 4�: �� 
For the purpose of this paper, the bootstrap reliability 

measure relative to F asymptotic distribution L�;� maybe 
thought of as a state at bootstrap iteration ;, where  L�;� �
E1 ? MN�0OP� ? N�/01/�2��R� M N�0OP�� F S 100. The notation N�0OP� 
is denoted as the critical value at T � 1 ? U of F distribution. 
While N�/01/�2��R�  is the �9 V 1�UWX ordered value of N� from 
bootstrap empirical distribution, where U � Y �9 V 1�⁄  and N�[��  
denotes the YWX ordered value. It is also of interest to calculate 
the I�L�;��, but this is not included in the scope of this paper. 

IV.  ALGORITHMS FOR SIMULATION  

The following are the algorithms established to guide the 
simulation process.  

A. Algorithm in Constructing Baseline Quantiles based from 
Asymptotic Distribution  

1. Select desired degrees of freedom. 
2. Compute the critical values of f in the 90th, 95th and 99th 

quantiles. These computed values will serve as the 
baseline values in computing for bootstrap’s reliability. 
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B. Algorithm in Constructing Quantiles from Parametric 
Bootstrapping 

1. Draw random samples 4 � �4�, … , 4�� and � �
���, … , ��� from !�0,1�. These sets are assumed to 
be the observed samples. 

2. Calculate �\, 6]�, �\, 6P� =%  N̂. These values will serve 
as observed statistics. 

3. Sample 4�R � �4��R , … , 4��R� and ��R �
����R , … , ���R� from !��\, 6]�� and !��\, 6P�� 
respectively. These sets are the bootstrap samples. 

4. Compute N̂�R. This value is a bootstrap replicate. 
5. Repeat steps 3 through 4, B times. 

6. Create �(:� N̂��, using the replicates, which is the 

empirical distribution function of N̂�. 

7. Find N̂��:_��/��  from �(:*��U� where 9 is chosen so 

that �9 V 1�U is an integer. This value is the 

estimated YWX �9 V 1� - quantiles. 

C. Algorithm in Constructing Quantiles from 
Nonparametric Bootstrapping 

1. Use the samples obtained from B.1. 
2. Sample the sets in step 1 with replacement to 

get 4�R � �4��R , … , 4��R� and ��R � ����R , … , ���R�  

3. Compute N̂�R. 
4. Repeat steps 2 through 3, B times. 

5. Create �(:� N̂��, using the replicates, which is the 

empirical distribution function of N̂�. 

6. Find N̂��:_��/��  from �(:*��U� where 9 is chosen so 

that �9 V 1�U is an integer. This value is the 

estimated YWX �9 V 1� - quantiles. 

D. Algorithm in Computing the Empirical Biases and 
Variances of F*  

1. Use N̂ and N̂�R to compute the empirical biases of F* 

given in the formula ;<=6> � ∑ `̂�abac�
R ? N̂ . 

2. Use N̂�R to compute the empirical variances of F* 

given in the formula @�8 � �
R*� ∑ dN̂�� ?R���

∑ `̂�abac�
R D

�
. 

E. Algorithm in Computing the Reliability of Bootstrapping 
Approaches 

1. Denote N�0OP� as the critical value at T � 1 ? U of F 

distribution and N�/01/�2��R�  as the �9 V 1�UWX 

ordered value of N� from bootstrap empirical 
distribution. 

2. Compute L�;� for parametric and nonparametric 
bootstrapping. 

L�;� � E1 ? MN�0OP� ? N�/01/�2��R� M N�0OP�� F S

100  is the bootstrap reliability measure at b in percent 
with respect to F asymptotic distribution. 

V. RESULTS AND DISCUSSIONS 

A. Empirical Bias of F*  

 

 

Fig. 1 Empirical biases of F* for p=0.90 under parametric 
bootstrapping 

  
 Fig. 1 shows the behavior of the biases under parametric 
bootstrapping. The bias ranges from -0.05 to 0.35 and the 
bootstrap replications are 19, 49, 99, 499 and 999. The bias on 
(n=20, m=20) departs from zero as b increases. Contrary to 
this, bias on (n=20, m=40) approaches to zero as b increases. 
Among the three, bias on (n=40, m=100) converges to zero the 
fastest as b increases. This implies that the higher the degrees 
of freedom, parametric bootstrapping produces unbiased 
replicates as b increases. 
 

 

Fig. 2 Empirical biases of F* for p=0.90 under nonparametric 
bootstrapping 

  
  

On the other hand, fig. 2 shows the empirical biases of F* 
for p=0.90 under nonparametric bootstrapping. The behavior 
of the biases of nonparametric bootstrapping is much likely 
different from that of parametric bootstrapping. The distance 
from the bias on (n=20, m=20) to the bias of the two groups is 
very wide. This implies that relatively lower degrees of 
freedom produces biased replicates at all values of b. 
Evidently, still the fastest rate of convergence to zero is the 
bias from (n=40, m=100). It gives biases almost zero on all 
values of b. 
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B. Empirical Variance of F* 

 

 

Fig. 3 Empirical variances of F* for p=0.9 under parametric 
bootstrapping 

  
 Fig. 3 displays the empirical variances of F* for p=0.90 
under parametric bootstrapping. The distances of empirical 
variances among the three dimensions of degrees of freedom 
are clearly wide. Each dimension reveals characteristics of 
consistency of the bootstrapping processes. The attribute of 
consistency implies that if the variance approaches to zero 
then the estimator is consistent. The empirical variances on 
(n=40, m=100) display consistency as the data points are near 
to zero at all b.   
 

 

Fig. 4 Empirical variances of F* for p=0.90 under nonparametric 
bootstrapping 

  
  

Fig. 4 displays the empirical variances of F* for p=0.90 
under nonparametric bootstrapping. Apparently, the distances 
of the empirical variances from (n=20, m=20) to (n=20, 
m=40) and (n=40, m=100) are wider compare to the 
parametric bootstrapping counterpart. When b=49, empirical 
variances of (n=20, m=40) and (n=40, m=100) are close while 
the other values of b maintain a distance from each and the 
other points. Nevertheless, empirical variances of (n=40, 
m=100) are nearer to zero at all b than its counterpart. Hence, 
nonparametric bootstrapping gives favorable results on 
consistency. 

 
 
 
 

C. Empirical Quantile of F* 

 

 

Fig. 5 Empirical quantiles of F* versus f quantile from asymptotic 
distribution for p=0.90 at n=20 and m=20 

  
  

The graphs of the quantiles of F* seem to have an equal 
level with respect to the critical value f based from the F 
distribution as shown in fig. 5. Clearly, the empirical quantiles 
from both bootstrapping approaches do not converge to the f 
critical value at all b. This means that the bootstrapping 
processes do not give good estimators of the exact f quantile. 
The f critical value is referred to as the solid line in figures 5, 6 
& 7. 
 

 

Fig. 6 Empirical quantiles of F* versus f quantile from asymptotic 
distribution for p=0.90 at n=20 and m=40 

  
  

Contrary to fig. 5, fig. 6 gives a different view on the 
empirical quantiles approaching to the baseline f. 
Nonparametric bootstrapping outperforms parametric 
bootstrapping in terms of giving the right quantiles relative to 
baseline f. Although there is a “burst” at b=49, nonparametric 
bootstrapping can give quantiles close to baseline f, even at 
b=19.   
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Fig. 7 Empirical quantiles of F* versus f quantile from asymptotic 
distribution for p=0.90 at n=40 and m=100 

  
 Fig. 7 displays a surprising result. Parametric bootstrapping 
is very slow in converging to f critical value even the 
dimension of degrees of freedom is relatively high. 
Nonparametric bootstrapping maintains its close distance, for 
all b, from the f critical value. 

D. Reliability Measure 

 

 

Fig. 8 Reliability measures for p=0.90 at n=20 and  m=20 
  

Fig. 8 shows the reliability measures with range from 0 to 
100 in percent. Should there be a negative reliability measure, 
it simply implies that there is a wide difference between the f 
quantile from asymptotic distribution and f* quantile from 
bootstrapping. Hence, the reliability in this case is not good. 
All of the measures on both approaches are less than fifty 
percent. Bootstrapping at relatively lower dimension of 
degrees of freedom does not give a satisfactory result. 
Parametric bootstrapping performs better than nonparametric 
bootstrapping in this case. 

 

 

Fig. 9 Reliability measures for p=0.90 at n=20 and m=40 
 

 Moreover, fig. 9 shows the reliability measures for p=0.90 
at n=20 and m=40. All of the reliability measures are 
approaching to 100. Congruent to their variances’ consistency, 
these reliability measures coincide with their results at all b. 
Nonparametric bootstrapping gives higher reliability measures 
compared to parametric bootstrapping where almost all of the 
measures are above 90. 
 

 

Fig. 10 Reliability measures for p=0.90 at n=40 and m=100 
 
 Lastly, in fig. 10, there is a slight change of the levels of the 
measures under both approaches. For instance, the reliability 
measure under nonparametric bootstrapping at n=20 and 
m=40 with b=999 is 99.48 while at n=40 and m=100 lowers to 
91.65. Further, the reliability measure under parametric 
bootstrapping at n=20 and m=40 with b=999 is 91.68 while at 
n=40 and m=100 lowers to 86.23. In general, nonparametric 
bootstrapping performs well in this case at all b. 

VI.  SUMMARY , CONCLUSION AND RECOMMENDATION 

Bootstrapping has gained popularity in different tests of 
hypotheses as an alternative in using asymptotic distribution if 
one is not sure of the test statistic’s distribution under a null 
hypothesis. This method, in general, has two variants – the 
parametric and the nonparametric approaches. However, 
issues on reliability of this method always arise in many 
applications. 

This paper addresses the issue on reliability by establishing 
reliability measure in terms of quantiles with respect to 
asymptotic distribution when this is approximately correct. 
The two bootstrapping variants are then investigated on their 
respective reliability measures. Whereas there are papers, for 
example [6], who claimed that parametric bootstrapping 
performs well in many applications, this paper shows that the 
claim is not true in all cases. Parallel to this, [1] highlights that 
“the performance of parametric and nonparametric 
bootstrapping are the same if the parameter of interest is the 
mean. Conversely, for the variance, the bootstrap estimation 
depends on the sample kurtosis of the data.” Specifically, the 
bootstrapping reliability measures of both approaches on F-
test, where the chi square random numbers came from N(0,1), 
vary depending on empirical biases, variances, extent of 
degrees of freedom and iterations. 

In the case where the degrees of freedom are n=20 and 
m=20 corresponding to the chi square random numbers at 
numerator and denominator, respectively, the reliability 
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measures are not satisfactory. For n=20 and m=40, both 
approaches give above 50 percent reliability measures. Among 
the two approaches, nonparametric bootstrapping performs 
better than parametric bootstrapping in terms of reliability. 
This result is also evident when n=40 and m=100. The spread 
of the empirical biases and variances, in this simulation, 
influences the reliability measures. The consistency result 
from empirical variances gives satisfactory results on 
reliability measures at all b. Relatively higher degrees of 
freedom improve the reliability measures which converge to 
100 percent. 

Using nonparametric bootstrapping in F-test gives better 
reliability, in this paper, than parametric bootstrapping with 
relatively higher degrees of freedom. 

Furthermore, it is recommended to extend this study to 
other tests of hypotheses, include different nonparametric 
bootstrapping approaches in investigating reliability and 
explore reliability measures on dependent data. 
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