International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:8, 2014

A Block World Problem Based Sudoku Solver

Luciana Abednego, Cecilia Nugraheni

Abstract—There are many approaches proposed for solving
Sudoku puzzles. One of them is by modelling the puzzles as block
world problems. There have been three model for Sudoku solvers
based on this approach. Each model expresses Sudoku solver as
a parameterized multi agent systems. In this work, we propose a
new model which is an improvement over the existing models. This
paper presents the development of a Sudoku solver that implements
all the proposed models. Some experiments have been conducted to
determine the performance of each model.

Keywords—Sudoku puzzle, Sudoku solver, block world problem,
parameterized multi agent systems.

1. INTRODUCTION

UDOKU is a very popular puzzle game. The components

of this puzzle are a board, which is a 9 x 9 cells, divided
into nine 3 x 3 subblocks, and a set of numbers from 1 to 9.
The objective of this puzzle is to fill in every cell of the board
with a number from 1 to 9 such that every row, every column,
and every sub-block contains each number exactly one. Fig. 1
is an example of Sudoku Puzzles and its solution.

4 7|6 5/4|3|8\9\7|62(1
8 6 4 3 8/ 1/6(2\4(5(93|7
2|7 8 9|2|7(3|6(1|4|5|8
4|8 3 1/6/5|4|8(2|7|9|(3
9 7 6 4 3|/9(8|7|5|6(1/4|2
2 13 2|7/4|9(1|3|5|8|6
4 81 4|3(2(6|7|9|8 1|5
5 3 2 4 6/5/9|1|3(8|2|7|4
115 6 7/8/1|5|2(4|3|6|9

(=) (b)

Fig. 1. An example of Sudoku puzzle and its solution.

There are many approaches for solving Sudoku puzzles,
such as integer programming [1], SAT [5], genetic algorithm
[6], [2], simulated annealing [7], meta-heuristics [4], neural
networks [8], [13], particle swarm optimization [9], [10], and
many more. In [11] we proposed an approach for solving
Sudoku which is by modeling the puzzles as block-world
problems. A block-world problem consists of a number of
boxes on the table with a particular arrangement and two
robots. Initially, all the boxes are on the table and are arranged
into a number of piles. The objective of this problem is to
change this arrangement into a targeted arrangement. The
robots are responsible for changing the arrangement. Each
robot has a special capability. The first robot is only capable
to take a box from a table and put it on another box, whereas

Luciana Abednego and Cecilia Nugraheni are with the Informatics

Department, Parahyangan Catholic University, Bandung, Indonesia (e-mail:

luciana,cheni@unpar.ac.id).

the second robot is capable to take a box from a top of a pile
and put it on the table. It is assumed that every time only
one robot that can make a move. An example of block world
problem is given in Fig. 2.

G-

[a) Initial arrangemeant (b) Final arrangement

Fig. 2. An example of block world problem.

By modifying some settings of block world problem we
have shown that Sudoku puzzles can be regarded as an variant
of block world problems. We presented three block world
problem based Sudoku solver models. The first model is
based on backtracking principle. The solution searching is
done exhaustively over the problem state space. The searching
process stops when a solution is found or when there is
no more alternative solution can be found. The second and
the third model are based on fixed point principle. The
solution search process is divided into nine sub-processes
P = {p1,p2,...,p9}. Each sub-process, p;, tries to seek
an empty cell for putting number ¢ regarding some certain
conditions/rules. If there are no more numbers can be placed
on the board, the searching process halts.

In [11] we have made a manually analysis of the mod-
els’ performance. By using a Sudoku puzzle, we run each
model’s algorithm to determine its performance. In this work,
continuing our previous work, we defined a new model and
developed a Sudoku solver based on the models. We then
use the solver to do some experiments. The objective of the
experiments are to measure the performance of each model.

The remainder of this paper is organized as follows. In
Section II we review our proposed models. Section III explains
briefly the implementation principle of Sudoku Solver. Section
IV discusses the experimental results. Conclusions and future
work are given in Section V.

II. SUDOKU SOLVER MODELS

For the sake of clarification, in this section we give a
summary of the Sudoku solver modeling presented in [11].
The readers may consult [11] for more detailed explanation.

Following [4], we define a Sudoku puzzle as follows :

Definition 1 Given an n? x n? cells divided into n x n distinct
subblocks, the aim of Sudoku puzzle is to fill each cell so that
the following three criteria are met:

1334

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:8, 2014

1) Each row of cells contains the integers 1 through to n?
exactly once.

2) Each column of cells contains the integers 1 through to
n? exactly once.

3) Each subblock contains the integers 1 through to n

exactly once.

2

In our work, we focus on n = 3.

In the introduction we describe the components of a block
world problem and the objective of the problem. Now let’s do
some modification as follows:

o The number of boxes on the table is 9 x 9.

o Each box has number on it, which is between 1 and 9.

e For every number, from 1 to 9, there are 9 boxes with
each number.

o There is a special part of the table called board which
consists of 3 x 3 grids. Each grid is called subblock and
consists of 3 x 3 smaller grids called cells.

o Initially some of the boxes are already placed on those
cells and the rest are outside the board. The boxes that are
outside the board are organized in nine piles according
to their numbers.

The result of this modication is illustrated in Fig. 3.

1 6
9 3 o
6
3 L} 2
5 ri 2 9
2 Hi 6
9 2
H 1 5
1 3 board
2
4| (7]
4| 7| [&]
ER la|[5] 7| (& [9]
1] (2] 2] [a] [5] [¢][7][®] [2]
1] 2] |z |a)|s||e] 7] |8]]|®]
23] [a] (8] |8][7][2]]°]
1] |2] |2 [a)|5]||s] 7] |8]]|9]
] (2] (2] [a][s]e]|7][2][2]
Piles of boxes outside the board

Fig. 3. Modification of a block world problem.

Furthermore, let’s make some changes over the robots’
behaviours, as follows:
o The first robot is capable of taking a box that are outside
the board and putting this box on a cell of the board so
that the condition in Definition 1 are satisfied.

o The second robot is capable of taking a box from the
board and putting it back on the pile according to its
number.

With those changes, the block world problem has became
a Sudoku puzzle.

Now, we will briefly present our proposed Sudoku solver
models. The models differ in terms of the number of robots
and the task of each robot.

A. Model 1

Similar to the original block world problem, the first model
uses two robots with different task. These robots will work in
a turn based style with the following rules:

o The first robot gets the first turn. The task of this robot
is to fill an empty cell with a box from a pile outside the
board without violating Sudoku rules. The first robot will
do it repeatedly, until one of two conditions is reached:

— All the cells are filled with boxes (which means no
more boxes outside the board). At this situation the
first robot will report that the job is done.

— It is unable to find a box that can be placed on an
empty cell. If this happens, then it will report that
there is a failure and give the turn to the second
robot.

For the process of searching an empty cell, the first robot
will take the empty cell with the lowest position. We
define the the lowest and highest position as (1,1) and
(9,9), respectively. The first robot records all the empty
and not empty cells from the beginning until the end of
the process.

o The second robot will be active whenever a failure
happens. It is responsible for taking a box from the board
and put it back on its correspoding pile.

In our model, the second robot will take the last box put
by the first robot. As consequence, the second robot needs
information about the order of the box put on the board.

B. Model 2

Differ from the first model, for the other models, we use
nine robots. All robots have the same task, which is to take a
box from the piles outside the board and put the box on the
board’s cell.

We use the fixed-point principle for this model. The
searching for the solution is done by making iterations until a
termination condition is reached. In each iteration, every robot
1 tries to find an appropriate cell or a valid position for a box
with number <. If the searching is success, then robot ¢ puts a
box with number ¢ on it. After doing its job, the robot i will
give the turn to the next robot. After the robot 9 does its job, it
will be decided whether a new iteration should be made or not.
If in the last iteration, all the robots cannot find appropriate
cells, in other word, the robots can not put any boxes on the
board anymore, then the process is terminated. In doing its
task, a robot ¢ first evaluate an empty cell of the board, one
by one from the lowest position to the highest position.

1335

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:8, 2014

The difference between model 2 and model 3 is on the
definition of a valid position. For model 2, we use the
following definition for a valid position.

Definition 2 A robot ¢ will call a position (x,y) is valid for
box with number ¢ if the following conditions hold:
1) It is empty.
2) The row = does not contain any boxes with number .
3) The column y does not contain any boxes with number
i.
4) The subblock where (z,y) is located does not contain
any boxes with number i.
5) For every other row r in the same subblock there is a
box with number .
6) For every other column c in the same subblock there is
a box with number 7.

Fig. 4 gives an illustration of a valid position for model 2.
The position (9, 7) is a valid position for a robot 4. It is clear
that on each other row in the same sub-block (row 7 and 8)
and oc each other column in the same sub-block (column 8
and column 9) there is a cell containing number 4.

column

1 2 5 1
2] L 9 2
3 i} 9

5 4 5 L]

o 6 3
& 9 4
T 14 3 3
g 3 9 i}
9 i} 3 4 (2

Fig. 4. An example of valid position for model 2.

C. Model 3

For model 3, we use the following definition for a valid
position.

Definition 3 A robot ¢ will call a cell at (z,y) a valid position
if all the following conditions hold:
1) It is empty.
2) The row = does not contain any boxes with number .
3) The column y does not contain any boxes with number
i.
4) The subblock where (x,y) is located does not contain
any boxes with number 1.

5) For every other row 7 in the same subblock there is a
box with number ¢ or the cell at the position (r,y) is
not empty.

6) For every other column c in the same subblock there is
a box with number ¢ or the cell at the position (z,c) is
not empty.

Fig. 5 gives an illustration of a valid position for model
3. Similar to our previous example for model 2, the position
(9,7) is a valid position for a robot 4. Although there is no
cell containing number 4 in the row 7, the robot 4 still can
find this valid position since the position (7,7) is not empty.

column

1 2] 1
2] & 9 2
3 i} L1
5 4 5 i}
55 L] 3
& 9 4
1 & 3
3 3 9 i}
9 i} g 4|2

Fig. 5. An example of valid position for model 3.

D. Model 4

In this work we introduce a new model. This model is
an improvement of model 3. We put more constraints in the
definition of a valid position for a robot. The definition of a
valid position of model 4 is as follows.

Definition 4 A robot i will call a cell at (z,y) a valid position
if all the following conditions hold:

1) It is empty.

2) The row x does not contain any boxes with number 1.

3) The column y does not contain any boxes with number
i.

4) The subblock where (z,y) is located does not contain
any boxes with number 3.

5) For every other row 7 in the same subblock there is a
box with number i or the cell at the position (7,y) is
not empty or all cells in row 7 in the same sub-block
with the cell (z,y) are not empty.

6) For every other column c in the same subblock there is
a box with number ¢ or the cell at the position (z,c) is
not empty or all cells in column c¢ in the same sub-block
with the cell (x,y) are not empty.

Fig. 6 shows an illustration of a valid position for model 4.

The position (7,4) is a valid position for a robot 5. Although

1336

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:8, 2014

there is no cell containing number 5 in the row 8 and column
6, the robot 5 still can find this valid position since all cells in
the same sub-block with (7, 4) which lie in row 8 and column
6 are not empty.

1] |2 5 1|4
2 148 2| |9 2
3 6 9
E4 5 L]
T 3
fi 9 4
T 8 1|3
a2 13 4 i
] 6 |5 8|7 |2

Fig. 6. An example of valid position for model 4.

[II. IMPLEMENTATION

In [11] we have modeled Sudoku solver as a param-
eterized multi agent system. A parameterized multi agent
system is a system consisting of a number of similar com-
ponents (subsystems) that work together, the number of the
components is expressed as input parameter of the system.
The agents are the robots, the environment are the board and
the boxes. The models are written in formal style using TLA+
as specification language.

There are some important aspects that must be considered
when implementing multi-agent systems, such as system
architecture, inter-agent communication, and agent-scheduling.
In this work, we have not yet considered all those issues.
We took a simple approach in developing this solver, since
the focus of this work is the performance of the solver and
not the multi-agent system issues. We used object-oriented
programming approach and used Java programming language
for developing the solver.

The class diagram of the solver is given in Fig. 7. The solver
consists of nine classes, namely Sudoku, Scheduler, Robot,
Environment, Position, Box, Cell, List, and ListElement. The
explanation of each class is as follows:

o Sudoku class is the main class.

o Scheduler is a class that responsible for controlling the
robots or deciding when a robot has its turn.

« Box represents a box. It contains information about the
number of the box.

o Cells will store information about a position on the board
and the box that on that position.

o Environment stores information about Sudoku board,
piles of boxes outside the Sudoku board, and list of

the empty cells. Sudoku board is organized as a two-
dimensional matrix. The type of each board element is
Cell.

o The position is a class that contains information about a
position on the board.

o List is used to represent a list of empty cells whose
elements are ElementList.

o ElementList is a class that stores information about the
Box and a position of the board that has been once
occupied by the box.

« Robot class contains two important methods, i.e. are
putOn and takeBack. The two methods represent the
robots’ main tasks: take a box from a pile outside the
board and put it to the board, or take a box from the
board and return it back to a pile outside the board.

ListEle ment
—
Box List
Cell Environment
"
Position Sudoku
Robot Scheduler

Fig. 7. Class diagram of Sudoku solver.

IV. EXPERIMENTAL RESULTS

We tested every model on a hundred puzzles taken from [3]
and [12] . Each of the puzzle is guaranteed can be solved or
has at least one solution. The number of puzzles that can be
solved by each model are given in Table 1.

TABLE I
EXPERIMENTAL RESULTS 1

Model The number of puzzles solved
1 100
2 0
3 0
4 44

As expected, model 1 succeeded in finding the solutions of
all puzzles. Whereas model 2 and model 3 did not successfully
complete any puzzles. Model 4 solved 44 from 100 puzzles.
Without considering the failure, in average model 4 needs 4.82
ms for solving a puzzle. The time needed by model 1 for

1337

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:8, 2014

solving 44 puzzles that can be solved by model 4 is 213 ms
or 4.84 ms in average. We may say that whenever model 4
successfully completes a puzzle, the time required for solving
the puzzle tends to be smaller than the time required by model
1 for completing the same puzzle.

Furthermore, we measured the performance by considering
the success of each model in filling the empty cells. Table II
shows the percentage of empty cells successfully completed
by each model. Model 1 has the best performance since it
managed to fill all the empty cells, i.e. 100%, followed by
model 4 and model 3 with 48 % and 22 %, respectively. The
success rate of model 2 in filling the empty cells is very small,
which is only 1.4 %.

TABLE IT
EXPERIMENTAL RESULTS 2

Model Percentage of filled cells

1 100
2 1.4
3 22
4 48

So far the model 1 has the best performance, followed by
model 4. Previous experiment revealed that model 4 is likely
to complete the a puzzle faster than model 1. Unfortunately,
model 4 is not always successful in completing a puzzle. For
the last experiment, we combined model 4 and model 1 to
know whether there is a performance improvement. We took
10 hardest puzzles that can only be solved by model 1 based
on the time required to complete the puzzles. The combination
is done by first letting the model 4 work until it stops, and
then running the model 1 to complete the puzzle. Table III
shows the time comparison between model 1 alone and the
combination of model 4 and model 1 in ms. It can be seen
that the combination works better than model 1 alone.

TABLE III
EXPERIMENTAL RESULTS 3
Puzzle Model 1 Model 4 and 1
1 390 390
2 312 312
3 250 250
4 234 202
5 203 203
6 156 156
7 140 16
8 125 31
9 94 46
10 47 47
Total 1951 1653

V. CONCLUSION

In this paper, we have presented the development of a
Sudoku solver. This solver is an implementation of four block-
world problem based Sudoku solver models. The experimental
results show that the model 1, which uses backtracking
principle, has the best performance. Moreover, performance
improvement can be achieved by combining model 4 and
model 1.

The Sudoku solver models used in this work are taken
from our previous work. In [11] the solver is modeled as

a block-world problem. In particular, it is represented as
a parameterized multi-agent system. In this work, we have
not considered the issues related to multi-agent systems. We
plan to develop a Sudoku solver simulator that applies the
principles of multi-agent systems. This simulator is not only
for solving Sudoku puzzles, but also for learning about multi-
agent systems, especially about agent communication and
scheduling.

REFERENCES

[1]1 A. Bartlett, et.al. An Integer Programming Model for the Sudoku
Problem, The Journal of Online Mathematics and Its Applications:
Volume 8, Issue May, 2008.

[2] X.Q. Deng & Y.D. Li A novel hybrid genetic algorithm for solving
Sudoku puzzle., Optimization Letters, February 2013, Volume 7, Issue
2, pp 241-257, Springer.

[3] Wayne Gould. Su Doku Junior. Penerbit Erlangga. 2005.

[4] R. Lewis, Metaheuristics can solve Sudoku puzzles, Journal of Heuris-
tics, Vol. 13, 2007, pp. 387-401.

[5] L. Lynce & J. Ouaknine. Sudoku as a SAT problem, Proc. of the 9th
Symposium on Artificial Intelligence and Mathematics, 2006.

[6] T. Mantere. Solving, rating and generating Sudoku puzzles with GA.,
Proc. of IEEE Congress on of Evolutionary Computation, 2007. CEC
2007, Singapore.

[7] P. Malakonakis, et.al. An FPGA-based Sudoku Solver based on Simu-
lated Annealing methods., Proc. of International Conference on Field-
Programmable Technology, 2009. FPT 2009.

[8] V. Mladenov, et.al., Solving Sudoku Puzzles by using Hopfield Neural
Networks, Proc. of ICACM’11 Proceedings of the 2011 international
conference on Applied & computational mathematics, pp.174-179 World
Scientific and Engineering Academy and Society (WSEAS) Stevens
Point, Wisconsin, USA, 2011.

[9]1 J. Monk, et.al. Solving Sudoku using Particle Swarm Optimization on
CUDA, Proc. of The 2012 International Conference on Parallel and
Distributed Processing Techniques and Applications, 2012,.

[10] A. Moraglio & J. Togelius, Geometric Particle Swarm Optimization for
the Sudoku Puzzle, Proc. of Conference in Genetic and Evolutionary
Computation, GECCO 2007, Proceedings, London, England, UK, July
7-11, 2007. ACM 2007.

[11] C.E. Nugraheni & L. Abednego. Modelling Sudokus as Block World
Problems. International Journal of Computer, Information, Systems and
Control Engineering, volume 7, no. 8, pp. 48-54, World Academy of
Science, Engineering and Technology, 2013.

[12] Thomas Ag. S. Sudoku - Edisi Lengkap dengan 270 Aneka Teka-teki
Sudoku. Penerbit Andi. 2012.

[13] T.-W. Yue & Z.-C. Lee, Sudoku Solver by Qfron Neural Networks, Proc.
of International Conference in Intelligent Computing 2006, ICIC2006,
LNCS 4113, pp.943-952, 2006, Springer-Verlag, Berlin Heidelberg
2006.

1338

