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Abstract—Concurrent planning of project scheduling and
material ordering has been increasingly addressed within last decades
as an approach to improve the project execution costs. Therefore, we
have taken the problem into consideration in this paper, aiming to
maximize schedules quality robustness, in addition to minimize the
relevant costs. In this regard, a bi-objective mathematical model is
developed to formulate the problem. Moreover, it is possible to
utilize the all-unit discount for materials purchasing. The problem is
then solved by the E-constraint method, and the Pareto front is
obtained for a variety of robustness values. The applicability and
efficiency of the proposed model is tested by different numerical
instances, finally.
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I. INTRODUCTION

N traditional planning methods, project scheduling and

material ordering issues were treated as separate problems.
This approach yielded to neglect of trade-off consideration of
the project corresponding costs, mainly including the ordering,
holding, and penalty (reward payments) costs for late (early)
project completion.

To the best of our knowledge, [1] introduced the integrated
problem for the first time by presenting a hybrid model of the
critical path method with material requirement planning.
Afterwards, [2] developed an improved version of the problem
by a heuristic scheduling for large-sized projects based on the
least slack rule. Smith-Daniels and Smith-Daniels [3]
addressed fixed duration for the activities and found that the
latest starting time schedule could lead to an optimal solution.
Their proposed objective function (OF) included minimization
of total costs corresponding to the inventory holding, material
ordering, completed activities holding, and project delay.

Dodin and Elimam [4] extended the problem by total costs
minimization under activity crashing possibility, rewards for
early completion, and materials quantity discounts. Schmitt
and Faaland [5] considered a heuristic algorithm for
scheduling a recurrent construction to the net present value
maximization of cash flows, in which an initial schedule is
constructed and worker teams are dispatched to the tasks for
backlogged products. In another research, [6] used a genetic
algorithm (GA) to solve an extended version of [4]. However,
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the crashing cost had been presumed to follow a constant
slope for every activity.

Regarding the aforementioned notes, this paper aims to
develop a mathematical model to address simultaneous
planning of the project scheduling and material ordering. The
proposed model incorporates the project execution costs
minimization and schedules quality maximization, as well.

The rest of the paper is organized as follows. The
mathematical model is described in Section II. The next
Section III discusses the solution methodology and
experimental results are presented in Section IV. Finally, the
conclusions and future research directions are mentioned in
Section V.

II. PROBLEM DEFINITION

This section addresses the problem definition, in addition to
the mathematical formulation. The proposed model for
simultaneous project scheduling and material ordering consists
of two OFs aiming to maximize the schedule flexibility, in
case of unexpected incidents, and minimize the corresponding
costs to perform a project.

Different researches have addressed the schedules quality in
terms of slacks time maximization. For instance, [7] accounted
for different total slack (TS)-based measures in assessment of
project scheduling robustness. They utilized the Monte Carlo
Simulation to test robustness measures by generation of a
random realization set of activity durations. They concluded
that weighted slack and project buffer size could provide the
best results in the case of disruptions. Equation (1) shows the
selected weighted slack criterion, in which NSj and TSj stand
for the number of successors and total slack of the jth activity,
respectively. Considering the weighted slack maximization
objective, the rest of the problem formulation is described
next.

N
WS =) Ns;Ts, (D
j=1
A. Mathematical Model Formulation

The mathematical model, the indices, parameters, and
decision variables are introduced, as follows.

1969



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:9, No:11, 2015

TABLEI
INDICES
Parameters Random distribution function
=12,....N index of project activities
m=1,2,...M index of required materials
t=0,1,...,IN index of time
k=1,2,....Km index of price discount ranges
TABLEII
PARAMETERS
Parameters Random distribution function
Pj Set of activities preceding j.
€S; Earliest start time of activity j.
Is j Latest start time of activity j.
NS i Successor numbers of activity j.
TS i Total slack of activity j.
Dd Project due date.
H Project planning horizon.
Pe Penalty amount paid for later completion of the
project than the due time.
Re Reward amount received for earlier completion
of the project than the due time.
S Unit cost of material m in quantity range k
mk purchased from.
ij Requirement amount of activity j to material m.
G m Ordering cost of material m.
hm Holding cost of material m.
d i Duration time of activity .
Xk Limit on quantity range K of material m.
K Number of quantity discount ranges for material
m m.
Lm Lead time of material m
TABLEIIT
DECISION VARIABLES
Parameters Random distribution function
th 1 if activity j is started at time t and 0, otherwise.
2 1 if material m is ordered within quantity range K in
mkt period t and 0, otherwise.
P . 1 if material m of activity j is ordered in period t
mktj within quantity range k and 0, otherwise.
| mt Inventory amount of material m in period t.

Now, the proposed model can be formulated according to
the following mixed-integer programming model.
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The OFs are written by (2), in which the former and latter
point to the schedule robustness maximization and project
costs minimization, respectively. The encompassed costs
consist of the completion time, materials purchasing, ordering,
and holding, respectively. Equation (3) guarantees the
precedence relations to schedule a project. Equation (4)
reiterates that start time of each activity is embedded within
the earliest and finish start bounds. The inventory level of each
material is calculated through (5). Equation (6) indicates
discount quantity intervals for each material. Equation (7)
states that the order can be accommodated just in a single
discount interval. Equation (8) promises that just one order is
put for each activity regarding the required materials. The
materials lead time is also taken into consideration by (9),
which binds an activity to start after the arrival of its required
resources. Finally, (10) reveals the domain of decision
variables.

III. SOLUTION METHODOLOGY

The concept of multi-objective optimization has been
addressed at the outset. Afterwards, the & — constraint method
is taken into account as the solution approach.
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The Pareto dominance and Pareto front constitute the two
fundamental concepts of a multi-objective optimization.
Accordingly, a Pareto front of solutions is found for the
problem, instead of a unique optimal solution. The front
includes a set of non-dominated Pareto solutions. In a broader
sense, a solution X = [Xi, X, ..., X,] dominates solution y= [y,
Y2, ..., Yn] if and only if'y is not better than X for any objective i
= 1,2,...,n, and there exists at least one objective, X;, better than
the corresponding objective for y, in which n represents the
number of the objectives. On the contrary, two solutions X and
y are non-dominated if none of them dominates the other one.

A. & — Constraint Method

This method can transform a multi-objective problem into a
single-objective one with additional constraints, where the
objective with the highest priority is maintained as the OF and
the others are transformed into the constraints. For instance,
application of the &—constraint method can be written
through (11), as follows, for the given problem. As can be
seen, W, has been remained in the OF, representing the

schedule costs, and W, has been transformed into the
constraints. Model (11) equations consist of (3)-(10).

Min W =W,
Sit.
W, <g (11)

The &—constraint method can be efficiently applied for
non-convex problems; however, there is a significant
dependency on the & [8]. In other words, we can obtain an
efficient trade-off surface by setting appropriate constraint
vector choices.

IV. COMPUTATIONAL EXPERIMENTS

To graphically present the solution method performance, a
typical network with thirty activities has been taken into
consideration. In this regard, the total project costs are
calculated with respect to each of the given slack times.
According to Fig. 1, it can be seen that how the execution
costs increase along with the slacks rise.

Furthermore, the applicability and efficiency of the
proposed model is tested through a set of instances for thirty-
activity projects with different structures. However, the
required parameters’ values are randomly generated through
Table IV. Finally, Table V accommodates the obtained results,
in which the OF values are reported according to the selected
TS times. The numerical investigation has been addressed in
terms of 2, 3, and 4 different materials. As can be seen, the
costs of projects increase for higher degrees of quality
robustness. The issue indicates that decision makers should
identify to which limit of schedules robustness, it is reasonable
to increase the project’s costs.
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Fig. 1 The obtained Pareto front for the & -constrained method

TABLE IV
DATA GENERATION METHOD

Parameters  Random distribution function

Pe ~U[250, 350]

Re ~U [60, 100]

Omk ~U [4, 10]

G, ~U 6, 12]

N ~UI1, 4]

Dd ~U[0.2,0.5] X €S

H ~U[0.2,0.4] xDd

Ok ~U [5, 20]

Rim ~U[L,5]

d; ~U[L, 10]

Ly ~UT[l, 10]

Kn ~U[L,3]

TABLE V

PROJECTS’ COSTS REGARDING THE TS TIMES

Number of TS value
Instance  materials
No. (M) 200 300 400 500 600
1 2 2234 2376 2483 2668 2717
2 2 2226 2297 2376 2588 2630
3 2 2305 2378 2414 2602 2715
4 2 2191 2237 2558 2624 2686
5 2 2316 2480 2576 2695 2743
6 3 2638 2708 2796 2943 2973
7 3 2590 2673 2740 2866 2920
8 3 2673 2780 2815 2899 2967
9 3 2684 2749 2861 2943 3021
10 3 2690 2740 2865 2926 2968
11 4 2016 3025 3246 3347 3422
12 4 3011 3180 3276 3480 3496
13 4 3021 3178 3245 3393 3418
14 4 2913 2981 3170 3260 3374
15 4 2878 2967 3140 3268 3315

V. CONCLUSIONS

A Dbi-objective mixed-integer programming model was
developed in this paper to consider the project scheduling and
material-ordering problem at the same time. The OFs
consisted of the costs minimization and schedules robustness
maximization of the project, respectively. We also took all-

1971



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:9, No:11, 2015

unit discount strategy into account to purchase the materials.
To check the applicability of the mathematical model in
practice, we used the &—constraint method. However, the
proposed solution methodology could not deal with larger
instances, i.e., projects’ networks with more activities. Hence,
it is needed to apply efficient heuristics to solve larger-sized
cases, regarding the NP-hard nature of the resource constraint
project-scheduling problem, in further studies. On the other
hand, development of the problem with respect to the broader
purchasing and execution site conditions can be considered as
other future research interests.
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