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Abstract—Concurrent planning of project scheduling and 

material ordering has been increasingly addressed within last decades 
as an approach to improve the project execution costs. Therefore, we 
have taken the problem into consideration in this paper, aiming to 
maximize schedules quality robustness, in addition to minimize the 
relevant costs. In this regard, a bi-objective mathematical model is 
developed to formulate the problem. Moreover, it is possible to 
utilize the all-unit discount for materials purchasing. The problem is 
then solved by the E-constraint method, and the Pareto front is 
obtained for a variety of robustness values. The applicability and 
efficiency of the proposed model is tested by different numerical 
instances, finally.  
 

Keywords—E-constraint method, material ordering, project 
management, project scheduling. 

I. INTRODUCTION 

N traditional planning methods, project scheduling and 
material ordering issues were treated as separate problems. 

This approach yielded to neglect of trade-off consideration of 
the project corresponding costs, mainly including the ordering, 
holding, and penalty (reward payments) costs for late (early) 
project completion.  

To the best of our knowledge, [1] introduced the integrated 
problem for the first time by presenting a hybrid model of the 
critical path method with material requirement planning. 
Afterwards, [2] developed an improved version of the problem 
by a heuristic scheduling for large-sized projects based on the 
least slack rule. Smith-Daniels and Smith-Daniels [3] 
addressed fixed duration for the activities and found that the 
latest starting time schedule could lead to an optimal solution. 
Their proposed objective function (OF) included minimization 
of total costs corresponding to the inventory holding, material 
ordering, completed activities holding, and project delay. 

Dodin and Elimam [4] extended the problem by total costs 
minimization under activity crashing possibility, rewards for 
early completion, and materials quantity discounts. Schmitt 
and Faaland [5] considered a heuristic algorithm for 
scheduling a recurrent construction to the net present value 
maximization of cash flows, in which an initial schedule is 
constructed and worker teams are dispatched to the tasks for 
backlogged products. In another research, [6] used a genetic 
algorithm (GA) to solve an extended version of [4]. However, 
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the crashing cost had been presumed to follow a constant 
slope for every activity. 

Regarding the aforementioned notes, this paper aims to 
develop a mathematical model to address simultaneous 
planning of the project scheduling and material ordering. The 
proposed model incorporates the project execution costs 
minimization and schedules quality maximization, as well. 

The rest of the paper is organized as follows. The 
mathematical model is described in Section II. The next 
Section III discusses the solution methodology and 
experimental results are presented in Section IV. Finally, the 
conclusions and future research directions are mentioned in 
Section V. 

II. PROBLEM DEFINITION 

This section addresses the problem definition, in addition to 
the mathematical formulation. The proposed model for 
simultaneous project scheduling and material ordering consists 
of two OFs aiming to maximize the schedule flexibility, in 
case of unexpected incidents, and minimize the corresponding 
costs to perform a project.  

Different researches have addressed the schedules quality in 
terms of slacks time maximization. For instance, [7] accounted 
for different total slack (TS)-based measures in assessment of 
project scheduling robustness. They utilized the Monte Carlo 
Simulation to test robustness measures by generation of a 
random realization set of activity durations. They concluded 
that weighted slack and project buffer size could provide the 
best results in the case of disruptions. Equation (1) shows the 
selected weighted slack criterion, in which NSj and TSj stand 
for the number of successors and total slack of the jth activity, 
respectively. Considering the weighted slack maximization 
objective, the rest of the problem formulation is described 
next. 
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A. Mathematical Model Formulation 

The mathematical model, the indices, parameters, and 
decision variables are introduced, as follows. 
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TABLE I 
INDICES 

Parameters Random distribution function 

j=1,2,…,N index of project activities 

m=1,2,…,M index of required materials 

t=0,1,…,lN index of time 

k=1,2,…,Km index of price discount ranges 

 
TABLE II 

PARAMETERS 
Parameters Random distribution function 

jP   Set of activities preceding j. 

jes   Earliest start time of activity j. 

jls   Latest start time of activity j. 

jNS   Successor numbers of activity j. 

jTS   Total slack of activity j. 

Dd  Project due date. 

H Project planning horizon. 

Pe  
Penalty amount paid for later completion of the 
project than the due time. 

Re  
Reward amount received for earlier completion 
of the project than the due time. 

mk  
Unit cost of material m in quantity range k 
purchased from. 

jmR  Requirement amount of activity j to material m. 

mG  Ordering cost of material m. 

mh   Holding cost of material m. 

jd   Duration time of activity j. 

mk   Limit on quantity range k of material m. 

mK  
Number of quantity discount ranges for material 
m. 

mL   Lead time of material m 

 
TABLE III 

DECISION VARIABLES 
Parameters Random distribution function 

jtx  1 if activity j is started at time t and 0, otherwise. 

mkt  
1 if material m is ordered within quantity range k in 
period t and 0, otherwise. 

mktjP  1 if material m of activity j is ordered in period t 
within quantity range k and 0, otherwise. 

mtI  Inventory amount of material m in period t. 

 
Now, the proposed model can be formulated according to 

the following mixed-integer programming model. 
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The OFs are written by (2), in which the former and latter 

point to the schedule robustness maximization and project 
costs minimization, respectively. The encompassed costs 
consist of the completion time, materials purchasing, ordering, 
and holding, respectively. Equation (3) guarantees the 
precedence relations to schedule a project. Equation (4) 
reiterates that start time of each activity is embedded within 
the earliest and finish start bounds. The inventory level of each 
material is calculated through (5). Equation (6) indicates 
discount quantity intervals for each material. Equation (7) 
states that the order can be accommodated just in a single 
discount interval. Equation (8) promises that just one order is 
put for each activity regarding the required materials. The 
materials lead time is also taken into consideration by (9), 
which binds an activity to start after the arrival of its required 
resources. Finally, (10) reveals the domain of decision 
variables. 

III. SOLUTION METHODOLOGY 

The concept of multi-objective optimization has been 
addressed at the outset. Afterwards, the  constraint method 
is taken into account as the solution approach.  
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unit discount strategy into account to purchase the materials. 
To check the applicability of the mathematical model in 
practice, we used the  constraint method. However, the 
proposed solution methodology could not deal with larger 
instances, i.e., projects’ networks with more activities. Hence, 
it is needed to apply efficient heuristics to solve larger-sized 
cases, regarding the NP-hard nature of the resource constraint 
project-scheduling problem, in further studies. On the other 
hand, development of the problem with respect to the broader 
purchasing and execution site conditions can be considered as 
other future research interests.  
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