International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

A Bacterial Foraging Optimization Algorithm Applied
to the Synthesis of Polyacrylamide Hydrogels

Florin Leon, Silvia Curteanu

Abstract—The Bacterial Foraging Optimization (BFO) algorithm
is inspired by the behavior of bacteria such as Escherichia coli or
Myxococcus xanthus when searching for food, more precisely the
chemotaxis behavior. Bacteria perceive chemical gradients in the
environment, such as nutrients, and also other individual bacteria, and
move toward or in the opposite direction to those signals. The
application example considered as a case study consists in
establishing the dependency between the reaction yield of hydrogels
based on polyacrylamide and the working conditions such as time,
temperature, monomer, initiator, crosslinking agent and inclusion
polymer concentrations, as well as type of the polymer added. This
process is modeled with a neural network which is included in an
optimization procedure based on BFO. An experimental study of
BFO parameters is performed. The results show that the algorithm is
quite robust and can obtain good results for diverse combinations of
parameter values.

Keywords—Bacterial foraging optimization, hydrogels, neural
networks, modeling.

I. INTRODUCTION

EMI- or inter-penetrating multicomponent network-type

hydrogels are materials with three-dimensional structure,
characterized by a high swelling capacity. Due to the high
water retention ability, i.e. more than 90%, such networks
possess a flexibility similar to that of the natural tissue.

Special properties such as mechanical, diffusion and
absorption, of the three-dimensional network-type hydrogels
make possible their use in various domains: food, cosmetics,
pharmaceutical industry, medicine, tissue engineering,
agriculture, electrotechnics, electronics, etc. [1]-[6].

For many applications, e.g. controlled-release systems,
agrochemical products, these materials are required to present
a high capacity of biodegradation under the action of the
biologic fluids or of the microorganisms present in the soil.

The multicomponent networks based on polyacrylamide
(PAAm) are particularly appropriate for biomedical,
pharmaceutical or agricultural applications. Thus, due to the
analgesic effects and to their ability to speed up the healing
process, polyacrylamide hydrogels (PAAm - 5% and
oxygenated water - 95%) are used in aesthetic surgery [5], [7].

Polyacrylamide hydrogels present selective biodegradability
under the action of the gastro-intestinal juices, so that they can
be used as covering agent for tablets to protect the active

F. Leon is with the Department of Computer Science and Engineering,
“Gheorghe Asachi” Technical University of lasi, Bd. Mangeron 27, 700050
Iasi, Romania (e-mail: florin.leon@tuiasi.ro)

S. Curteanu is with the Department of Chemical Engineering, “Gheorghe
Asachi” Technical University of lasi, Bd. Mangeron 73, 700050 Iasi, Romania
(e-mail: scurtean@ch.tuiasi.ro)

principle, to conceal the non-agreeable taste and smell, as well
as to control the release of the active principle. Three-
dimensional networks based on polyacrylamide are used in
ophthalmology as mechanical protectors for iris, retina and
corneal endothelia [5].

Polyacrylamide gels are very useful for soil improvement,
ie. for the stabilization of sandy soils, in promoting the
selective sorption of nutrients by plants, in increasing the
permeability and agricultural efficiency of non-structured soils
or stopping of erosion [6], [8], [9]. Multicomponent networks
based on polyacrylamide are used as controlled release
systems for fertilizers and present a high efficiency in the
cultivation of saplings and plants on reduced surfaces, e.g.
green houses or gardens.

The present case study deals with the synthesis and swelling
behavior of semi- and interpenetrated multicomponent
networks based on polyacrylamide. The networks were
prepared by a “single step” process of polymerization/
crosslinking and consist of a polyacrylamide matrix and a
biodegradable interpenetrated polymer [10], [11].

The database was prepared in a previous study [12]. In this
paper, we use a different optimization method, namely the
BFO algorithm in order to find the appropriate values of the
reaction conditions that maximize the yield in crosslinked
polymer.

We organize our paper as follows. In Section II, we include
a general description of the BFO algorithm, Section III
presents an original software application that implements the
algorithm and in Section IV we show the case study that
involves the hydrogels dataset and the experimental results.
Finally, Section V contains the conclusions of our work.

II.BFO

The BFO algorithm is inspired by the behavior of bacteria
such as Escherichia coli or Myxococcus xanthus when they
search for food, namely chemotaxis. Bacteria perceive
chemical gradients in their surrounding environment, such as
nutrients, and move toward or in the opposite direction to
those signals. In addition, bacteria produce attractive or
repulsive substances in the environment, which are perceived
by other bacteria. Using locomotion mechanisms such as
flagella, bacteria can move, sometimes randomly by tumbling
or spinning, and other times in an orderly manner similar to
swimming. Bacterial cells are equivalent to some agents in an
environment that use their perception of food and other
bacteria to move. Depending on their interactions with one-
another, bacteria can self-organize in swarms around a feeding
source, ignore or reject each other.

520

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

The strategy of the algorithm is to allow cells to evolve in a
stochastic and collective way to the optimum. This is done
through three processes:

e Chemotaxis, according to which the cost of a bacteria is
reduced by the proximity of other cells, and bacteria move
along the cost surface one by one;

e Reproduction, in which only those bacteria that have had
good results during their lifetimes can contribute to the
next generation;

e Elimination-dispersion in which, with a low probability,
some bacteria are eliminated from the population and new
randomly initialized bacteria are introduced into the
population.

The cost of a cell (or bacteria) is reduced by the interaction
with other cells. This interaction function g has the following
expression:

)= —da-exp(—wai(ci—o;)z] -

m=1

> h,~exp(— Wr'ZP:(Ci—df;)zj M
=1

m=1

1

where ¢! is the cell for which the function is computed, o!, is

a neighbor cell, d, and w, are attraction coefficients, 4, and w,
are repulsion coefficients, S is the number of cells in the
population, and P is the number of dimensions of the position
vectors, i.e. the size of the problem.

Other parameters involved in the algorithm are: the number
of elimination-dispersion steps, the number of reproduction
steps, the number of chemotaxis steps, the number of swim
steps and the probability of a cell being eliminated from the
population.

A description of the BFO algorithm and its applications can
also be found in [13]-[18].

The algorithm was designed for continuous domains. Given
the loops in the algorithm, it can be configured in various
ways to determine different search behaviors. Generally, it is
recommended to have a large number of chemotaxis iterations
and a small number of other iterations.

The default coefficients recommended by the authors for
the search behavior are the following: d, = 0.1, w, = 0.2, h, =
d, and w, = 10. The step size is usually a small fraction of the
search space, for example 0.1. During reproduction, usually
half of the population, i.e. the cells with low health, is
eliminated, and two copies of each bacteria from the first half
of the population are kept. The probability of elimination and
dispersal is usually high, e.g. 0.25.

III. SOFTWARE APPLICATION

Based on the algorithm, a software application was
implemented in the C # programming language, whose source

code is presented below. Fig. 1 shows the graphical user
interface of the program. As a first example, a very simple
function is considered:

min £(x) = (x, = 1) + (x, +2)°)

with solution x* = (1, —2). Then, we will describe the
optimization of a more complex function, learned from the
chemical process related to hydrogels.

In the source code of the main window of the application,
one only needs to instantiate a BacterialOptimization object,
and call its Search method:

private void runToolStripMenultem_Click(object sender, EventArgs
e)
{

BacterialOptimization bo = new BacterialOptimization();

Cell sol = bo.Search();

richTextBox.AppendText(string.Format("Location: {0:F6}
{1:F6N\r\n",
sol.Vector[0], sol.Vector[1]));
richTextBox.AppendText(string.Format("Cost: {0:F6}\r\nFitness:
{1:F6\r\ninter: {2:F6\r\nSum nutrients: {3:F6\r\n\r\n",
sol.Cost, sol.Fitness, sol.Inter, sol.SumNutrients));
}
}

The class that encodes a bacterium or a cell is called Cell.
Its state is given by the following C# properties:

public double[] Vector { get; set; }
public double Cost { get; set; }

public double Inter { get; set; }

public double Fitness { get; set; }

public double SumNutrients { get; set; }

It has both a default constructor and a copy constructor:

public Cell()
{}

public Cell(Cell)
{
this.Vector = new double[c.Vector.Length];
for (inti=0; i< c.Vector.Length; i++)
this.Vector[i] = c.Vector[i];

this.Cost = c.Cost;

this.Inter = c.Inter;

this.Fitness = c.Fitness;
this.SumNutrients = c.SumNutrients;

}

521

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

@' Bacterial Foraging Optimization

(=B

Algorithm

Location: 0.994833 -2.004426
Cost 0.000046

Fitness: -3 427758

Inter: -3.427804

Sum nutrients: -7.111967

Fig. 1 The graphical user interface of the optimization application

TABLEI
EXPERIMENTAL RESULTS OBTAINED WITH THE BFO ALGORITHM FOR DIFFERENT VALUE COMBINATIONS OF THE PARAMETERS

N S Sed S S s Dea d, We h, W, u o

10 0.1 1 4 100 4 0.25 0.1 0.2 0.1 10 98.9453 0.9727

10 0.1 1 4 20 4 0.25 0.1 0.2 0.1 10 98.7178 2.7188

30 0.1 1 4 20 4 0.25 0.1 0.2 0.1 10 99.7188 0.3767

10 0.1 1 2 20 4 0.25 0.1 0.2 0.1 10 98.8828 0.9755

10 0.1 1 2 20 4 0.05 0.1 0.2 0.1 10 98.8428 2.9096

10 0.1 1 2 20 4 0.5 0.1 0.2 0.1 10 98.8272 1.9623

10 0.1 1 2 20 4 0.25 0.2 0.4 0.2 20 98.2247 3.2784

10 0.1 1 2 20 4 0.25 0.2 0.4 0.05 5 98.5909 3.4324

10 0.1 1 2 20 4 0.25 0.05 0.1 0.2 20 98.3708 3.9522

2 0.1 1 2 20 4 0.25 0.1 02 0.1 10 804822 18.2642

10 1 1 2 20 4 0.25 0.1 0.2 0.1 10 97.0839 5.3906

10 0.01 1 2 20 4 0.25 0.1 0.2 0.1 10 96.2224 6.0530
200 0.1 1 2 20 4 0.25 0.1 0.2 0.1 10 99.9964 0.0260

The class that performs the actual optimization is a first example, in the case below we search between -5 and 5,

BacterialOptimization. Its fields are presented as follows. As
it can be seen, it maintains a population of bacteria,
implemented as a list of Cell objects:

private int _problemSize = 2;

private double[,] _searchSpace;

private int _populationSize = 50; // should be even
private double _stepSize = 0.1;

private int _elimDispSteps = 1;

private int _reproSteps = 4;

private int _chemSteps = 100;

private int _swimLength = 4;

private double _pEliminate = 0.25;
private double _dAttr=0.1;

private double _wAttr =0.2;

private double _hRep =0.1; // = _dAttr;
private double _wRep = 10;

private Random _rand = new Random();
private List<Cell> _cells;

In the constructor, the user must define the search space. As

for the two dimensions of the problem in (2).

public BacterialOptimization()

{
_searchSpace = new double[,] {{-5,5},{-5,5}};

}

In the ObjectiveFunction method, the user must include the
actual function that needs to be optimized, i.e. the function in

Q).

private double ObjectiveFunction(double[] x)

{
return (x[0] - 1) * (x[0] - 1) + (x[1] + 2) * (x[1] + 2);
}

The rest of the class implements the algorithm-specific
operations.

private double[] RandomVector()

522

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

{
double[] v = new double[_problemSize];
for (inti=0; i< _problemSize; i++)
v[i] = _searchSpaceli, 0] + (_searchSpace[i, 1] - _searchSpaceli,
o) *
_rand.NextDouble();
return v;

}

private double[] GenerateRandomDirection()

{

return RandomVector();

}

Cell newCell = new Cell();
newCell.Vector = vector;
return newCell;

}

private double ComputeCellinteraction(Cell cell, double d, double w)

{

double sum =0;

foreach (Cell other in _cells)

{
double diff = 0;

for (inti=0;i<_problemSize; i++)

{
diff += (cell.Vector[i] - other.Vector[i]) * (cell.Vectorl[i] —

other.Vector(i]);

}

sum +=d * Math.Exp(w * diff);

return sum;

}

private double AttractRepel(Cell cell)

{
double attract = ComputeCelllnteraction(cell, -_dAttr, -_wAttr);
double repel = ComputeCellinteraction(cell, _hRep, -_wRep);
return attract + repel;

}

private void Evaluate(Cell cell)

{
cell.Cost = ObjectiveFunction(cell.Vector);
cell.Inter = AttractRepel(cell);
cell.Fitness = cell.Cost + cell.Inter;

}

private Cell Chemotaxis()

{

Cell best = null;

for (intj = 0; j < _chemSteps; j++)
{

List<Cell> movedCells = new List<Cell>();

for (inti=0; i< _cells.Count; i++)
{
double sumNutrients = 0;
Evaluate(_cells[i]);

if (best == null || _cells[i].Cost < best.Cost)
best = _cells[i];

sumNutrients += _cells[i].Fitness;

for (int m = 0; m < _swimLength; m++)
{
Cell newCell = Tumble(_cells[i]);
Evaluate(newCell);
if (_cells[i].Cost < best.Cost)
best = _cells[i];

if (newCell.Fitness > _cells[i].Fitness)
break;

_cells[i] = newCell;

sumNutrients += _cells[i].Fitness;

}

_cells[il.SumNutrients = sumNutrients;
movedCells.Add(_cells[i]);
}

_cells = movedCells;

}

return best;

}

private Cell Tumble(Cell cell)

{
double[] step = GenerateRandomDirection();
double[] vector = new double[_problemSize];

for (inti=0;i< _problemSize; i++)
{
vector(i] = cell.Vector[i] + _stepSize * stepli];
if (vectorl[i] < _searchSpacel[i, 0])
vectorli] = _searchSpaceli, 0];
if (vectorl[i] > _searchSpacel[i, 1])
vectorli] = _searchSpaceli, 1];

public Cell Search()
{
_cells = new List<Cell>();
for (inti=0; i< _populationSize; i++)
{
Cell c = new Cell();
c.Vector = RandomVector();
_cells.Add(c);
}

Cell best = null;
for (int 1 = 0; | < _elimDispSteps; I++)
{

523

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

for (int k = 0; k < _reproSteps; k++)
{
Cell cBest = Chemotaxis();
if (best == null || cBest.Cost < best.Cost)
best = cBest;

Cell[] sortedCells = ShellSort(_cells);

for (intii = 0; ii < _populationSize / 2; ii++)
{
_cells[ii * 2] = sortedCells][ii];
_cells[ii * 2 + 1] = sortedCells[ii];
}
1

foreach (Cell cell in _cells)

{
if (_rand.NextDouble() <= _pEliminate)
cell.Vector = RandomVector();

}

}

return best;
}
private Cell[] ShellSort(List<Cell> cells)
{

intdist=0,i=0,j=0;

Cell aux;

int count = cells.Count;

Cell[] newCells = new Cell[count];
for (i = 0; i < count; i++)
newCells[i] = new Cell(cells[i]);

for (dist = count / 2; dist > 0; dist /= 2)
for (i = dist; i < count; i++)

for (j =i - dist; j >= 0 && newCells[j].SumNutrients <
newCells[j + dist].SumNutrients; j -= dist)
{
aux = newCells[j];
newCells[j] = newCells[j + dist];
newCells[j + dist] = aux;

}

return newCells;
}
}

(monomer concentration), C; (initiator concentration), Cj
(crosslinking agent concentration), P/ (the amount of inclusion
polymer), T (temperature), ¢ (reaction time) and the type of the
included polymer codified as 1: no polymer added, 2: starch,
3: PVA and 4: gelatin. The output of the neural model is #, the
yield in the crosslinked polymer. Therefore, a neural network
is used to model the influence of reaction conditions on
reaction yield. Then, the BFO algorithm is used to optimize
the inputs such that the output (reaction yield) is maximized.

Since the training set consists of a discrete series of training
instances, first a neural network model was created to
approximate the output values of these data (the dependent
variable). A single-layer multilayer perceptron network with
20 neurons was used. One of the seven entries is symbolic,
therefore a one hot encoding was used in this case: the single
discrete input was transformed into four distinct inputs, of
which only one has the value 1 for a particular instance, and
the other ones are 0.

The network was trained separately, obtaining the
correlation coefficient » = 0.97. For optimization with the
BFO algorithm, the learned parameters of the network are then
directly used.

The neural network is implemented in the NeuralNetwork
class. As mentioned above, the model has been previously
trained, and the code below is only responsible for the feed-
forward prediction part.

IV. CASE STuDY: THE HYDROGELS DATASET

The hydrogels dataset contains 177 experimental data,
available from the preparation of the multicomponent
hydrogels based on polyacrylamide. The experiments were
designed to cover uniformly the variation domain of the
parameters; this is an important requirement for obtaining a
reliable mathematical model. The chosen input variables of the
network are the reaction conditions that influence the polymer
yield.

These seven input variables are the following: Cy

public class NeuralNetwork
{
public static void Hydrogel(double parinl, double parin2, double
parin3,
double parin4, double parin5, double parin6, double parin7,
double parin8, double parin9, double parin10, out double
paroutl)
{
intinputs = 10; int hidden1 = 20; int outputs = 1;

// biases
double[] bias_hid1 = {-0.746670307285115, ... };
double[] bias_out = {0.0258458101528987 };

// weights
double[] weights_in_hid1 ={0.277194345245721, ... };
double[] weights_hid1_out = {-0.511781826768753, ... };

// scaling factors
double[] sc_in={1.8,..};
double[] sc_out = {0.0188127090301003, ... };

// input scaling

double[] yi = new double[10];

yi[0] = parinl * sc_in[0] + sc_in[1];
yi[9] = parin10 * sc_in[18] + sc_in[19];
// forward propagation

double[] yhid1l = new double[hidden1];

for (inti=0;i< hiddenl; i++)
{

524

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

double netinput = 0;
for (intj = 0; j < inputs; j++)
netinput += yi[j] * weights_in_hid1[i * inputs + j];
double xx = netinput + bias_hid1[i];
yhid1[i] = (1 - Math.Exp(-2 * xx)) / (1 + Math.Exp(-2 * xx));
}

double[] yout = new double[outputs];
for (inti=0; i< outputs; i++)
{
double netinput = 0;
for (intj = 0; j < hidden1; j++)
netinput += yhid1[j] * weights_hid1_out[i * hiddenl +j];
double xx = netinput + bias_out[i];
yout[i] = (1 - Math.Exp(-2 * xx)) / (1 + Math.Exp(-2 * xx));
}

// output scaling
paroutl = (yout[0] - sc_out[1]) / sc_out[0];

// for hydrogels, the output should be between 0 and 100

if (paroutl < 0)
paroutl =0;

if (paroutl > 100)
paroutl = 100;

for (inti=0;i<4;i++)
x[i1=0;
x[n] =1;

// using the neural network to compute the objective function
double output;
NeuralNetwork.Hydrogel(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7],
x[8], x[9],
out output);

return -output; // maximization

}

To evaluate the performance of the BFO algorithm for
different parameter values, a statistics module was added to
calculate the mean and standard deviation for 100 different
algorithm runs.

Compared to the program that implements the BFO
algorithm presented above, the following changes were made
to accommodate the analyzed case study: the minimum and
maximum limits for each input were computed, the neural
network that calculates the objective function was introduced
and the first four entries were processed in order to meet the
constraints given by the one hot coding described above.

For our particular problem, the search space and objective
function were modified correspondingly.

public BacterialOptimization()

{
_searchSpace = new double[,] {{0,1},{0,1},{0,1},{0,1},{
0.23,3.15},
{0.06,9.39},{0.5,12.33},{29,64},{1,7},{0,1.5}};
}
private double ObjectiveFunction(double[] x)

{

// the first 4 inputs are "one hot" (they correspond to 1 symbolic
input)

double max = x[0]; int n =0;

for (inti=1;i<4;i++)

{
if (x[i] > max)
{
max = x[i];
n=i;
}
}

private void statisticsToolStripMenultem_Click(object sender,
EventArgs e)
{

int noRuns = 100;
List<double> results = new List<double>(noRuns);

for (inti=0; i< noRuns; i++)
{
richTextBox.AppendText(string.Format("Run {0} / {1\r\n", i + 1,
noRuns));
Application.DoEvents();

BacterialOptimization bo = new BacterialOptimization();
Cell sol = bo.Search();
results.Add(-sol.Cost);

}

double mean, stdev;
CalculateSimpleStatistics(results, out mean, out stdev);

richTextBox.AppendText(string.Format("\r\nMean: {0:F4} StDev:
{1:FANr\n", mean, stdev));

private void CalculateSimpleStatistics(IEnumerable<double> values,
out double mean, out double stdev)

{
mean = 0; stdev = 0;
int n = values.Count();

if (n>0)

{
double avg = values.Average();
mean = avg;

if (n>1)
{
double sum = values.Sum(d => Math.Pow(d - avg, 2));
stdev = Math.Sqrt(sum / (double)(n - 1));
}
}

525

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

Table I shows the experimental results obtained, with 100
runs for each configuration. The columns of the table are:
e S: the size of the population of cells (bacteria);

o s, the step size;

e 5., the number of elimination and dispersal steps;
e s, the number of reproduction steps;

e 5. the number of chemotaxis steps;

e 5. the length of the swimming step;

e p.. the probability of elimination and dispersion;
e d,: the attraction coefficient;

o w, the weight of the attraction coefficient;

e A, the repulsion coefficient;

e w, the weight of the repulsion coefficient;

e . the average of the obtained results;

o: the standard deviation of the obtained results.

From this table, it can be seen that the BFO algorithm is
quite robust, as it obtains good results for various combination
of parameters. Its performance is clearly poor when the
population size is very small (S = 2, u = 80.4822). When the
size of the population is much higher, the results are better (S
=200, 4 =99.9964 and ¢ is very low), but comparable to those
obtained for lower values of the parameters. The population
size directly affects the execution time.

When the other parameters change, the results are
approximately equal, so their influence is not critical and the
default values recommended by the authors can be used. Only
difference in standard deviation can be highlighted here,
which indicates a greater variability of solutions in cases
where the number of chemotaxis steps, the attraction and
repulsion coefficients and their weights change from the
recommended values.

Table II presents the values of the decision variables
(reaction conditions) that lead to the optimal solution, i.e.
maximum yield.

TABLE 11
THE VALUES OF THE REACTION CONDITIONS THAT LEAD TO MAXIMUM YIELD

Parameter Value

Type of the included polymer Starch
Monomer concentration 3.1500
Initiator concentration 9.2361
Crosslinking agent concentration ~ 6.7856

Temperature 62.5106
Reaction time 5.7519
Amount of inclusion polymer 0.1493
Yield 99.9998

V.CONCLUSIONS

A simultaneous polymerization/crosslinking procedure was
applied for the preparation of polyacrylamide hydrogels to
obtain materials with different swelling capacities and
morphologies. The synthesis was carried out in the presence of
some natural (starch and gelatin) or synthetic (PVA) polymers
with high biodegradability and yielded semi-interpenetrated
networks, without excluding the formation of more or less

important interpenetrated domains.

The dependence between reaction conditions (amount of
monomer, initiator, crosslinking agent, inclusion polymer,
temperature and reaction time) and yield in crosslinked
polymer was modeled with artificial neural networks and then
optimized with the BFO algorithm.

The paper emphasizes a general methodology of modeling
and optimization. As future directions of investigation, on the
one hand, other machine learning techniques can be used for
process modeling and other optimization algorithms can be
applied for this problem. On the other hand, the BFO
algorithm can be used for other optimization problems.

ACKNOWLEDGMENT

This work was supported by the “Program 4, Fundamental
and Border Research, Exploratory Research Projects” financed
by UEFISCDI, project no. 51/2017.

REFERENCES

[1] J. M. Gonzalez-Saiz and C. Pizarro, “Polyacrylamide gels as support for
enzyme immobilization by entrapment. Effect of polyelectrolyte carrier,
pH and temperature on enzyme action and Kkinetics parameters”,
European Polymer Journal, vol. 37, no. 3, 2001, pp. 435-444.

[2] H. Ghandehari, P. Kopeckova and J. Kopecek, “In vitro degradation of
pH-sensitive hydrogels containing aromatic azo bonds”, Biomaterials,
vol. 18, 1997, pp. 861-872.

[3] V. Compan, J. Guzmaun and E. Riade, “A potentiostatic study of
oxygen transmissibility and permeability through hydrogel membranes”,
Biomaterials, vol. 23, 1998, pp. 2139-2145.

[4] H. Park, Hydrogels in Bioapplications: Hydrogels and Biodegradable
Polymers for Bioapplications, eds. R. M. Ottenbrite, S. J. Huang, K.
Park, American Chemical Society, Washington D. C., 1996, pp. 2-10.

[5] L. H. Christensen, V. B. Breiting, A. Aasted, A. Jorgensen and I.
Kebuladze, “Long-term effects of polyacrylamide hydrogel on human
breast tissue”, Plastic and Reconstructive Surgery, vol. 111, no. 6, 2003,
pp. 1883-1890.

[6] A. El-Hag Ali, H. A. Shawky, H. A. Abd El Rehim and E. A. Hegazy,
“Synthesis and characterization of PVP/AAc copolymerhydrogel and its
applications in the removalof heavy metals from aqueous solution”,
European Polymer Journal, vol. 39, no. 12, 2003, pp. 23-37.

[7]1 J. Tirthankar, C. R. Bidhan and M. Sukumar, “Biodegradable film”,
Polymer Degradation and Stability, vol. 37,2001, pp. 861-864.

[8] S. Zlatkovic and L. Raskovic, “The effect of the polyacrylamide,
polyvinylalcohol, and carboxymethylcellulose on the aggregation of the
soil and on the growth of the plants”, Facta Universitatis, vol. 1, no. 3,
1998, pp. 17-23.

[9] J. P. Baker, L. H. Hong, H. W. Blanch and J. M. Prausnitz, “Effect of
Initial Total Monomer Concentration on the Swelling Behavior of
Cationic Acrylamide-Based Hydrogels”, Macromolecules, vol. 27, 1994,
pp. 14-46.

[10] C. Mihailescu, A. Dumitrescu, B. C. Simionescu and V. Bulacovschi,
“Synthesis of polyacrylamide-based hydrogels by simultaneous
polymerization/crosslinking”, Revue Roumaine de Chimie, vol 52, no.
11,2007, pp. 1071-1076.

[11] S. Curteanu, A. Dumitrescu, C. Mihailescu and B. C. Simionescu,
“Neural network modeling applied to polyacrylamide based hydrogels
synthetized by single step process”, Polymer-Plastics Technology and
Engineering, vol. 47,2008, pp. 1061-1071.

[12] S. Curteanu, A. Dumitrescu, C. Mihdilescu and B. C. Simionescu, “The
synthesis of polyacrylamide-based multicomponent hydrogels. A neural
network modeling”, Journal of Macromolecular Science, Part A Pure
and Applied Chemistry, vol. A46, no. 4, 2009, pp. 368-380.

[13] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes,
chapter: “Bacterial Foraging Optimization Algorithm”,
http://www.cleveralgorithms.com/nature-inspired/swarm/bfoa.html,
2012 (last accessed: 17 April 2019).

[14] S. Das, A. Biswas, S. Dasgupta and A. Abraham, “Bacterial Foraging
Optimization Algorithm: Theoretical Foundations, Analysis, and

526

[15]

[16]

[17]

[18]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:10, 2019

Applications”, Foundations of Computational Intelligence, vol. 3:
Global Optimization, 2009, pp. 23-55.

Y. Liu and K. M. Passino, “Biomimicry of Social Foraging Bacteria for
Distributed Optimization: Models, Principles, and Emergent Behaviors”,
Journal of Optimization Theory and Applications, vol. 115, no. 3, 2002,
pp. 603-628.

S. D. Miiller, J. Marchetto, S. Airaghi and P. Koumoutsakos,
“Optimization Based on Bacterial Chemotaxis”, IEEE Transactions on
Evolutionary Computation, vol. 6, no. 1, 2002, pp. 16-29.

K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control”, IEEE Control Systems Magazine, vol. 22, no.
3, 2002, pp. 52-67.

K. M. Passino, “Bacterial Foraging Optimization”, International Journal
of Swarm Intelligence Research, vol. 1, no. 1, 2010, pp. 1-16.

527

