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 Abstract—Segmentation and quantification of stenosis is an 

important task in assessing coronary artery disease. One of the main 

challenges is measuring the real diameter of curved vessels. 

Moreover, uncertainty in segmentation of different tissues in the 

narrow vessel is an important issue that affects accuracy. This paper 

proposes an algorithm to extract coronary arteries and measure the 

degree of stenosis. Markovian fuzzy clustering method is applied to 

model uncertainty arises from partial volume effect problem. The 

algorithm employs: segmentation, centreline extraction, estimation of 

orthogonal plane to centreline, measurement of the degree of 

stenosis. To evaluate the accuracy and reproducibility, the approach 

has been applied to a vascular phantom and the results are compared 

with real diameter.  The results of 10 patient datasets have been 

visually judged by a qualified radiologist. The results reveal the 

superiority of the proposed method compared to the Conventional 

thresholding Method (CTM) on both datasets. 

 

Keywords—3D coronary artery tree extraction, segmentation, 

quantification, fuzzy clustering, and Markov random field 

I. INTRODUCTION 

TENOSIS is a condition related to the narrowing of a 

vessel or artery, which in severe cases can result in 

complete blockage. Diagnosis of stenosis is supported by 

CT angiography, which can be used to detect, localize and 

determine the severity of the condition. Modern digital image 

processing systems provide powerful tools which can help the 

radiologist to identify and quantify the stenosis in coronary 

arteries. In such a system, there are two major tasks (1) 

Detection of stenosis, (2) Quantification of the degree of 

stenosis by modelling uncertainty arises from partial volume 

effect. Measurement of the degree of the stenosis involves the 

following processes: 

1. Segmentation of coronary arteries. 

2. Detection of the stenosis interval. 

3. Extracting the centreline in the stenosis interval. 

4. Estimating the orthogonal plane to the centreline. 

5. Measuring the degree of the stenosis along with 

modelling uncertainty. 

Several semiautomatic techniques have been reported for 

extracting the coronary artery from other tissues with the same 

intensity [13]-[15]. One of the drawbacks of these methods is 

the need for user interaction to define the seed points to locate 
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the artery. We present an algorithm that automatically finds 

suitable seed points based region growing and extracts the 

coronary artery. 

The radiologist defines the stenosis interval using the 

extracted coronary arteries. The centreline of the vessel is 

extracted in the stenosis interval. Centreline represents the 

essential characteristic of an object’s shape. There are several 

methods for extracting the centreline [7]-[9], [15]. In some 

approaches the centreline is extracted directly [8] while others 

are based on the medial surface [7].One of the common 

techniques is thinning [9].Thinning algorithms employ a set of 

templates for recognizing simple points. A simple point is a 1-

voxel whose removal does not change the topology 

(connectivity) of the image. The actual diameter is measured 

in the orthogonal direction to the centreline of the vessel. 

Several methods have been proposed for measuring actual 

diameter of vessels using level set techniques [13]-[14]. 

Although these methods find the boundary vessel which is 

approximately orthogonal to the centreline of the vessel [13]-

[14], but they suffer from a high computational complexity 

associated with level set approaches.  This paper develops an 

interpolation technique, applied to raw image of coronary 

arteries, for estimating the plane orthogonal to its centreline. 

The degree of the stenosis is measured base on the result of 

the pervious steps. One of the most important challenges in the 

diameters measurement is consideration of the partial volume 

effect (PVE) problem which is the major issue in measuring 

the degree of stenosis. The PVE is related to low spatial 

resolution and motion artifact in digital CTA images. 

Moreover, the uncertainty arising from PVE may lead to 

inaccurate segmentation and measurement results because a 

voxel may belong to more than one tissue type but the 

conventional segmentation method may assign it to only one 

type. For tackling these uncertainty problems in image 

segmentation, several approaches have been presented in the 

literature [1]-[6]. These methods can be classified into three 

main categories: probabilistic methods [4]-[5], fuzzy methods 

[8], and a combination of both fuzzy and probabilistic 

approaches [1]-[3]. 

Fuzzy sets have been used for managing imprecision in 

ambiguous circumstances. The main problem with this 

unsupervised method is the lack of consideration of spatial 

information, which reduces the accuracy of voxel labelling 

[1]-[3]. 

 Markov random fields (MRF) are a probabilistic modelling 

method which is widely used for incorporating spatial 

information [4]-[5]. Several attempts are reported in the 

literature to incorporate such spatial information into a fuzzy 

model [1]-[3]. For tackling the uncertainty associated with the 

PVE problem, in this study after detecting the location of 

stenosis, first orthogonal plane is estimated on raw image in 

stenosis location, then a hybrid Markovian fuzzy clustering 
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approach is applied which combines the multi scale approach 

and the novel generalized FCM (NGFCM). The NGFCM is 

proposed by Li et al which applies MRF spatial constraints to 

the FCM using a Bayesian approach [1].  

The rest of the paper is organized as follows: Section II 

overviews the methodology for extracting coronary arteries 

and measuring the stenosis. The approach for extraction and 

visualization of the 3D coronary artery is proposed in Section 

III. Section IV outlines our adapted method for modelling 

uncertainty in the measurement process. Experimental results 

of the proposed method and its comparison to CTM are 

presented in section V and the paper is concluded in Section 

VI. 

II. METHODOLOGY 

A sequence of processes are applied to a CTA dataset to 

extract and visualize the coronary arteries, measure the degree 

of stenosis after detection of stenosis interval by a radiologist. 

These steps are preceded by image smoothing and grey-level 

thresholding, which results in robust segmentation of the 

vessel regions as a consequence of the high contrast of CTA 

images. A search through the image slices (moving from head 

to toe) is used to locate the slice at which the coronary artery 

joins the aorta, followed by selection of appropriate seed 

points to initialize the region grower that extracts the coronary 

arteries. Next the stenosis interval is defined by a radiologist 

and artery centreline is extracted by thinning in defined 

interval. Then the resulting centreline is smoothed; the 

orthogonal plane to the centreline is defined. 

Multi-scale Markovian fuzzy clustering (MMFC) is 

applied to model the uncertainty in the stenosis location. 

Finally, the degree of stenosis is measured, guided by the 

output of the MMFC algorithm and the orthogonal plane to the 

centreline of the coronary arteries. 

The next section gives more detailed description of the 

proposed approach.  

III.  DETECTION OF THE STENOSIS 

A. Segmentation of the coronary artery 

Automatic segmentation of the coronary artery begins with 

location of the left and right coronary arteries. This uses 

anatomical knowledge to locate landmark features; firstly the 

Y-shaped bifurcation of the pulmonary trunk, then the 

ascending aorta from which the branching points of the 

coronary arteries. The steps of our proposed algorithm are 

described as follows: 

Step1: image enhancement: a median filter is applied to 

reduce image noise and smooth the image, followed by 

thresholding on the HU value of the voxels. A 3D 

morphological opening operator is applied to remove small 

isolated objects. 

Step2: identification of the ascending aorta: This step starts 

from the first image slice and searches through the slice 

dataset (moving from head to toe) to find the bifurcation of the 

pulmonary trunk, which is located between the two sections of 

the aorta below the aortic arch, as shown in Figure 1. A region 

labelling is applied on all constructed cubes and the three 

largest objects are checked to find the biggest object which is 

centred between two smaller regions with a circular shape.  

 
Fig. 1 Bifurcation of the pulmonary trunk 

 

Step3: finding the branching points of the left and right 

coronary arteries: a region labelling is employed on the 

remaining slices to construct the ascending aorta and other 

connected objects such as the coronary arteries. In order to 

locate the left and right coronary arteries branch from the aorta 

the algorithm projects the extracted object onto the x-z and y-z 

planes. A 2D morphological opening operator is then applied 

to remove small objects (including the coronary arteries). By 

subtracting the result from the original image, we can estimate 

the location of the coronary arteries. This process starts from 

the top slice below the bifurcation of the pulmonary trunk and 

descends through the slices searching for the left coronary 

artery at a point located below the centroid of the ascending 

aorta is left coronary artery and the right coronary arteries 

centroid is located above the centroid of the ascending aorta 

Step4: Segmenting coronary arteries: The coronary arteries 

are much smaller than the heart chambers, by selection of an 

appropriate kernel with a morphological opening and closing, 

we can remove these large objects to avoid region growing 

leakage to heart. Then the branching points of the left and 

right coronary arteries (from step3) are used to seed the region 

growing algorithm to distinguish the coronary arteries from 

the remaining small objects. In the next subsection the 

centreline of the defined stenosis interval is extracted from the 

results of this step.  

B. Interpolating the orthogonal plane to the centreline 

Accurate diameter of the vessel is measured using the 

orthogonal plane to the vessel centreline.  

The stenosis location is defined by a radiologist in the 

extracted coronary artery. The algorithm needs the interval 

(start point and end point) of the stenosis as input.  The 

centreline of the coronary artery is extracted in stenosis 

interval by employing the thinning algorithm explained in [8].   

The face of triangle method estimates the plane orthogonal 

to the centreline [10]. In this approach the orthogonal plane is 

defined by using the coordinate of the considered point on the 

centreline and the average direction of the centreline at that 

point, as the normal vector of the plane. This plane is crossed 

with cube shape 3D image. The plane can cut at least 3 (and a 

maximum of 6) edges. After finding intersected points, one of 

them is chosen as an origin point and the plane is divided into 

separate triangles by connecting this origin point to other 

intersected points. The intersected area of the plane can be 

reconstructed by considering all defined triangles as the border 

over defined tangent space. Then the 3D coordinate is used for 

interpolation and estimation of the intensity of the points on 

the plane. Various methods can be used for 3D interpolation: 

nearest neighbourhood, linear interpolation, cosine 

interpolation and cubic interpolation [11]. Cosine interpolation 
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provides the better result, because nearest neighbourhood and 

linear interpolation have discontinuities at each point [11]. The 

cosine interpolation has a smoother interpolating function and 

transition between adjacent segments and has been focused in 

this paper.  

IV. MEASURING THE DEGREE OF THE STENOSIS 

An important problem in measuring the degree of stenosis is 

associated with the partial volume effect which can be 

particularly severed for the narrow coronary arteries. This 

issue may result in inaccurate measurements of the vessel 

diameter and the degree of the stenosis. This section presents a 

method for modelling the uncertainty in the measurement 

process. 

A. Modelling uncertainty in the segmentation of stenosis   

In the proposed multi-scale Markovian fuzzy clustering 

(MMFCM) method improves the NGFCM algorithm [1]. The 

average intensity of the neighbourhoods is considered as a 

second input series in the algorithm. In NGFCM algorithm a 

Markovian random field model [4] is combined with a fuzzy 

c-mean algorithm (FCM) to incorporate local spatial 

information directly into the original FCM algorithm’s 

membership function [1]. A spatial penalty term is added to 

the membership function to improve the performance of the 

clustering [1]. This algorithm which was applied to brain 

segmentation, improves the robustness of the FCM to noise 

and artifacts. We combined the multi-scale approach with the 

NGFCM algorithm by considering the intensity of each voxel, 

and the average intensity of its neighbours.  

In Markov random field, applying the prior and posterior 

distribution of membership functions using a logarithmic 

transformation maximum a posteriori (MAP), estimation of 

NGFCM is equivalent to minimizing the following objective 

function [1]: 

�� � � �����	��
��	��
�
�

�
�
� � �� � � � ���� � ���	�

����

�
�
�

�
�
�          �1	 

where  d�� � �x� � v��. 

In this membership function the first part is the standard 

FCM function and the second part is the penalty term. The 

parameter β controls the effect of the penalty term and if β=0 

then the function reduces to the standard FCM. The new 

membership function has the advantages of FCM and MRF 

simultaneously. The first part of equation 1 is minimized when 

high membership values are assigned to the voxels with 

intensities near to the related class and the second term is 

minimized if the membership values of the adjacent voxels are 

similar.  

The proposed stenosis segmentation algorithm based on 

NGFCM is used for segmentation and quantification of blood 

vessel from other tissues such as soft plaque, in the region 

surrounding the coronary artery. The following algorithm is 

applied for all voxels on the centreline in the stenosis interval 

as follows: 

Step1. Finding the region of interest:After estimating the 

orthogonal plane to the centreline in the stenosis interval, the 

region of interest (ROI) is located by applying a region 

labelling.  

Step2. Identification of number of regions: The region of 

interest (ROI) normally contains two different regions: lumen 

and surrounding tissue, if the maximum intensity in ROI is 

more than 500 it means the ROI contains calcium as third type 

of tissue. 

Step3. Apply the NGFCM:  a 2-dimensional (2D) multi 

scale (2 scales) NGFCM is applied to incorporate 

neighbourhood information and decrease the influence of the 

partial volume effect in clustering of ROI into different 

regions. The algorithm is applied to a two dimensional input 

vector X= {�� , � } where �� �  !x��, x� , . . . x�#$ is intensity 

of the raw image and � �  !x �, x  , . . . x #$ is the average of 

intensities in the N� neighbourhood.  

Step4. Extracting mis-segmented regions: pervious step 

may detect other regions which are not part of the blood vessel 

and have a similar intensity to it. To tackle this problem, a 

region growing method is applied for recognition of the blood 

vessel from other regions. 

Step5. Region merging: isolated objects are removed in 

previous step; however, there may still be some misclassified 

voxels, specifically when more than two types of tissue are 

detected. The reason is the intensity (HU) of the surrounding 

area of soft plaque decreases gradually (due to the partial 

volume effect). Step 4 may misclassify these surrounding 

voxels as blood vessel. A morphological operation (an erosion 

operation followed by a dilation operation) is applied to re-

classify these voxels as soft plaque. Then a thresholding 

method is applied to the segmented regions as follows: 

&'()* � +1                   &,(-* . /�                      0                   &,(-* 1 /                                &,(-*                    2342                           5                       (2) 

where &'()*is the membership value of the kth pixel after 

thresholding, &6247 is the membership value of the kth pixel, 

and the parameters  /�, /  are calculated heuristically (/�, /  � 80 19).  
Step6. Measuring the area of blood vessel: For measuring 

the area of blood vessel the result of step 5 is used as follows: 

:62; � � &'()* <  :=>?                                                            @
A
� �3	 

where :62; is the quantified value for blood vessel, C is the 

number of pixels in the estimated orthogonal plane of the 

image, &'()*   is the membership value of the kth pixel which 

was calculated in step 5 and  :=>? is the area of one pixel. 

Step7. The effective diameter of the vessel is measured as 

follow and added to the profile of the effective diameter:  

DE;F2G26 � 2 < IJ,(KL              (4) 

B. Quantification of the stenosis in the 3D stenosis location 

The minimum vessel diameter in the profile of the effective 

diameter and the real diameter (without stenosis) are used to 

measure the degree of the stenosis as follows: D2M622 NO 4G2PN4E4 � Q>KR(S(,TUVWXYZQ>KR(S(,[YU\*]^Q>KR(S(,TUVWXY                (5) 

 

where DE;F2G26'_,RK`, and DE;F2G26a`_bA(Q are diameter without 

stenosis and minimum diameter in stenosis interval, respectively. 
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V. EXPERIMENTAL RESULT 

The proposed method for coronary arteries extraction and 

quantification of the stenosis was evaluated for extraction of 

the coronary artery and quantification of the degree of the 

stenosis. In the proposed algorithm for extraction of the 

coronary artery was applied to 15 patients CTA scans (real 

data). Because of the importance of the diameter measurement 

in the quantification of the degree of the stenosis, the 

evaluation is preformed on phantom data as well as real data.  

The real data was provided by Lausanne Hospital and were 

all scanned with the same parameters (120kV, 749 mA, slice 

thickness 0.6 mm).  

The result of applying the proposed approach is discussed in 

the following subsections. 

A. Coronary artery extraction 

The proposed algorithm was applied to 15 CTA scans. The 

threshold values in step1 were selected between 280-600 HU 

for automatic pre-segmentation of the region with angio blood 

intensity (ascending aorta). The threshold value for extracting 

the coronary artery is automatically defined based on mean 

and variance of the intensity of the extracted aorta. The results 

of the automatic segmentation of the coronary artery are 

shown in Figures 2(a)-(b). The extracted vessel was visually 

judged as correctly by a qualified radiologist.  

(a)                                            (b) 
Fig. 2 The result of automatic algorithm, (a) right coronary artery, 

(b) left coronary artery 

B. Measurement of the degree of the stenosis 

The diameter measurement plays an important role in the 

quantification of the degree of the stenosis. We evaluate the 

diameter measurement (MMFC) algorithm in phantom data as 

well as real patients’ data. The method for defining the 

reference point to measure diameter without stenosis is 

assessed using the real data. The reproducibility and accuracy 

of the algorithm for the diameter measurement (MMFC) is 

compared to CTM. 
 

1) Vascular phantom study 

The geometry of the vascular phantom is designed to mimic 

the complexity of real human vessels and is compatible with 

all imaging modalities evaluated [12]. It is also equipped with 

an inlet and outlet to enable a real fluid flow [12]. It’s 

geometry of the vessel is a cylindrical channel that is 

positioned in the centre of a case surrounded by soft tissue 

equivalent material with respect to the real attenuation 

characteristics of X-rays in the body (Figure 3). The diameter 

of the vessel varies from 1-8mm along its length, so it can 

simulate stenosis in the vessel (Figure 3 (b)).The phantom was 

scanned 32 times on a 16-slice Multi-Detector Row CT 

(MDCT) (a GE Light Speed Pro) using 10 different protocols 

with slice thicknesses from 0.625 mm to 1.725 mm and pitch 

from 1.3 to 1.7 and FOV 25 and 36.  

                     (a)                                                    (b) 

Fig. 3 Vascular Phantom (a) top view, (b) actual size of the vessel 
 

Vessel diameters are calculated using equation 4 and the 

results are shown in tables I and II. Table I shows the accuracy 

and reproducibility of methods in study 1, where results are 

averaged over 21 slices of the same dataset (slice thicknesses 

0.625 mm, pitch=1.3 and FOV=25) with the same diameter.  It 

is apparent from table I that the accuracy of the measurement 

for our algorithm is higher than others in most of the cases and 

it reproducibility is higher than others in all of the cases 

(different diameters of the phantom).Table II shows the result 

of the methods for study 2 which are averaged over all 32 

scans of the phantom using 10 different protocols. The results 

reveal that our method has superior accuracy in most of the 

cases and reproducibility in all the cases. As shown in table I 

and II, diameter measurements using our method have a low 

standard deviation which is most important issue when an 

investigation of the disease’s progress is considered. Also the 

proposed method has a low bias or systematic error (the 

difference between actual value and mean value in both study 

1 and 2) in most of the cases. Our method demonstrates 

superior performance compared with the CTM methods, with 

a standard deviation of 0.01-0.047mm regardless of the size of 

the vessel. 
 

2) Real Clinical Data Study 

In order to measure the vessel diameter in the proposed 

MMFC algorithm, the following parameters were selected. An 

8 neighbourhood scheme is chosen for N�, and m is 

considered 2 (equation 1). In this paper, the β is chosen 

empirically, however the cross-validation method proposed in 

[3] can be used to estimate β. For our application, β = 2.4 is 

selected. In equation 2, the thresholds values of τ� �0.9  and  τ � 0.3 are used. The result of applying this 

algorithm is shown in Figure 4. Figure 4(d) illustrates the 

impact of estimating the partial membership of a voxel to the 

detected object. The performance is compared against 

thresholding (Figure 4(c)). The results have been approved 

visually by a qualified radiologist. The segmentation 

algorithm separates the blood vessel from other tissue such as 

soft plaque. Figure 4(a) depicts three distinct tissue regions 

with average HUs of 300, 1000, and 50. Comparing the results 

of these three methods, there are some voxels in Figure 4(b) 

for which the HU value is further from the average HU for a 

blood vessel and may belong to more than one region. This 

fact is not accounted in deterministic clustering (Figure 4(c)).  

Therefore the MMFC diameter measurement results are 

more accurate than the compared method. 
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TABLE I 

 THE AVERAGE DIAMETER OF 21 SLICES OF EACH DIAMETER IN AN IMAGE 

PHANTOM USING THREE DIFFERENT METHODS: CONVENTIONAL 

THRESHOLDING, AND THE MMFC 

Actual value 

of diameter 
1mm 2mm 4mm 6mm 8mm 

CTM 
mean 0.7864 2.8162 4.8571 6.8935 8.6322 

Std 0.7140 0.3318 0.3133 0.2749 0.1552 

MMFC 
mean 1.3120 2.2900 4.0879 6.2412 8.0107 

Std 0.0435 0.0110 0.0025 0.0015 3.34e-4 

 
TABLE II 

THE AVERAGE DIAMETER OVER 32 SCAN OF THE PHANTOM WITH 10 DIFFERENT 

PROTOCOLS USING THREE DIFFERENT METHODS CONVENTIONAL 

THRESHOLDING, AND PROPOSED MARKOVIAN-FUZZY ALGORITHM 

Actual value 

of diameter 

1 

mm 
2 mm 4 mm 6mm 8mm 

CTM 
Mean 0.8498 2.8503 4.8581 6.9055 8.6396 

Std 0.8887 0.4636 0.4878 0.5202 0.4252 

MMFC 
Mean 1.2100 2.3839 4.2161 6.3358 8.0639 

Std 0.2167 0.1161 0.1081 0.1000 0.0500 
 

 
(a) 

-27 50 40 65 75 76 45 20 -16 -38 

10 95 75 85 80 97 99 67 -25 -31 

27 100 145 165 196 195 169 160 -16 -38 

15 137 220 290 285 290 306 220 105 83 

31 163 290 310 340 364 384 301 180 75 

81 180 310 320 374 416 554 483 285 71 

76 175 320 340 392 611 859 805 470 74 

35 130 298 334 504 858 1177 1140 684 95 

76 98 240 360 590 993 1281 1250 803 98 

86 89 182 386 516 837 1024 1012 723 105 

99 85 118 139 364 467 571 584 489 72 

60 60 72 77 79 145 213 245 259 69 

3 3 61 31 -53 -32 42 81 60 60 

(b) 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 0 0 

0 1 1 1 1 1 1 1 1 0 

0 1 1 1 1 1 1 1 1 0 

0 1 1 1 1 1 0 0 0 0 

0 1 1 1 1 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

(c) 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0.35 0.47 0.67 0.66 0.5 0.44 0 0 

0 0.3 0.79 1 1 1 1 0.79 0 0 

0 0.46 1 1 1 1 1 1 0.57 0 

0 0.57 1 1 1 1 0.65 0.8 0 0 

0 0.54 1 1 1 0.51 0 0 0 0 

0 0 1 1 0.76 0 0 0 0 0 

0 0 0.87 1 0.57 0 0 0 0 0 

0 0 0.58 1 0 0 0 0 0 0 

0 0 0 0.31 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

(d) 
Fig. 4 (a) The original image (orthogonal estimated image of 

vessel with stenosis), (b) HU table for image, (c) table of 

deterministic thresholding result, (d) table of proposed 

segmentation algorithm result 

VI. CONCLUSION 

This study has developed a semi-automatic approach for 3D 

extraction and visualization of the coronary artery and 

quantification of the degree of stenosis. The orthogonal plane 

to the centreline was estimated on the stenosis interval of the 

coronary artery to measure the diameter precisely. The multi-

scaled Markovian fuzzy c-mean clustering algorithm 

(NGFCM) models uncertainty in the segmentation of the 

blood vessel to increase the accuracy of the measurement. 

The method was evaluated on a synthetic phantom as well 

as real CTA patient datasets. Results of real CTA datasets 

were validated by a qualified radiologist. The accuracy and 

reproducibility of quantification algorithm was compared to 

the CTM. The results reveal our approach superior 

performance compared to other algorithm for extraction of the 

coronary artery and segmentation and quantification of the 

degree of the stenosis in the coronary arteries. 
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