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Abstract—The optimization and control problem for 4D trajecto-
ries is a subject rarely addressed in literature. In the 4D navigation
problem we define waypoints, for each mission, where the arrival
time is specified in each of them. One way to design trajectories for
achieving this kind of mission is to use the trajectory optimization
concepts. To solve a trajectory optimization problem we can use
the indirect or direct methods. The indirect methods are based on
maximum principle of Pontryagin, on the other hand, in the direct
methods it is necessary to transform into a nonlinear programming
problem. We propose an approach based on direct methods with a
pseudospectral integration scheme built on Chebyshev polynomials.

Keywords—Pseudospectral Methods, Trajectory Optimization, 4D
Trajectories

I. INTRODUCTION

THE trajectory optimization was always a important area
in aeronautic and aerospace industries. This methodology

allows generating, for a vehicle, a trajectory that can take
into account fuel consumption, specified final time and many
others requirements. The common applications of trajectory
optimization in robotics, space applications is in minimum
time problem and may be with position constraints. Few
works addressed trajectories defined by waypoints. One of
these [1] intends to design trajectories in minimum time and
with waypoints constraints. The current work proposes a new
approach to design 4D trajectories defined by waypoints. The
difference between 3D trajectories and 4D trajectories is that
in each waypoint the time is also specified for 4D trajectories.
Although the 4D trajectories have been used in the flight
planning of civil aircraft and in avoidance collision of Air
Traffic Control facilities, there is no work that specifies a
systematic method for to design this kind of trajectories.

The trajectory optimization can be solved by optimal control
techniques. There are two ways to resolve optimal control
problems, by direct and indirect methods [2]. The indirect
methods are based on Pontryagin maximum that transforms
the optimal control problem into Euler-Lagrange equations.
On the other hand, the direct methods transform the optimal
control problem into a nonlinear programming problems. In
the current work we address only the direct methods to solve
4D trajectory optimization problem.

To transform an optimal control problem into nonlinear
programming problem it is needed to parameterize the state
and the control [3]. These parameterization techniques have an
important role in a convergence and accuracy of the solution.
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The most known techniques are based on local integration
schemes (Collocation Methods) [4]–[6]. Recently some works
have been presented another way of state parameterization,
these methods are known as Pseudospectral Methods [7]–[9].

II. PROBLEM STATEMENT

The main goal of guidance applied to navigation is to pro-
vide a reference Velocity Vref , Path Angle γref and Heading
ψref to enable the aircraft go through predefined sequence of
waypoints P0, P1, . . . , PN .

Most of the approaches consider the waypoints defined by
tri-dimensional positions Pk = (λk, ϕk, hk), k = 0, 1, ..., N
and do not take into account the time. We redefined this
approach and added the time restriction to the waypoint
Pk = (λk, ϕk, hk, τk), k = 0, 1..., N .

The problem to be solved is to guide the aircraft to
navigate along a specified sequence of waypoints Pk =
(λk, ϕk, hk, τk), k = 0, 1..., N , minimizing the arrival delay
at each waypoint.

III. PROPOSED METHOD

Optimal control consists in finding a control vector u(τ)
that minimize a cost functional defined as:

J(u(τ)) = Φ(τf , x(τf ), u(τf ), p)+

∫ τf

τ0

L(τ, x(τ), u(τ), p)dτ

(1)
where x ∈ �n is the state vector, p the associate parameters,

τ the time and u ∈ �m the control vectrol, subject to the
following constraints:

ẋ = f(τ, x(τ), u(τ), p)
τ0 ≤ τ ≤ τf

pmin ≤ p ≤ pmax

(2)

The cost functional (1), can also be subject to equality and
inequality constraints:

h(τ, x(τ), u(τ), p) = 0 (3)
g(τ, x(τ), u(τ), p) ≤ 0 (4)

as well as to boundary conditions:

Ψ(x(τ0), x(τf )) = 0 (5)
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A. Pseudospectral

The pseudospectral methods have been developed for direct
methods [7], [8]. The main goal is to find the optimal trajec-
tories of the nonlinear systems of high order. Lagrange and
Chebychev polynomials are used in these methods to approxi-
mate the state variables. The procedure for approximating the
state and control variables is based on Legendre polynomials
built on Chebychev nodes. Consider N + 1 the number of
nodes that define some trajectory, the Chebychev polynomials
are defined in trigonometric form as

TN (t) = cos(N cos−1(t)) (6)

The nodes tk = coskπ/N are defined on the interval
t ∈ [1, 1] with k = 0, 1, , N . Now, we consider the following
Lagrange polynomials built on Chebychev nodes as discussed
above,

ϕk(t) =
(−1)k+1(1− t2)ṪN (t)

ckN2(t− tk)

=
2

Nck

N∑
l=0

Tl(tk)Tl(t)

cl
(7)

with,

ck =

{
2 if k = 0 ∨ k = N
1 if k = 1, . . . , N − 1

(8)

It can be noticed that each Lagrange polynomial is such
that,

ϕk(tl) = δkl =

{
1 if k = l
0 if k �= l

(9)

In this method, the state equation is approximated by
polynomials only computed in nodes, then the state equation
can be rewritten in the following form:

ẋNi (tk) =
N∑
l=0

Cklxi(tl) (10)

where,

dCl
dt

(tk) = Ckl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2N2+1)
6 k = l = 0

− (2N2+1)
6 k = l = N

− tl
2(1−t2l )

1 ≤ k = l ≤ N − 1

ck(−1)k+l

cl(tk−tl) k �= l
(11)

and the parameterization of the state and control variables
can be defined in the following way,

xNi (t) =
N∑
k=0

xi(tk)ϕk(t) (12)

uNj (t) =
N∑
k=0

uj(tk)ϕk(t) (13)

with n and m as been the number of state and control vari-
ables respectively. Consider y as all set variables of nonlinear
programming,

y = [xil, ujl, τ0, τf ] (14)

with i = 1, . . . , n, j = 1, . . . ,m and l = 0, . . . , N .
Because the problem of the optimal control is formulated

over the time interval [τ0, τf ] and the Chebychev nodes are
defined in [1, 1] interval, we need the following transformation,

τ =
(τf − τ0)t+ (τf + τ0)

2
(15)

then we can formulate the optimal control problem using
the Chebychev pseudospectral method,

minu∈� J(u(τ))

subject to

(
τf−τ0

2

)
f(xil, ujl)−

∑N
l=0 Cklxi(tl) = 0

Ψ0(x0l, τ0) = 0
Ψf (xNl, τf ) = 0

g(y) ≤ 0

(16)

B. Modeling 4D Navigation Problem

1) Problem Formulation: Let us consider the point P
defined in the geodetic reference λ, ϕ, h and a set of points
Pi = P0, P1, . . . , Pn in that n is the number of the points.
If we consider the arrival time in each point τi then the 4D
waypoint can be defined in the following way,

(Pi, τi) → (Pi, [τ
1
i , τ

2
i ]) (17)

where [τ1i , τ
2
i ] is the time interval tolerated for arrive at a

determined waypoint. If s(τ) is the current position, the 4D
navigation problem is solved by the next equation,

||Pi − s(τi)|| ≤ ε ∀i ∈ �n (18)

where ε is the tolerance distance that an aircraft can be over
fly a waypoint.

2) Dynamic Model: The following differential equations
are the dynamic model used to modeling the problem,

λ̇ =
V cos γ cosψ

(h+Re) cosϕ
(19)

ϕ̇ =
V cos γ sinψ

(h+Re)
(20)

ḣ = V sin γ (21)
V̇ = u1 (22)
γ̇ = u2 (23)
ψ̇ = u3 (24)
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where λ, ϕ and h are the longitude, latitude and altitude
respectively, the V , γ and ψ are the velocity, path angle and
heading respectively and Earth radius Re . The state and
control vector are composed by x = [λ, ϕ, h, V, γ, ψ] and
u = [u1, u2, u3] respectively. We will only use the navigation
equations above. Consider the following constraints:

ui ∈ [umini , umaxi ] ; i = 0, . . . , 3 (25)
V̇ ∈ [V min, V max] (26)
γ̇ ∈ [γmin, γmax] (27)

Therefore, the trajectories generated are always within the
aerodynamic and structural limits.

C. Resolution

The 4D trajectory optimization problem above can be re-
stated as:

min
u
J(u) = ||Pf − s(τf )||2Q = (Pf − s(τf ))

TQ(Pf − s(τf ))

subject to

ẋ = f(x, u) = 0
||Pi − s(τi)|| ≤ ε
umini ≤ ui ≤ umaxi

V min ≤ V ≤ V max

γmin ≤ γ ≤ γmax

(28)
where J is the cost functional, τf is the desired flight

duration of the trajectory, Q is real symmetric positive def-
inite matrix and x is the state vector. In current paper
the pseudo-spectral methods are chosen to solve the optimal
control problem. The 4D navigation problem re-stated using
the pseudospectral technique explained above takes the next
shape:

min
y
J(y) = ||(λM , ϕM , hM )− (λ(tN ), ϕ(tN ), h(tN )||2Q

subject to

(
τf−τ0

2

)
f(xk, uk)−

∑N
l=0 Cklx(tl) = 0

||Pi − s(ti)|| ≤ ε
uminj ≤ uj ≤ umaxj

V min ≤ V ≤ V max

γmin ≤ γ ≤ γmax

(29)
with k = 0, 1, . . . , N , ti are the Chebychev nodes corre-

sponded to the waypoints and i = 0, 1, . . . ,M where M is
number of waypoints and Ckl as defined in equation (11).

IV. APPLICATION

In this section are presented two applications, the first is a
typical commercial flight and the second mission is a flight in
circuit. In both applications the air vehicle used is the UAV
Skygu@rdian constructed in University of Beira Interior. In

TABLE I
LIST OF WAYPOINTS FOR THE STRAIGHT MISSION

λ ϕ h τ

N◦ [deg min sec] [deg min sec] [m] [hour]

1 7◦ 29’ 35.00” W 39◦ 49’ 25.71” N 400 0.000
2 7◦ 29’ 37.00” W 39◦ 50’ 34.82” N 500 0.035
3 7◦ 29’ 39.00” W 39◦ 51’ 33.38” N 600 0.070
4 7◦ 29’ 41.00” W 39◦ 52’ 39.86” N 600 0.080
5 7◦ 29’ 41.50” W 39◦ 54’ 50.26” N 700 0.120
6 7◦ 29’ 42.00” W 39◦ 56’ 55.38” N 800 0.165
7 7◦ 29’ 45.00” W 39◦ 59’ 15.04” N 800 0.210
8 7◦ 29’ 47.00” W 40◦ 01’ 17.12” N 800 0.245
9 7◦ 29’ 49.00” W 40◦ 03’ 45.92” N 800 0.280
10 7◦ 29’ 51.00” W 40◦ 05’ 31.38” N 800 0.325
11 7◦ 29’ 53.00” W 40◦ 08’ 12.56” N 800 0.370
12 7◦ 29’ 55.00” W 40◦ 11’ 06.43” N 750 0.415
13 7◦ 30’ 00.00” W 40◦ 14’ 07.43” N 650 0.450
14 7◦ 30’ 02.00” W 40◦ 17’ 02.02” N 600 0.480

TABLE II
RESULTS OF FINAL VALUES IN STRAIGHT MISSION

λ(τf ) ϕ(τf ) h(τf ) J

[rad] [rad] [km] –

Collocation −0.1309 0.7031 0.5998 2.8× 10−8

Pseudospectral −0.1309 0.6999 0.5058 3.7× 10−4

both situations were applied the Pseudospectral method and a
Collocation method with trapezoidal integration scheme. For
the solution search of the problem, it was used the fmincon
function of optimization toolbox of MatLab for solve the
nonlinear programming problem. The computer used for test
and simulation was an Acer Aspire 1690 with 2.0 GHz CPU
and 1GB of RAM.

A. Example I
The first example is a straight flight typically of civil

flights. The table I show the waypoints list. Each waypoint is
defined in geodetic coordinates (λ, ϕ, h) and must be specified
the desired time (τ ) to reach it. In this specific mission,
both methods of parameterization achieve a solution for the
problem, the final values of position as well as the cost
function are represented in table II.

When applied the Collocation technique, we consider the
nodes coincident with the waypoints, this is valid because the
time was expressed in hours and the difference between way-
points is small that allows an acceptable step of integration.
We tried some distributions of collocation nodes but finally
we found that satisfactory results could only be achieved with
sufficiently high number of nodes.

As in Pseudospectral method the nodes are specified on
Chebychev nodes in [−1, 1] interval, the problem with node
placement does not arise. We considered 20 nodes for this
example because the method converged accurately using this
number of nodes, given practically the same result as when
higher numbers of nodes are used.
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Fig. 1. Longitude vs Time for Example I
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Fig. 2. Latitude vs Time for Example I
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Fig. 3. Height vs Time for Example I
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Fig. 4. Height vs Time for Example I
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Fig. 5. Velocity vs Time for Example I
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Fig. 6. Path Angle vs Time for Example I
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Fig. 7. Heading vs Time for Example I
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Fig. 8. Control1 vs Time for Example I
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Fig. 9. Control2 vs Time for Example I
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Fig. 10. Control3 vs Time for Example I
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TABLE III
LIST OF WAYPOINTS FOR THE CIRCUIT MISSION

λ ϕ h τ

N◦ [deg min sec] [deg min sec] [m] [hour]

1 7◦ 28’ 45.66” W 40◦ 15’ 54.29” N 700 0.000
2 7◦ 29’ 37.84” W 40◦ 15’ 55.50” N 750 0.014
3 7◦ 30’ 28.55” W 40◦ 15’ 57.79” N 800 0.023
4 7◦ 31’ 36.32” W 40◦ 16’ 38.79” N 1100 0.051
5 7◦ 32’ 05.08” W 40◦ 17’ 35.86” N 1500 0.072
6 7◦ 31’ 27.13” W 40◦ 18’ 19.47” N 1350 0.085
7 7◦ 30’ 32.76” W 40◦ 18’ 45.15” N 1250 0.097
8 7◦ 29’ 45.49” W 40◦ 18’ 58.96” N 1150 0.120
9 7◦ 28’ 32.44” W 40◦ 19’ 05.28” N 1000 0.136
10 7◦ 27’ 24.73” W 40◦ 18’ 53.08” N 850 0.157
11 7◦ 26’ 56.44” W 40◦ 17’ 52.36” N 810 0.175
12 7◦ 27’ 09.48” W 40◦ 16’ 45.91” N 760 0.193
13 7◦ 27’ 37.41” W 40◦ 16’ 14.20” N 730 0.213
14 7◦ 28’ 14.22” W 40◦ 15’ 59.65” N 710 0.221
15 7◦ 28’ 45.66” W 40◦ 15’ 54.29” N 700 0.232

It is possible to see in figures 1,2,3 the trajectories found by
both methods representing the longitude, latitude and altitude
respectively. The figures 5, 6, 7 represent the velocity, path
angle and heading respectively, and figures 8, 9, 10 represent
the controls. n figure 4 is represented the ground track.

The velocity in Fig. 5 shows a constant behavior because the
arrival times at each waypoint were defined as such, the control
u1, that is, the variation of velocity, is the depicted in (Fig.
8), which is practically identical in both methods. The path
angle (Fig. 6) generated by pseudospectral method is slightly
smoother than the path angle generated by collocation method,
but the differences can be seen better in Fig. 9 that represents
the variation of the path angle (u2), here the pseudospectral
method shows a trajectory with more smoothness than the
collocation method. The heading trajectory (Fig. 7) and control
u3 (Fig. 10) representing the variation of heading do not
present significantly differences between the two methods.

This result shows that the pseudospectral method achieves a
final solution almost equal to the collocation method but with
the controls trajectories are smoother, which allows improving
cost of the mission.

B. Example II

The second example proposed intends to show more features
of the above methods. The mission is a round trip about
Covilhã city, with waypoints described in Table III. The main
difference between this mission and the last one is that the
Collocation parameterization does not reach a feasible solution
with the available computational resources. In Table IV are
shown the final value of the position and that of the cost
functional value.

For Collocation method we tried several sets of nodes, but
none of these attempts achieved a feasible solution. On the
other hand the pseudospectral method reached an acceptable
solution. We used 25 nodes because the method converged for
this number of nodes. For more than 25 nodes, the computation

TABLE IV
RESULTS OF FINAL VALUES IN CIRCUIT MISSION

λ(τf ) ϕ(τf ) h(τf ) J

[rad] [rad] [km] –

Collocation ** ** ** **
Pseudospectral −0.1305 0.7026 0.5749 3.7× 10−7
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Fig. 11. Longitude vs Time for Example II

0 5 · 10−2 0.1 0.15 0.2 0.25

0.703

0.7035

Time [hour]

L
at

itu
de
ϕ

[r
ad

]

Pseudospectral
Waypoints

Fig. 12. Latitude vs Time for Example II
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Fig. 13. Height vs Time for Example II
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became very heavy in the framework of Matlab capabilities.
Figures 11,12,13 representing longitude, latitude and altitude
respectively. The figures 15, 16,17 represent velocity, path
angle and heading respectively, and figures 18,19, 20 represent
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the controls. The figure (14) represent the ground track.
Although the cost functional, for this example, presents a
low value it is not sufficient for trajectory overlap with the
final waypoint, this is visible in Fig. 13 and happens because
the optimization software can not refine the solution. The
velocity (Fig.15) and velocity variation (Fig.18) have an almost
constant behavior, this fact was expected because, similary to
example I, the time arrival in waypoints was specified with this
intention. Path angle (Fig.16) and path angle variation (Fig.19)
show a behavior more oscillatory than the other variables. The
increase of nodes solve this problem, nevertheless the path
angle shall not exceed the aerodynamics limits of aircraft.
Finally the heading (Fig.17) and its variation (Fig.20) show
a behavior in accordance with the track. Also as in the
first example, the pseudospectral methods give us a smoother
trajectory, and with a better optimization tool than was used,
the trajectory can be improved.

V. CONCLUSION

It was proposed a method for design to 4D optimal nav-
igation trajectories define by waypoints. The 4D trajectories
have the expected time of arrival at each waypoint in addition
to the desired position. Also was proposed a Pseudospectral
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Fig. 18. Control1 vs Time for Example II
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Fig. 20. Control3 vs Time for Example II

technique for parameterization of trajectory optimization prob-
lem built on Chebychev nodes. To examples were presented,
in both cases also was applied the Collocation parameter-
ization technique with trapezoidal integration scheme. The
Pseudospectral methods achieved appropriate solutions for the
two applications and the Collocation method only achieved a
feasible solution for example I. Although the pseudospectral
method found solutions for the two examples, what is relevant
is that the controls trajectories were smoother than in the case
of Collocation methods. In future work, the method presented
in this paper will be improved and validated on full scale
missions for unmanned aerial vehicles.
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