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4-Transitivity and 6-Figures in Finite Klingenberg
Planes of Parameters (p2k−1, p)

Atilla Akpinar, Basri Celik and Suleyman Ciftci

Abstract—In this paper, we carry over some of the results which
are valid on a certain class of Moufang-Klingenberg planes M(A)
coordinatized by an local alternative ring A := A (ε) = A + Aε of
dual numbers to finite projective Klingenberg plane M(A) obtained
by taking local ring Zq (where prime power q = pk) instead of A.
So, we show that the collineation group of M(A) acts transitively
on 4-gons, and that any 6-figure corresponds to only one inversible
m ∈ A.
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I. INTRODUCTION

Projective Klingenberg and Hjelmslev planes (more briefly:
PK-planes and PH-planes, resp.) are generalizations of or-
dinary projective planes. These structures were introduced
by Klingenberg in [14], [15]. As for finite PK-planes, these
structures introduced by Drake and Lenz in [8] have been
studied in detail by Bacon in [2].

In our previous paper [6] we studied a certain class (which
we will denote by M(A)) of Moufang-Klingenberg (briefly,
MK) planes coordinatized by an local alternative ring

A := A (ε) = A + Aε

of dual numbers (an alternative ring A, ε /∈ A and ε2 = 0)
introduced by Blunck in [5]. We showed that its collineation
group is transitive on quadrangles and the coordinatization
of these Moufang-Klingenberg planes is independent of the
choice of the coordinatization quadrangle. By extending the
concepts of 6−figure to these Moufang - Klingenberg planes,
we examined some properties of 6−figures.

In the present paper we deal with finite PK-plane M(A)
obtained by taking local ring Zq (where q is a prime power)
instead of A. So, we will carry the results that are well-known
for MK-planes from [6] M(A) to the finite PK-plane M(A).

II. PRELIMINARIES

Let M = (P,L,∈,∼) consist of an incidence structure
(P,L,∈)(points, lines, incidence) and an equivalence relation
‘∼’ (neighbour relation) on P and on L. Then M is called
a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:

(PK1) If P,Q are two non-neighbour points, then there is
a unique line PQ through P and Q.

(PK2) If g, h are two non-neighbour lines, then there is a
unique point g ∧ h on both g and h.

Atilla Akpinar, Basri Celik and Suleyman Ciftci are with the Uludag
University, Department of Mathematics, Faculty of Science, Bursa-TURKEY,
email: aakpinar@uludag.edu.tr, basri@uludag.edu.tr, sciftci@uludag.edu.tr.

(PK3) There is a projective plane M∗ = (P∗,L∗,∈) and
incidence structure epimorphism Ψ : M → M∗, such that the
conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇔ g ∼ h

hold for all P,Q ∈ P, g, h ∈ L.

PK-plane M is called a projective Hjelmslev plane (PH-
plane) If M furthermore provides the following axioms:

(PH1) If P,Q are two neighbour points, then there are at
least two lines through P and Q.

(PH2) If g, h are two neighbour lines, then there are at least
two points on both g and h.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M∗ is a
Moufang plane (for the details see [1]).

A point P ∈ P is called near a line g ∈ L iff there exists
a line h such that P ∈ h for some line h ∼ g.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

Now we give the definition of an n-gon, which is meaningful
when n ≥ 3: An n-tuple of pairwise non-neighbour points is
called an (ordered) n-gon if no three of its elements are on
neighbour lines [6].

An alternative ring (field) R is a not necessarily associa-
tive ring (field) that satisfies the alternative laws a (ab) =
a2b, (ba) a = ba2, ∀a, b ∈ R. An alternative ring R with
identity element 1 is called local if the set I of its non-unit
elements is an ideal.

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [3].

Let R be a local alternative ring. Then

M(R) = (P,L,∈,∼)

is the incidence structure with neighbor relation defined as
follows:

P = {(x, y, 1) : x, y ∈ R} ∪ {(1, y, z) : y ∈ R, z ∈ I}
∪{(w, 1, z) : w, z ∈ I}

L = {[m, 1, p] : m, p ∈ R}∪{[1, n, p] : p ∈ R, n ∈ I}
∪{[q, n, 1] : q, n ∈ I}
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[m, 1, p] = {(x, xm+ p, 1) : x ∈ R}
∪ {(1, zp+m, z) : z ∈ I}

[1, n, p] = {(yn+ p, y, 1) : y ∈ R}
∪ {(zp+ n, 1, z) : z ∈ I}

[q, n, 1] = {(1, y, yn+ q) : y ∈ R}
∪ {(w, 1, wq + n) : w ∈ I}

and also

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀P,Q ∈ P

g = [x1, x2, x3] ∼ [y1, y2, y3] = h

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.

Baker et al. [1] use (O = (0, 0, 1) , U = (1, 0, 0) , V =
(0, 1, 0) , E = (1, 1, 1)) as a coordinatization 4-gon. We stick
to this notation throughout this paper. For more detailed
information about the coordinatization see [1] and [3].

Now it is time to give the following theorem from [1].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ε 
∈ A. Consider
A := A (ε) = A + Aε with componentwise addition and
multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε,

where ai, bi ∈ A, i = 1, 2. Then A is an alternative ring with
ideal I = Aε of non-units. For more detailed information
about A see the papers of [4], [5].

Theorem 2.2: If R is a (not necessarily commutative) local
ring then M(R) is a PK-plane (cf. [15] or [9, Theorem 4.1]).

Drake and Lenz [8, Proposition 2.5] or [12, Theorem 1.2]
observed that the following corollary is true for PK-planes.
This corollary is a generalization of results which are given
for PH-planes by Kleinfeld [13, Theorem 1] and Lüneburg
[16, Satz 2.11].

Corollary 2.3: Let M(R) be PK-plane. Then there are
natural numbers t and r which are called the parametres
of M(R) and they are uniquely determined by incidence
structure of a finite PK-plane [8, Proposition 2.7], with

1) every point (line) has t2 neighbours;
2) given a point P and a line l with P ∈ l, there exist

exactly t points on l which are neighbours to P and
exactly t lines through P which are neighbours to l;

3) Let r be order of the projective plane M∗. If t 
= 1 we
have r ≤ t (then M is called proper; we have t = 1 iff
M is an ordinary projective plane)

4) every point (line) is incident with t (r + 1) lines (points);
5) |P| = |L| = t2

(
r2 + r + 1

)
.

Now consider ring Zq where prime power q = pk. We can
state the elements of Zq as Zq = U ′ ∪ I where U ′ is the set
of units of Zq and I is the set of non-units of Zq. Here it is
clear that

I =
{
0p, 1p, 2p, · · · , (pk−1 − 1

)
p
}

and so |I| = pk−1. Let ε 
∈ Zq. Then A := Zq + Zqε with
componentwise addition and multiplication above is a local
ring with ideal I := I + Zqε of non-units, |I| =

(
pk−1

)
pk.

Note that the set of units of A is U := U ′ + Zqε and

|U| =
(
pk − pk−1

)
pk = (p− 1) p2k−1.

Since A is a proper local ring and A/I = Zp, Ψ induces an
incidence structure epimorphism from finite PK-plane M(A)
onto the Desarguesian projective plane (with order p) coor-
dinatized by the field Zp [9, page 169, above Theorem 4.1].
Because of this, M(A) is called as Desarguesian PK-plane.

So, we have the following

Corollary 2.4: For finite PK-plane M(A), the parameters t
and r in Corollary 2.3 are equal to p2k−1 and p, respectively.

A local ring R is called a Hjelmslev ring (briefly, H-ring)
if it satisfies the following two conditions:

(HR1) I consists of two-sided zero divisor.
(HR2) For a, b ∈ I, one has a ∈ bR or b ∈ aR, and also

a ∈ Rb or b ∈ Ra.

By the last definition, we can say that A is not a H-ring.
For example, for elements a = 3 + 3ε and b = ε of the ideal
I of local ring A = Z32 + Z32(ε), (HR2) is not valid.

From now on we restrict ourselves to PK-plane M(A) =
(P,L,∈,∼) coordinatized by the local ring A := Zq + Zqε,
with neighbour relation defined above.

III. 4-TRANSITIVITY AND 6-FIGURES IN M(A).
In the final section, first of all, from [6] we start by giving

some collineations on M(A) where w, z, q, n ∈ I as follows:
For any a, b ∈ A, the collineation Ta,b transforms points

and lines as follows:

(x, y, 1) → (x+ a, y + b, 1)
(1, y, z) → (1, y + z(b− ay), z)
(w, 1, z) → (w + za, 1, z)

and

[m, 1, k] → [m, 1, k + b− am]
[1, n, p] → [1, n, p+ a− bn]
[q, n, 1] → [q, n, 1] .

For any α,β /∈ I, the collineation Sα,β (here, it is enough
to give Sα,β instead of the collineations La and Fa in [6])
transforms points and lines as follows:

(x, y, 1) → (βx, αy, 1)
(1, y, z) → (

1, αβ−1y, β−1z
)

(w, 1, z) → (
α−1βw, 1, α−1z

)
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and

[m, 1, k] → [
αβ−1m, 1, αk

]
[1, n, p] → [

1, α−1βn, βp
]

[q, n, 1] → [
β−1q, α−1n, 1

]
.

The collineation I1 transforms points and lines as follows:

(x, y, 1) → (
x−1, x−1y, 1

)
if x /∈ I

(x, y, 1) → (1, y, x) if x ∈ I

(1, y, z) → (z, y, 1)
(w, 1, z) → (z, 1, w)

and

[m, 1, k] → [k, 1,m]
[1, n, p] → [p, n, 1] if p ∈ I

[1, n, p] → [
1,−np−1, p−1

]
if p /∈ I

[q, n, 1] → [1, n, q] .

The collineation F transforms points and lines as follows:

(x, y, 1) → (y, x, 1)
(1, y, z) → (y, 1, z) if y ∈ I

(1, y, z) → (
1, y−1, y−1z

)
if y /∈ I

(w, 1, z) → (1, w, z)

and

[m, 1, k] → [1,m, k] if m ∈ I

[m, 1, k] → [
m−1, 1,−km−1

]
if m /∈ I

[1, n, p] → [n, 1, p]
[q, n, 1] → [n, q, 1] .

For any s ∈ A, the collineation Gs transforms points and
lines as follows:

(x, y, 1) → (x, y − xs, 1)
(1, y, z) → (1, y − s, z)
(w, 1, z) → (w, 1, z)

and

[m, 1, k] → [m− s, 1, k]
[1, n, p] → [1, n, p+ psn]
[q, n, 1] → [q + sn, n, 1] .

The collineation I2 transforms points and lines as follows:

(x, y, 1) → (
y−1x, y−1, 1

)
if y /∈ I

(x, y, 1) → (
1, x−1, x−1y

)
if y ∈ I ∧ x /∈ I

(x, y, 1) → (x, 1, y) if y ∈ I ∧ x ∈ I

(1, y, z) → (
y−1, y−1z, 1

)
if y /∈ I

(1, y, z) → (1, z, y) if y ∈ I

(w, 1, z) −→ (w, z, 1)

and

[m, 1, k] → [−mk−1, 1, k−1
]

if k /∈ I

[m, 1, k] → [
1,−km−1,m−1

]
if k ∈ I ∧m /∈ I

[m, 1, k] → [m, k, 1] if k ∈ I ∧m ∈ I

[1, n, p] → [
p−1, 1,−np−1

]
if p /∈ I

[1, n, p] → [1, p, n] if p ∈ I

[q, n, 1] → [q, 1, n] .

So, we can give the following theorem without proof. For,
its proof is same to Theorem 2 of [6]. Furthermore, this
theorem is proved by Lemma 4.15 in [11].

Theorem 3.1: The group G of collineations of M(A) acts
transitively on 3-gons.

Now, we can state the analogue of the result given by [2,
Proposition 5.2.10 in Vol.I]. For the case of uniform H-rings
(for the definition of uniform see [10]), the result is also in
[7, Theorem 17]. Here, it is possible to give the proof of the
following theorem, as more shorthly than the proof of Theorem
3 in [6].

Theorem 3.2: G acts transitively on 4-gons of M(A).

Proof: Let (P,Q,R, S) be a 4-gon in M(A). It suffices
to show that the points P,Q,R, S can be transformed by an
element of G to U, V, (1, 1, 1) , O, respectively. From Theorem
3.1, there exists a collineation σ which transforms P,Q,R
to U, V, (0, 1, 1), respectively. Let E denote the intersection
point of the lines QR and PS. Then, since σ (E) is non-
neighbour to the points σ (P ) , σ (Q) , σ (R), it has the form
(0, b, 1), where b− 1 /∈ I, and so σ (S) has the form (a, b, 1),
where a /∈ I. Therefore σ transforms P,Q,R, S to

(1, 0, 0) , (0, 1, 0) , (0, 1, 1) , (a, b, 1),

respectively. Then the mapping T−a,−b transforms these points
to

(1, 0, 0) , (0, 1, 0) , (−a, 1 − b, 1) , (0, 0, 1),

respectively and S(1−b)−1,−a−1 transforms these points to

(1, 0, 0) , (0, 1, 0) , (1, 1, 1) , (0, 0, 1),

respectively.

The following corollary is an obvious result of the last
theorem:

Corollary 3.3: The coordinatization of M(A) is indepen-
dent of the choice of the coordinatization base.

From now on, we carry over some concepts related to 6-
figures to the M(A), in view of the paper of [6].

A 6-figure is a sequence of six non-neighbour points
(ABC,A1B1C1) such that (A,B,C) is 3-gon, and A1 ∈
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BC,B1 ∈ CA,C1 ∈ AB. The points A, B, C, A1, B1, C1 are
called vertices of this 6-figure. The 6-figures (ABC,A1B1C1)
and (DEF,D1E1F1) are equivalent if there exists a
collineation of M(A) which transforms A, B, C, A1, B1,
C1 to D, E, F, D1, E1, F1 respectively. Now, we give a
theorem from [6].

Theorem 3.4: Let μ = (ABC,A1B1C1) be a 6-figure in
M(A). Then, there is an m ∈ U such that μ is equivalent
to (UV O, (0, 1, 1)(1, 0, 1)(1,m, 0)) where U = (1, 0, 0),V =
(0, 1, 0),O = (0, 0, 1) are elements of the coordinatization
basis of M(A).

We again give a theorem from [6]. Note that the proof of
this theorem is more shorter.

Theorem 3.5: The 6-figures

(ABC,A1B1C1), (BCA,B1C1A1), (CAB,C1A1B1)

are equivalent.

Proof: By Theorem 3.4 we may without loss of generality
take (UV O,U1V1O1) instead of (ABC,A1B1C1), where

U1 = (0, 1, 1), V1 = (1, 0, 1), O1 = (1,m, 0)

with m ∈ U. The collineation

h := Sm,1 ◦ I2 ◦ I1
transforms (UV O,U1V1O1) to (V OU, V1O1U1) and also
(V OU, V1O1U1) to (OUV,O1U1V1).
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