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3D Object Model Reconstruction Based on
Polywogs Wavelet Network Parametrization

Mohamed Othmani, Yassine Khlifi

Abstract—This paper presents a technique for compact three
dimensional (3D) object model reconstruction using wavelet
networks. It consists to transform an input surface vertices
into signals,and uses wavelet network parameters for signal
approximations. To prove this, we use a wavelet network architecture
founded on several mother wavelet families. POLYnomials
WindOwed with Gaussians (POLYWOG) wavelet families are used
to maximize the probability to select the best wavelets which
ensure the good generalization of the network. To achieve a better
reconstruction, the network is trained several iterations to optimize the
wavelet network parameters until the error criterion is small enough.
Experimental results will shown that our proposed technique can
effectively reconstruct an irregular 3D object models when using
the optimized wavelet network parameters. We will prove that an
accurateness reconstruction depends on the best choice of the mother
wavelets.

Keywords—3D object, optimization, parametrization, Polywog
wavelets, reconstruction, wavelet networks.

I. INTRODUCTION

PARAMETERIZATION is an important component in
various computer graphics and geometry processing

applications, such as surface fitting, 3D modeling, medical
visualization, mesh compression, remeshing and 3D face
recognition [7], [14]. However, surfaces represented by 3D
meshes may contain noise or some unrequired details which
add a complexity to the 3D object geometry and topology.
Therefore, it has great practical significance to find a new
technique with better filtering precision and noise suppression.
Wavelet networks can be treated as a universal tool for
anti-noise signal processing and image reconstruction [2],
[8], [16]. The most used approach in the community of
signal processing is frequency spectra construction using
decompositions in databases functions [12], [6]. Wavelet
networks combine some of the useful classification properties
of Neural Networks with the localization and feature
extraction properties of wavelets [10]. Wavelet networks
replace the global sigmoidal activation units of the classic
feedforward Neural Networks with wavelets, while preserving
the network’s universal approximation property. In recent
years, wavelet networks combining the best features of time
and frequency methods are rapidly becoming a new approach
for anti-noise signal processing and Multidimensional data
reconstruction [4], [11], [15]. They have the benefit capability
to adapt their parameters to changes in the environment and

Mohamed Othmani is with the University College in Jamuom,
Umm Al-Qura University, Makkah, King of Saudi Arabia (e-mail:
mohamed.othmani@yahoo.fr).

Yassine Khlifi is with the E-learning and Distance Learning Deanship,
Umm Al-Qura University, Makkah, King of Saudi Arabia (e-mail:
Khlifi.yassine@gmail.com).

are able to provide instantaneously an estimation of the output
values for input values. Wavelet networks already have been
proven to perform better than scalar wavelets in applications
like image reconstruction, 1D and 2D data approximation and
reconstruction [3], [8] and 3d modeling [9]. The technique
that we will use to reconstruct an object based on wavelet
networks parameterization. The general idea can be stated as
reconstructing a model of an object by approximating a finite
set of points in the space belonging to it.

II. WAVELET NETWORK ARCHITECTURE

The wavelet network architecture proposed by Zhang and
Benveniste [10], provides a link between the neural network
and the wavelet decomposition. A wavelet network with one
output y, Ni inputs x1, x2, ..., xNi

and N wavelets can be
parameterized as follows:

f(x) =

N∑
i=1

ωiψi(x) (1)

where the network parameters are ωi ∈ �, di ∈ �∗ and
ti ∈ �d, correspond respectively to the wavelet coefficient,
dilation parameter and translation parameter. Wavelets ψi, are
dilated and translated versions of a single function ψ termed
the ”mother wavelet”: �d :−→ � :

ψi = ψ(di(x− ti)) (2)

with
ψ(di(x− ti)) =

1√
di
ψ(

x− ti
di

) (3)

The wavelet network contains only one hidden layer. In
total, it is composed of three layers: input layer, hidden layer
and output layer. The input layer consists of simple vectors
whose entries are equal to outputs: these are the values of
input data. The hidden layer contains neurons wavelet type
or activation functions. The output layer contains the network
output values. Between the hidden layer and output layer there
are the connection weights. These are used to calculate the
network output, which is a linear combination of wavelets in
the hidden layer, weighted by the connection weights. The
wavelet network architecture is illustrated in Fig. 1.

The proposed wavelet network architecture shown in Fig.
2 is an extension of our previous works [8]applied to
multidimensional signal inputs. The classic uses dilation
and translation versions of only one mother wavelet,
besides the proposed version constructs the network by the
implementation of several mother wavelets in the hidden layer.
The objective is to maximize the potentiality to select the
best wavelets that make a good approximation to the signal.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:7, 2016

1290

Fig. 1 The classic wavelet networks architecture

This wavelet network architecture with one output f , can be
expressed by the following equation:

f(x) =
M∑
j=1

NMw∑
i=1

ωj
iψ

j
i (x) +

Ni∑
k=1

akxk + b (4)

x = [x1, x2, ..., xNi]
T is the vector of inputs. Functions ψj

i ,
are dilated and translated versions of a several mother wavelets
ψj . The number of selected wavelets for each mother wavelet
family depends on the wavelet family and the choice of the
mother wavelet. Concerning the other parameters: a ∈ �d ,
b ∈ � are the linear coefficients and bias term. This wavelet
network architecture can be viewed as a network with an input
vectors of Ni components, a hidden layer that is constituted of
NMw wavelets of M Polywogs mother wavelets; each belongs
to a wavelet family of Nl(l = [1, ...,M ]) size and a linear
output neuron.

III. POLYWOGS WAVELET NETWORK PARAMETERIZATION

As already presented in the previous paragraph, there are
four main parameters to adjust in a the proposed network: the
activation functions type (mother wavelet) for each wavelet,
the structural parameters (translation, dilation) of the mother
wavelet and the connections weights between the hidden
wavelet layer and the output layer. Changing one of these
parameters causes a change in network behavior. The wavelet
network advantage is that when the wavelet parameters are
determined, the connection weights parameter becomes simple
because the dependence of the network weights is linear. It can
also use an additional parameter: bias. The network expression,
according to these parameters, is presented by (4).

A. Activation Functions

Several choices of the wavelets are available. Best known
wavelets are certainly those which are the Haar system in the
orthogonal wavelet context. The Haar system functions are
not differentiable, it is not possible to apply the algorithms to
estimate parameters, such as wavelet networks. Therefore, to
construct the networks we used POLYnomials WindOwed with
Gaussians (POLYWOG) wavelet families. These functions
are differentiable and have the universal approximation
proprieties.

B. Translation and Dilation

The variation pitch of the parameters of translation in time
t and d dilation depend on each other, and are defined by:

d = d−m
0 , t = kt0d

−m
0 , d0 > 1, t0 > 0, m, k ∈ IN

(5)
In our network, the parameters d0 and t0 are defined as

follows : d0 = 2 and t0 = 1. So, each wavelet are dilated by
a factor of 2−m and translated by a factor of 2−mk.

C. Connection Weights

The weights are generally determined by the method of
least squares. The performance criterion, the most used, is a
criterion for the correction error in the sense of least squares.
The problem is to find a weight parameters w such the sum
of squared errors defined by SSE (6) is minimum.

SSE(w) =

N∑
n=1

({
M∑
j=0

Nl∑
i=1

ωj
iψ

j
i (xn) +

Ni∑
k=0

akxk + b)− ynk }2

(6)
where ynk the kth output target value for the index n.

D. Bias

The term independent bias can be added to the model.
Therefore, it is an important parameter which cheek a
stabilizing role for the network: it serves to offset the
difference between the mean value of network output(on
all training points) and the mean value of target values. If
the wavelet network is considered without bias, the general
expression of the outputs, for any vector x = (x1, x2, ..., xN )
space entry is:

f(x) =
M∑
j=1

Nl∑
i=1

ωj
iψ

j
i (xn) (7)

In our approach, we added the bias to stabilize the network,
so the outputs become :

f(x) =

M∑
j=1

Nl∑
i=1

ωj
iψ

j
i (xn) + f (8)

Supposing that f = (ω0
1 , ..., ω

0
M ). However, the term bias f

can be inserted into the summation by adding a basic function
fictitious, ψ0

0 , which is not a wavelet, but the function constant
1:

f(x) =
M∑
j=0

Nl∑
i=1

ωj
iψ

j
i (xn) (9)

with w the weight vector, xn the training set value of index
n. This term adds a component to be determined. Knowing
the expression output of the network, the Sum of Squared
Errors (SSE) between these outputs and target values can be
calculated as:

E(w) =
1

2

N∑
n=1

{
M∑
j=0

Nl∑
i=1

ωj
iψ

j
i (xn)− ynk }2 (10)
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Fig. 2 The proposed wavelet networks architecture

Fig. 3 The Polywog wavelets

where ynk the kth output target value for the index n. The
expression of the error can now be derived from the kth

component of the vector bias w0
k

∂E

∂w0
k

=

N∑
n=1

{
M∑
j=1

Nl∑
i=1

ωj
iψ

j
i (xn) + w0

k − ynk } (11)

The error is minimum for:

∂E

∂w0
k

= 0 ⇒ w0
k = yk −

N∑
n=1

{
M∑
j=1

Nl∑
i=1

ωj
iψ

j
i (xn)} (12)

with yk = 1
N

∑N
n=1 yk and with ψj

i (xn) =
1
N

∑N
n=1 ψ

j
i (xn)

that is used to explain the bias value equal to the difference
between the mean target values and the mean output values of
the network.

IV. RECONSTRUCTION PROCEDURE

The reconstruction procedure has several steps to achieve:
• We generate a set of vertices O = {v = (xv, yv, zv) ∈

�3} with coordinates: xv , yv and zv .
• We associate to every coordinate xv , yv and zv an one

dimensional signal which interpolate all vertices of the
object O. Therefore, these signals become the wavelet
network inputs.

• We initialize the wavelet network parameters by creation
of a library which composed of several Polywogs mother
wavelets.

• We select the best wavelet from this library using
Orthogonal Least Squares (OLS) to construct the network
hidden layer.

• we apply an optimization method to update the wavelet
network parameters.

• We calculate the new position V of each vertex v
of the object O using a wavelet network parameters
to reconstruct object. Therefore, the 3D objects
reconstruction can be transformed as an approximation
of these signals using wavelet network.

A. Network Initialization

The first step in the reconstruction process consists of
creation of the wavelets family library. This library is
generated by a several Polywog mother wavelets family and
it will be used to construct the network. The library elements,
generated by distributing the parameters on a dyadic grid, are
grouped in levels on the basic of the dilation and translation
parameters. This choice presents the advantage not only to
enrich the library, but also to get an efficiency performance
for a given wavelet number. The inconvenience introduced by
this choice concerns the size of the library. A wavelet library
having several wavelets families is more voluminous than
the one that possesses the same wavelet mother. It implies a
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more elevated calculation cost during the process of selection.
Nevertheless, using a selection algorithms, in the selection of
wavelets is often shorter than the training of the dilations and
translations; the supplementary cost introduced by different
versions can be therefore acceptable. Let x be the variable, ti
the translation parameter and di the dilation parameter. The
wavelet ψj

i of the mother wavelet family ψj is defined as:

ψj
i = ψj(di(x− ti)) (13)

wavelet library W, generated from the mother wavelet families,
is defined as:

= {ψ1(di(x− ti)), ..., ψ
j(di(x− ti)), ..., ψ

M (di(x− ti))}
(14)

B. Wavelet Selection Method

The library size is usually excessively large, subset model
selection is necessary. Optimal subset selection techniques
are computationally prohibitive and impractical. The practical
method is the forward selection, and the OLS procedure [13]
which is an efficient implementation of this subset selection
procedure. For the best selection, we used the OLS procedure
for subset model selection [8]. Let us note the original W
library has L = M ∗ N columns. To create a parsimonious
model which has K significant parameters, we are actually
trying to pick K columns from the input library W to
form the optimal output wavelet network f . The objective
of this algorithm is to select columns from the input library
sequentially. The column that provides the best combination
with the output f to model the signal Y will be picked to
form the new output f . The OLS procedure automatically
uses the orthogonalization techniques to eliminates duplication
of information in the library. The orthogonalization is made
very efficient by employing orthogonalization of the modified
Gram-Shmidt [5].

C. Parameter Optimization

This phase is used to construct the wavelet network
by optimizing its parameters, namely, their weight and
their structural parameters (dilations, translations) to identify
the relationship between the signal data (input - output).
At each iteration, the optimization algorithm adjusts the
network parameters to minimize the error between the
input data and those are obtained by propagation through
the wavelet network. Therefore, to estimate the network
parameters, we need an optimization algorithm such as
”back-propagation”. In general, choosing a method of
selection being made, it remains to choose the optimization
algorithm to optimize the parameters. The optimization
method adopted to adjust the proposed network parameters
is based on Levenberg-Marquardt algorithm [1]. This is very
well suited to wavelet network training where the performance
index is the mean squared error. We define the mean square
error of training (MSE) as:

MSE(ωi, ti, di) =
1

Ni

Ni∑
k=1

(Y (k)− f(xk))
2 (15)

Fig. 4 The original Feline and Happy Buddha objects

where Y (k) which is the desired output corresponding to the
signal data example k, and f(xk) is the wavelet network output
corresponding to the example k.

D. Approximation Phase

After the optimization phase, the wavelet network is
constructed using an optimal parameters. These parameters
make an efficient approximated for each input signals with
a good filtering precision and noise suppression. Therefore,
the 3d object will be reconstructed by these wavelet network
parameters and the generated object vertex will be defined as
follows:

ON = {VN = (xN , yN , zN )T ∈ �3} (16)

where xN , yN and zN are the approximated signals data.

V. EXPERIMENTAL RESULTS

To evaluate the performance of this proposed technique,
we used a wavelet network whose library consists of several
Polywog wavelets. The Polywog wavelets are defined as a
mother wavelets and used to construct the wavelet networks.
As a performance index, we adopt the Mean of Square
Errors (MSE) and the Normalized Square Root of the Mean
Square Error (NSRMSE). The normalization is made over the
empirical deviation of the output patterns. The MSE and the
NSRMSE are defined as:

MSE =
1

Ni

Ni∑
k=1

(ON (xNk, yNk, zNk)−O(xk, yk, zk))
2

(17)

NSRMSE =

√√√√
∑Ni

k=1(ON (xNk, yNk, zNk)−O(xk, yk, zk))2∑Ni

k=1(O −O(xk, yk, zk)))2

(18)
where O is the original object, k is the number of observations
and O =

∑Ni

k=1 O(xk, yk, zk).
For the simulation, we used an irregular high-dimensional

objects: ”Feline” and ”Happy Buddha” (Fig. 4) with a special
form, which represent the various deformations and folds. So,
it is not easy to model the details of these objects. If we
successful to reconstruct these objects we can say that the
proposed technique is reliable and efficient to reconstruct a
3D object independent to its forms.

The 3D object used as input to the network is provided by
VRML files. So, the vertices and their corresponding normal
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TABLE I
MSE AND NSRMSE FOR THE OBJECTS USING POLYWOGS WAVELET

NETWORKS

Feline H Buddha
Wavelet number 300 350 300 350
Polywog1 50 57 60 71
Polywog2 55 62 70 64
Polywog3 57 65 43 55
Polywog4 70 87 56 82
Polywog5 68 79 71 78
MSE 4.1684e-5 8.2285e-7 7.6317e-08 7.1521e-09
NSRMSE 8.8511e-3 1.2435e-3 3.6539e-3 1.1185e-3

TABLE II
MSE AND NSRMSE FOR THE FELINE OBJECT USING CLASSIC WAVELET

NETWORKS WITH 350 WAVELETS

Wavelets Polywog1 Polywog2 Polywog3 Polywog4
Feline
MSE 3.02484e-3 7.30474e-3 1.95822e-3 3.29988e-3
NSRMSE 7.53982e-2 3.7052e-2 6.06653e-2 7.87514e-2
H Buddha
MSE 3.05864e-05 7.08267e-06 2.86787e-06 2.0829e-06
NSRMSE 7.31504e-2 3.52007e-2 2.23992e-2 6.03653e-2

values of a 3D object model given by the VRML are used
to create a training set. We proved that the Polywogs wavelet
network is adequate for reconstruction complicated objects.
The only unknown variable is the number of hidden wavelets.
There is no known efficient, fail proof way of determining this
number for the specific problem.

In these simulation results, each subset input pattern
contains 1000 points. Table I gives the mean square error
and the final normalized square root of the Mean Square
Error after 100 training iterations using the proposed technique
constructed with 300 and 350 wavelets in hidden layer
and based on Polywog mother wavelets. For example, to
reconstruct the ”Feline” object, which is composed of 49919
vertex, using a wavelet network composed of 350 wavelets
we obtained a MSE of 8.2285e-7 and a NSRMSE of
1.2435e-3. From this table we see clearly that increasing
wavelet number in hidden layer increase the approximation
capacity. But increasing the wavelet number increases time
cost and algorithm complexity. Also to perform these criterions
(MSE and NSRMSE) we can increase the iterations number
in the training stage, but in the same way as increasing
wavelet number, time cost and algorithm complexity increase
considerably. To compare the performances of the proposed
technique we proceed by using the wavelet network composed
of Polywog1, Polywog2, Polywog3, Polywog4 and Polywog5
wavelets against the classic wavelet network composed of only
one mother wavelet, we intend to reconstruct ”Feline” and
”Happy Buddha” objects using classic wavelet networks in
the same condition as the object examples using the proposed
technique with 350 Polywog wavelets in hidden layer. Table II
represent the MSE and NSRMSE of the object reconstructions.
The number of wavelets selected to construct the wavelet
network is very important and depends on the form of the
3d object. for example, to reconstruct the ”Happy Buddha”
object, which is composed of 32328 vertex, we used 350
wavelets. The Polywog wavelet network is constructed with
71 wavelets from Polywog1, 64 wavelets from Polywog2, 55

Fig. 5 The Results of 3D reconstruction with the following number of
POLYWOG wavelets ((A):300 wavelets, (B):350 waveles)

wavelets from Polywog3, 82 wavelets from Polywog4 and 78
wavelets from Polywog5. The selected number for each mother
wavelets is generated automatical during the reconstruction
procedure phases.

When comparing Tables I and II we can say that the
performances obtained in term of MSE ans NSRMSE using
the new technique based on Polywogs wavelet networks are
often very better that the one obtained with the classic. This
shows that the proposed procedure brings effectively a good
reconstruction capacity using the several mother wavelets.

When comparing Figs. 5 and 6 which are obtained with
the proposed architecture and the other one which is obtained
with classic, we can say that the new technique present
the advantage of constructing the network by several mother
wavelets. For that we used a Polywog mother wavelets family
to achieve an accurateness performance and to improve the
reconstruction quality. Based on these experiment results,
We can conclude that the 3D objects reconstruction by
wavelet networks is not reliable with the classic wavelet
network. It cannot reconstruct the object form clearly,
however, the proposed technique achieves a good precision of
reconstruction in terms of error and in term of representation
without noise.

VI. CONCLUSION

This paper presents our technique for the 3D object
reconstruction using Polywog wavelet network parameters.
To achieve an accurateness reconstruction, we used an initial
and selected phase to select best wavelets for every mother
wavelet. The network is trained several iterations to optimize
the wavelet network parameters, until the error criterion
is small enough. Some simulations treated to compare the
capacity of reconstruction using the proposed and the classic
wavelet networks . We deduce from these simulations that
the reconstruction quality depends a lot on the choice of the
activation function (wavelet) used in hidden layer and on their
localization. We prove that the new technique is able to model
the 3D objects with an efficiency reconstruction.
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Fig. 6 The results of 3D Feline object reconstruction constructed with 350
wavelets using classical network with: Polywog1 to Polywog4, from (A) to

(D)
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