
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

486

 

 

 Abstract— The direct implementation of interleaver functions 
in WiMAX is not hardware efficient due to presence of complex 
functions. Also the conventional method i.e. using memories for 
storing the permutation tables is silicon consuming. This work 
presents a 2-D transformation for WiMAX channel interleaver 
functions which reduces the overall hardware complexity to 
compute the interleaver addresses on the fly.  A fully re-
configurable architecture for address generation in WiMAX 
channel interleaver is presented, which consume 1.1 k-gates in 
total. It can be configured for any block size and any modulation 
scheme in WiMAX. The presented architecture can run at a 
frequency of 200 MHz, thus fully supporting high bandwidth 
requirements for WiMAX.  

 
Keywords—Interleaver, deinterleaver, WiMAX, 802.16e.  

I. INTRODUCTION 

ILICON COST of the permutation tables for interleaver 
iimplementation used in the conventional approaches 

can be very high if the device is supporting many variants 
inside a particular standard. Low cost on-the-fly address 
computation with supporting multiple variants has been a 
challenge due to presence of complex functions. Therefore a 
low cost and re-configurable architecture for address 
computation is always beneficial. IEEE 802.16e [1] called 
WiMAX is being used in the communication industry with 
many variants in channel coding, like different block sizes 
and different modulation schemes (e.g. BPSK, QPSK, 16-
QAM and 64-QAM). System level overview for WiMAX 
showing use of channel interleaver is shown in Fig. 1. The 
type of interleaver used here is the block interleaver, in 
which the data is written sequentially in a memory and read 
in a random order after applying certain permutations. The 
block interleaver can also be considered as a row-column 
matrix. In this case, data is written row-wise in a memory 
configured as a row-column matrix and then read column-
wise after applying certain intra-row and inter-row 
permutations. Some work [2] – [4] has been published for 
the hardware implementation of WiMAX interleaver in 
different scenarios, but no mathematical formulation has 
been proposed behind the implementation. This paper 
emphasizes on reduction in complexity of the address 
generation by 2-D transformation of the original interleaving 
functions. Section II of this paper introduces the interleaving 
 

R. Asghar is with Department of Electrical Engineering, Linköping 
University, SE-58183, Linköping, Sweden (phone: +46 (0)13 28 2313; fax: 
+46 (0)13139 282 ; e-mail: rizwan@ isy.liu.se). 

D. Liu is with Department. of Electrical Engineering, Linköping 
University, SE-58183, Linköping, Sweden (e-mail: dake@ isy.liu.se). 

functions being used for WiMAX channel interleaver, 
whereas section III presents the 2-D transformation steps in 
detail to reach to the optimum hardware. Section IV 
describes the implementation of complete hardware, 
followed by a conclusion in section V. 

II. WIMAX CHANNEL INTERLEAVER 

WiMAX uses Read-Solomon and convolutional encoding 
followed by an interleaver as shown in Fig. 1 to detect and 
correct errors to improve the performance of the 
communication system. Different interleaving patterns apply 
for different modulation schemes BPSK/QPSK, 16-QAM 
and 64-QAM. The block interleaver for channel interleaving 
in WiMAX is expressed in the form of a set of two 
equations for two steps of permutations. The first step 
ensures that adjacent coded bits are mapped onto non-
adjacent subcarriers, while the second step ensures that 
adjacent coded bits are mapped alternately onto less or more 
significant bits of constellation, thus avoiding long runs of 
lowly reliable bits.  

The first permutation ݉௞ for index ݇ is defined by: 

( )%cbps
k

N k
m k d

dd
= ⋅ +⎛ ⎞ ⎢ ⎥

⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (1)

Here ௖ܰ௕௣௦ is the block size corresponding to number of 
coded bits per allocated sub-channels per OFDM and typical 
value for ݀ used in WiMAX is 12 and 16. The operator % is 
defined as the modulo function computing the remainder 
and the operator ۂݔہ is the floor function i.e. rounding 
towards zero. The second permutation ݆௞ for index ݇ is 
given by:  

%kk
k k cbps

cbps

mm dj s m N s
Ns

⋅= ⋅ + + −
⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

(2)

Rizwan Asghar and Dake Liu 

2-D Realization of WiMAX Channel Interleaver 
for Efficient Hardware Implementation 

S

 

Fig. 1.  Overview of encoding in WiMAX channel. 

Channel

Randomizer FEC Enc.
(RS and CC) Interleaver Mapper

De-
Randomizer

FEC Dec.
(RS and CC)

De-
Interleaver De-Mapper

From
PHY
/MAC

To
PHY
/MAC



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

487

 

 

The parameter ݏ is defined as ݏ ൌ ݈ܿ݁݅൫ ௖ܰ௣௖/2൯, where 
௖ܰ௣௖ is number of coded bits per sub-carrier, i.e., 1, 2, 4 or 6 

for BPSK, QPSK, 16-QAM or 64-QAM respectively and 
ceil operation is rounding towards infinity. The de-
interleaver, which performs the inverse operation, is also 
defined by the two permutations. Let ݊ be the index of 
received bits within the received block of ௖ܰ௕௣௦ bits. The 
first permutation ݉௡ for index ݊ is defined by: 

%n
cbps

nn dm s n s
Ns

⋅= ⋅ + +
⎛⎛ ⎢ ⎥⎞ ⎞⎢ ⎥
⎜⎜ ⎟ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝⎝ ⎣ ⎦⎠ ⎠

 (3)

The second permutation ݇௡ for index ݊ is given by: 

( )1 n
cbpsn n

cbps

m
dNk d m

N
⋅−= ⋅ − ⋅

⎛ ⎢ ⎥⎞
⎜ ⎟⎢ ⎥⎝ ⎣ ⎦⎠

 (4)

The range of ݊ and ݇ for eq. (1) to (4) is defined as 0, 1, 
2, . . . . ሺ ௖ܰ௣௕௦ െ 1ሻ. The next section presents the 
simplification steps needed to reach to hardware efficient 
architecture. 

III. 2-D TRANSFORMATION OF INTERLEAVER 
FUNCTIONS 

If we try to implement the two steps of permutations by 
direct computation then they are found to be quite hardware 
inefficient. This is due to the presence of complex functions 
like floor function and modulo function.  

The alternate is to consider the two steps as one step and 
find the correlation between input and output which should 
be hardware efficient. We present here the idea of realizing 
the one dimensional equations into a joint 2-dimensional 
expression. It is not necessary to transform both set of 
equations to 2-D space and implement separately, as they 
are inverse of each other. Thus only one set of equations can 
be transformed for efficient hardware implementation and 
same can be used for other by just swapping the order of 
read and write of data into memory. The following sub-
sections present the transformation steps for all kinds of 
modulation schemes used in WiMAX.  

A.  BPSK / QPSK 

Due to ceil operation the parameter ݏ is 1 for both BPSK 
and QPSK. Defining ܰ ൌ ௖ܰ௕௣௦ eq. (3) simplifies to  
݉௡ ൌ ݊ ൅ 0 ൌ ݊, and therefore eq. (4) becomes:    

( )( )1n
d n

k d n N
N

⋅
= ⋅ − ⋅−

⎢ ⎥
⎢ ⎥⎣ ⎦  

n
N d nd n

k d n
d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

 

n n nk d β γ= ⋅ +  (5)

Where ߚ௡ and ߛ௡ are defined as: 

and
/

n n
N d n d n n

n
d N N N d

β γ
⋅ ⋅

= − ⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Due to the presence of floor function, it is difficult to 
work out a complete algebraic solution for these equations, 
however looking at the behavior of different terms and 
verifying for all possible block sizes, we try to re-structure 
the equations. MATLAB is used for verification of new 
structures at all stages. For a simple illustration, an example 
case of BPSK with 2 sub channels and ݀ ൌ 16, ܰ ൌ 32, is 
taken and behavior of  ߚ௡ is analyzed against the index ݊. 

2
2

n
n

nβ = − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦  

( )0 0 0%2n nn β β= → = → =  

( )1 1 1%2n nn β β= → = → =  

( )3 0 2% 2n nn β β= → = → =  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

( )1 %2n nn n nβ β= → = → =  

After checking all cases for BPSK and QPSK (i.e. sub-
channels 1,2,4,8,16), ߚ௡ can be generalized as: 

( )%n
N

n
d

β =  

Thus for BPSK or QPSK case, eq. (5) can now be written 
as : 

( )%n
N d n

k d n
d N

⋅
= ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦  (6)

Introducing 2 dimensions ݅ and ݆ (i.e. a two dimensional 
array), for which ݆ increments when ݅ expires, the ranges for 
݅ and ݆ can easily be selected as mentioned below: 

( ) ( )0,1, ...... ' '1 %
N N

i which satisfies against n if i n
d d

= =− (7)

0,1, ....... ( 1) ' '
/

n
j d withbehavior against n j

N d
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦  (8)

The interleaver can now be realized as a 2D row-column 
matrix with size ݅ ൈ ݆. Total number of columns is ݀, 
defined by the limit on ݆ and total number of rows is ܰ/݀. 
Eq. (6) can be written in the form: 

,n i jk k d i j≡ = ⋅ +  (9)

Here ݅ and ݆ are row and column counters respectively but 
at the same time, they also provide the inter-row and inter-
column permutations. The case of BPSK and QPSK is the 
simplest one as it does not carry any specific inter-row or 
inter-column permutation pattern due to the parameter ݏ ൌ



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

488

 

 

1. That is why we end up with a relatively simple hardware 
needing just an addition and a multiplication, but it provides 
us the basis for analysis for 16-QAM and 64-QAM which 
are more complicated. 

B.  16-QAM 

The parameter ݏ is 2 for 16-QAM therefore eq. (3) and 
eq. (4) can be written as: 

2 % 2
2n

d nnm n
N

⎛ ⎞⎛ ⎞⋅⎢ ⎥⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
 (10)

nn
n n

N d md m
k d m

d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

 (11)

Two terms can again be defined as ߚ௡ and  ߛ௡ . 

and
.n n

n n n
N d m d m

m
d N N

β γ
⋅

= − ⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (12)

Therefore n n nk d β γ= ⋅ +  

After verifying for all the range for WiMAX, the 
parameter ߛ௡ can be written as: 

. .

/
n

n
d m d n n

j
N N dN

γ = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦  (13)

However, it does not mean that ݉௡ is equal to ݊ all the 
time. This is valid only due to the presence of floor function 
around it. Using definitions in eq. (10) and eq. (13), ߚ௡ can 
be re-written as: 

2 % 2
2n

Nd n d nn n
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(14)

Now we try to re-arrange this equation to find some new 
structure which is similar to eq. (9). For illustration purposes 
some steps for the 16-QAM example case with ݀ ൌ 16 and 
ܰ ൌ 64 are given below: 

( )
( ) ( ){ }( )

0 0 0 1 0 % 2

( 0 1 ) ( 0 1 )1 0 % 2 0 % 20 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

 

( )
( ) ( ){ }( )

1 1 1 1 0 % 2

(1 1 ) (1 1 )1 1 % 2 0 % 21 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

 

( )
( ) ( ){ }( )

2 2 2 1 0 % 2

( 2 1 ) ( 2 1 )1 2 % 2 0 % 22 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

 

( )

( ) ( ){ }( )

3 3 3 1 0 % 2

( 3 1) 1 ( 3 1)3 % 2 3 % 2 0 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

 

( )

( ) ( ){ }( )

4 1 0 1 1 % 2

( 0 1 ) 1 ( 0 1 )0 % 2 0 % 2 1 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

 

( )

( ) ( ){ }( )

5 1 1 1 1 % 2

(1 1 ) 1 (1 1 )1 % 2 1 % 2 1 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

( ) ( )

( ) ( )( ){ }
, 1 % 2 % 2

( 1 ) 1 % 2 % 21

n i jr ij j

i i ii

β ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦

≡ = +−

+ − + −

×
(15)

Where ݅ and ݆ are defined with ranges as mentioned in eq. 
(7) and eq. (8) i.e. 

%
/

N ni a n d jn
d N d

⎛ ⎞ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

= =  

Verifying for all the cases in 16-QAM, we reach to a new 
structure for ߚ௡ as given in eq. (15). This structure is not as 
simple as that of BPSK/QPSK case. The reason is the 
presence of permutation pattern in 16-QAM case. 
Considering the 2 dimensions ݅ and ݆, the 2D transformation 
of interleaver for 16-QAM can be described as: 

, ,n i j i jk k d r j≡ = ⋅ +  (16)

The parameter ݎ௜,௝ provides an intra-row permutation 
pattern sequence for selective columns, such that a 
permutation is applied for all alternate columns ሺ2ݕ ൅ 1ሻ௧௛ 
and no permutation is applied for each 2ݕ௧௛ columns, where 
ݕ ൌ 1,2, … … … … ݀/2. Considering total number of rows as 
ܴ, the required inter-row permutation for row number 
݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1 and ݅ െ 1 for each 2݅௧௛ and 
ሺ2݅ ൅ 1ሻ௧௛ row respectively. Looking at eq. (16), the generic 
structure for 16-QAM is same as that of eq. (9) except the 
additional complexity for selective row permutation. The 
structure of eq. (16) is easy to implement with a row and 
column counter ݅ and ݆. The terms with modulo function can 
be controlled by just the LSB of corresponding variable and 
the rest can be managed by a lookup table (LUT) or an 
adder. As number of rows in the block can be many (upto 96 
for WiMAX) thus use of LUT is not efficient here. Instead 
we can use a 7 bit adder, which can also give the benefit of 
generalizing the implementation. The hardware realization 
for interleaver address generation for 16-QAM in WiMAX 
is shown in Fig. 2. 

C.  64-QAM 

As number of coded bits per sub-carrier are 6 for 64-
QAM transmission, thus using the parameter ݏ ൌ 3, eq. (3) 
is written as:    

 

Fig. 2.  HW realization for 16-QAM interleaving in WiMAX. 

A
x

B

Total
Col

i_addr
j

0

1

i

‘1’

j[0]

i[0]

ri,j

+/- +



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

489

 

 

3 % 3
3n
n d nm n

N
⎛ ⎞⎛ ⎞⋅⎢ ⎥ ⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

 (17)

Defining the two terms ߚ௡ and  ߛ௡ as given in eq. (12) and 
eq. (13) we can write expression for ߚ௡ for 64-QAM as: 

3 % 3
3n

Nn d n d nn
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(18)

Again applying the same re-structuring exercise as we did 
for 16-QAM case, we reach to an even more complicated 
2D-structure for ߚ௡. Due to increased complexity for 
permutation patterns for 64-QAM the intermediate steps 
carry much longer terms, thus we directly present the final 
structure for ߚ௡. 

( )
( )

( )[ ]
( ) ( )

( )

( )

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

,
' ' 1

1 '
2

' ' 1
2 1 '

2
' ' 1

'( ' 1)
'1

2

' '' 2' 1 ' 1

2 '1 1 ' ' 1

n i j
j j

ij

i i
i i

j j
i i

ii

i ij ij i

ii i i

rβ −
= ⋅+−

−
+− −

+ − −
−

+ −+

−+− −
+

+ +− − −

⇒ ⎡ ⎤
⎢ ⎥⎣ ⎦

⎧ ⎧ ⎡ ⎤ ⎫⎫
⎢ ⎥⎪ ⎪ ⎪⎪⎣ ⎦

⎨ ⎨ ⎬⎬
⎡ ⎤⎪ ⎪ ⎪⎪
⎢ ⎥⎩ ⎩ ⎣ ⎦ ⎭⎭

⎧ ⎧ ⎫⎫
⎨ ⎨ ⎬⎬
⎩ ⎩ ⎭⎭

(19)

Here ݅ and ݆ are row and column count respectively, with 
the ranges mentioned in eq. (7) and eq.(8). The new 
parameters ݅Ԣ and ݆Ԣ are defined as below: 

( )' % 3 and ' % 31i j ji= =+  

The term ߚ௡ for 64-QAM provides the selective inter-row 
permutation for every ሺ3݆ ൅ 1ሻ௧௛ and ሺ3݆ ൅ 2ሻ௧௛ column. 

The permutation for all these columns is within 3 rows and 
afterwards it is repeated. Considering total number of rows 
as ܴ, the inter-row permutation in ሺ3݆ ൅ 1ሻ௧௛ columns for 
row number ݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1, ݅ ൅ 1, ݅ െ 2 for 
3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively. The inter-
row permutation for ሺ3݆ ൅ 2ሻ௧௛ columns is ݅ ൅ 2, ݅ െ 1 and 
݅ െ 1 for 3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively. 
Examples of address permutations for 16-QAM and 64-
QAM with small block sizes are shown in Fig. 3, which also 
correspond to the permutation patterns described here.  

Although eq. (19) looks very long and complicated, but 
eventually, we get a hardware efficient solution. 
Additionally we stick to the generic interleaver hardware for 
all types of modulation schemes. The implementation of 
modulo terms ݆%3 and ሺ݅ ൅ 1ሻ%3 and some other terms 
inside braces are easier to generate through a very small 
lookup table. Eq. (16) holds for 64-QAM case as well with 
 ௜,௝ given by eq. (19). The hardware realization for 64-QAMݎ
interleaver is shown in Fig. 4. 

IV. IMPLEMENTATION 

The implementation of interleaver hardware for 64-QAM 
can covers most of the computational requirements for other 
modulation schemes with small glue logic. This is due the 
fact that the final implementation equations for all the cases 
have the same structure. Combining the interleaver structure 

 

Fig. 3.  Examples of data interleaving for (a) 16-QAM, N=64;  
(b) 64-QAM, N=96. 

 

Fig. 4.  HW realization for 64-QAM interleaving in WiMAX. 

 

Fig. 5.  Flow Graph for Channel Interleaving in WiMAX. 

0 . . . .17 34 29 46 15

16 . . . .33 2 45 14 31

32 . . . .1 18 13 30 47

48 . . . .65 82 77 94 63

64 . . . .81 50 93 62 79

80 . . . .49 66 61 78 95

(b)

0 . . . .17 2 29 14 31

16 . . . .1 18 13 30 15

32 . . . .49 34 61 46 63

48 . . . .33 50 45 62 47

(a)

A
x

B

Decoding
Logic i

Total
Col

i_addr

C[3:0]

j

(i+
1)

%
3

Logic ‘1
’

ri,j+/- +

Input N

Find Total
Rows (TR)

Wait Start
Pulse

Last
Row

Reset R &
INC

Col Counter

Compute
(R+1) % 3

(ADD-1)
Resolve Row

Perm.

(MULTIPLY)
Find Row Start

U = Total Col x Row_perm

(ADD-2)
Column Offset

T = U + C

Y

N

End
Frame

INC R
(row count)

Y
N

i_addr



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

490

 

 

for all the cases, the 2D single step generic interleaver 
function ݇௜,௝ can be described as: 

, ,i j i jk d r j= ⋅ +  (20)

Where ݎ௜,௝ ൌ ݅ for BPSK/QPSK and it is defined by eq. 
(15) and eq. (19) for 16-QAM and 64-QAM respectively. 
Other permutation values with addition and subtraction can 
be implemented with the help of a multiplexer and an adder. 
In addition to hardware required for address generation a 
small control logic is also needed to take care of row-
column counter and synchronization with external world. 
The flow graph for address computation including some 
control steps is shown in Fig. 5 and the complete hardware 
for fully re-configurable architecture is shown in Fig. 6. The 
use of multiplier can be avoided but it is kept there for the 
generality of design. By using the multiplier, the proposed 
architecture provides maximum flexibility to be used for any 
number of columns in the block interleaver. 

The validation of address generation is verified and the 
design is synthesized using 0.12 µm standard CMOS 
technology. It consumes 1.1 k-gates in total and can run at a 

frequency of 200 MHz. Direct comparison of this 
architecture with reported designs [2] – [4] cannot be made 
due to different configurations used, however, the reduction 
in complexity of the interleaver address generation with the 
help of 2-D transformation provides the basis to compute the 
address on-the-fly. Along with reduced complexity the 
presented architecture also supports high throughput 
requirements associated with WiMAX standard. 

V. CONCLUSION 

This work provides the mathematical transformation of 
the one dimensional WiMAX interleaver equations 
mentioned in the standard to two dimensional space. This 
2D transformation leads to optimized hardware architecture 
for address generation of the WiMAX interleaver. Due to 
presence of modulus and floor operators within the 
interleaver functions use of standard algebraic rules does not 
work always. Thus the structural analysis along with 
progressive generation of the equivalent set of equations for 
2D space is used to reach to the low cost solution. 

REFERENCES 
[1] IEEE 802.16e–2005: “IEEE Standard for local and metropolitan area 

networks, Part 16: Air Interface for Fixed Broadband Wireless Access 
Systems – Amendment 2: Medium Access Control Layers for 
Combined Fixed and Mobile Operations in Licensed Bands.” 

[2] Y. N. Chang and Y. C. Ding: “A Low-Cost Dual Mode De-interleaver 
Design,” Int. conf. on Consumer Electronics, 2007. 

[3] Y. N. Chang: “A Low-Cost Dual Mode De-interleaver Design,” IEEE 
Transaction on Consumer Electronics, vol. 54, no. 2, May 2008, pp. 
326 – 332. 

[4] Y. W. Wu and P. Ting: “A High Speed Interleaver for Emerging 
Wireless Communications,” Proc. of International Conf. on Wireless 
Networks, Communications and Mobile Computing, vol. 2, June 
2005, pp. 1192 – 1197. 

 

 

Fig. 6.  Complete HW for Address Generation. 

A
x

B

D
ec

od
in

g
Lo

gi
c

i j

ri,j

C
on

fig
ur

at
io

n

Control / Interface

Sync Enable Address Out

+/- +


