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 
Abstract—The 1/f noise investigation in nanoscale light-emitting 

diodes and lasers, based on GaAs and alloys, is presented here. 
Leakage and additional (to recombination through quantum wells 
and/or dots) nonlinear currents were detected and it was shown that 
these currents are the main source of the 1/f noise in devices studied. 
 

Keywords—Lasers, light-emitting diodes, quantum dots, 
quantum wells, 1/f noise. 

I. INTRODUCTION 

E have investigated 1/f voltage noise in prototypes of 
In0,2Ga0,8As/GaAs/InGaP lasers with quantum wells 

(QWs), light-emitting diodes (LEDs) with InAs quantum dots 
(QDs), LEDs with InAs QDs and In0,2Ga0,8As quantum well 
(QW). 

Dandridge and Taylor observed a correlation between 1/f 
intensity noise and frequency noise in the optical emission. It 
was noticed that laser diodes with a higher intensity noise have 
a larger spectral width [1]. The spectral properties of the light 
emission are crucial for some applications. This makes the 
study of the 1/f noise in laser diodes an important subject. 

Brophy has observed for the first time 1/f noise in the 
optical output of laser diodes [2]. The noise was investigated 
well below the lasing threshold in a frequency range of 
10 Hz - 10 kHz. A correlation was found between the optical 
emission noise and the noise in the diode current. 

The 1/f noise in light-output power of four different types of 
heterostructure lasers was studied in paper [3]. Results of 
measurements were explained in terms of two models. The 
first one was based on fluctuations in the absorption 
coefficient and the second model was based on fluctuations in 
the number of free carriers injected into the active region. 

The 1/f noise in optical intensity was also studied by other 
authors [4]-[6]. 

Noise and fluctuations are acquiring an increasing 
importance in science and technology, as witnessed by the 
growing number of publications in this field that appear in 
leading journals, see, e.g. [7]-[15]. 

Nature of the 1/f noise (named also “flicker noise”) is up to 
now the subject of discussion, see, e.g. paper by Bezrukov, 
Vandamme, and Kish [16]. 
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The main goals of our work are as follows: (a) investigation 
of 1/f noise in nanoscale light-emitting structures, 
(b) determination of noise sources. 

Section II of this paper is of basic type. Possible sources of 
1/f noise and their manifestation in dependence of the 1/f 
voltage noise spectrum Sv  on the bias current I are discussed 
here. 

At first we consider an effect of possible 1/f noise in 
electrical parameters of quantum wells/dots. The spectrum of 
voltage noise caused by this effect is saturated at high current 
I . Similar saturation of noise was observed in Ge diodes (see, 
e.g., Fonger [17] and Malakhov [18]). 

Then we consider an effect of 1/f noise in the additional 
components of the total current. As an example the noise in 
the leakage current (linear or nonlinear) is analyzed. This 
noise yields the effect noise maximization (at some bias 
current). That is the increase of the total current yields the 
increase of the voltage noise spectrum. At rather high currents 
this spectrum is decreased. Similar effect was observed in 
different types of diode structures by Wall [19], and Klimov 
with coauthors [20]. 

Section III contains information on tested devices and 
experimental data obtained. We investigated prototypes of 
GaAs nanoscale light-emitting structures manufactured at 
Physical-Technical Research Institute of Lobachevsky State 
University of Nizhni Novgorod (Russia). The I-V 
characteristic and dependence of 1/f voltage noise spectrum on 
the bias current were studied. 

It was found that total current may consist of three 
components. The first one may be caused by recombination 
current (through QWs/QDs) responsible for light emission 
[21]. The second component is the leakage current. The third 
component is an additional nonlinear current which behavior 
can be significantly different from device to device. 

The analysis of the dependence of 1/f noise spectrum on the 
bias current has shown that this noise is originated by the 
leakage and additional nonlinear current. The noise from 
quantum wells and dots was not detected in our measurements. 

II. EQUIVALENT CIRCUIT DIAGRAM OF THE DIODE AND 

MODEL OF 1/F NOISE 

Kleinpenning applied Hooge’s empirical relation [22] to 
explanation of 1/f noise in p–n diodes [23]. But some 
experimental results are not described by this relation, see, 
e.g., [17], [21]. In this paper we use rather simple physical 
model, which allows us to explain the 1/f noise behaviour in 
nanoscale structures investigated here. 

The total current I through the structure may consist of 
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three components, I = Ir + Il+ In, where Ir is current caused by 
recombination through quantum wells and/or dots, Il – 
leakage current and In is an additional nonlinear current. 

These currents and corresponding differential resistances 
are shown in equivalent circuit diagram of the diode, see Fig. 
1. 

Components Il and In described by resistances Rl and Rn 
respectively, are parasitic in comparison with the 
recombination through quantum wells (or dots) Ir described by 
differential resistance Rr. 

The parasitic resistance is divided into series resistance 
(Rb) and parallel resistance (Rl). Series resistance Rb can be 
caused by excessive contact resistance or by the resistance of 
the neutral regions. Parallel resistance Rl can be caused by 
any channel that bypasses the p-n junction. This bypass can 
be caused by damaged regions of the p-n junction or by 
surface imperfections [24]. 

Parallel resistance Rl has a value much larger than Rb and 
makes the forward hump on I-V characteristic which has 
about the same level as the reverse saturation current. Series 
resistance Rb has a relatively small value and leads to 
deviation from the pure exponential behavior at high forward 
currents. 

A parasitic diode connected in parallel with the main diode 
makes the forward hump without increasing of the reverse 
saturation current. The parasitic diode displays sub-threshold 
turn-on caused by leakage through either surface states at the 
perimeter of the diode chip or defective regions within the p-n 
junction plane that have a lower barrier height than the main 
p-n junction [24]. 

Total voltage Vd on the diode determines the voltage V on 
p–n junction: 

 

d bV V R I  .                                 (1) 
 

Here Rb is resistance of the diode base (neutral) region 
including ohmic contacts. 

Recombination yields recombination current Ir . This 
current and corresponding differential resistance Rr are as 
follows: 

 

                           0 exp 1r r r TI I V V   ,  

                1

0d dr r r T r rR I V V I I
    . (2) 

 
Here Ir0 is characteristic current; VT = kT/q is the thermal 

potential, k – Boltzman’s constant, T – absolute temperature, 
q – elementary charge; the ideality factor is ηr=2. 

Recombination in quantum wells and dots produces the 
current of the same type. This current is the main component 
in our nanoscale structures. 

Practically all structures exhibit a leakage current. This 
current may have both linear and nonlinear components; see, 
e.g. [19], [20]. 

The linear (ohmic) component Il is characterized by 
resistance Rl 

 

l lI V R .                                   (3) 
 
Nonlinear component In is usually described by 

characteristic current In0 and ideality factor ηn (which is rather 
large in comparison with ideality factor of recombination 
current, ηn >>2). These current and differential resistances Rn 
are equal to: 

 

  0 exp 1n n n TI I V V   ,                             (4) 

 

    1

0d dn n n T n nR I V V I I
                           (5) 

 
Some authors suggested, that the possible nature of current 

with ηn 3 may be caused by tunneling of carriers through the 
potential barriers (across the spikes in the forbidden energy 
band) [25], [26]. 

In any case, components described by (3)–(5) are parasitic 
in comparison with the recombination through quantum wells 
(or dots) described by (2). These parasitic components were 
detected in all our nanoscale devices. In some devices we have 
seen only the linear leakage current Il. 

We assume that every component of the total current, and 
the base resistance Rb, may be subjected to the 1/f noise. 

In order to explain our experimental results we use here 
model of mobile defects as the source of 1/f noise, see, e.g., 
[27]. In the simplest case a single defect has two metastable 
states described by two-level system [28]. 

Random switchings between states of defect yield the 
change of its scattering cross-section and/or ionization energy. 

Change of scattering cross-section and change of ionization 
energy produces the noise in mobility and/ or in concentration 
of carriers. 

Noise in mobility and noise in concentration of carriers are 
manifested as the noise in equivalent resistances of the diode 
[29], [30]. 

Ensemble of bistable defects, under known conditions, leads 
to appearance of the noise with 1/f spectrum. 

It is convenient to represent noise in current components of 
total current by δRλ, λ = r, l, n – relative noise in 
corresponding equivalent resistances. Therefore, instead of 
(2)–(4), we have: 

 

    1 , , ,I R t I V r l n         , (6) 

 
respectively. 

The main idea is that the total 1/f noise is described by 
sources presented by relative noise in equivalent resistances of 
the diode: 

 

  1 , , ,R R t R r l n         . (7) 

 
They are uncorrelated, because these sources are related 

with stochastic processes in different regions of the diode. 
Bistable defects in the depletion region of p–n junction or in 

quantum dots/ quantum wells are the source of the noise in 
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recombination current (λ=r). Noise in leakage current (λ=l) is 
usually related with processes in the perimeter of the diode. 
We assume that correlation between the additional nonlinear 
current (λ=n) and other components of current may also be 
neglected. 

The model of bistable defects allows considering spectra 
SδRλ of relative 1/f noise in equivalent resistances be not 
dependent on the total current I. 

The total 1/f voltage noise spectrum Sv is determined by 
spectra SδRλ and effects of different components in the current 
I. 
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Fig. 1 Laser structure and structures of LEDs 
 

If the main component is recombination current, I=Ir, and 
this current is also the main source of 1/f noise in the diode, 
then the spectrum 1/f noise is saturated at currents I >> Ir0 . 
Similar effect was observed in Ge diodes, see, e.g., [17], [18]. 
The essence of the effect of noise saturation is as follows. 

The noise δRr(t) in the equivalent recombination resistance 
is manifested as 1/f current noise source ir(t) = Ir δRr(t), and 
yields 1/f voltage noise v(t) = Rr ir(t). The increase of the total 

current I = Ir  yields the increase of the noise current, and the 
decrease of differential resistance Rr determined by (2). At 
high currents the noise is saturated because the increase of ir(t) 
is compensated by the decrease of Rr. 

Noise in the (linear) leakage current and/or the additional 
nonlinear current yields the effect of 1/f noise maximization 
(see [19], [20]) at some bias current I *. This effect is most 
important for our devices studied. The essence of this effect is 
as follows. 

The 1/f noise in the equivalent leakage resistance δRl (t) and 
equivalent nonlinear resistance δRn(t) is manifested in current 
noise 

 

      l l n ni t I R t I R t    . (8) 

 
The last one produces the voltage 1/f noise on differential 

resistance R of the diode v(t) = Ri(t). Here R = (Rr
-1

 + Rl
-1

 + 

Rn
-1

)
-1

, see Fig. 1. The voltage drop on the base resistance Rb is 
omitted here. The 1/f voltage noise spectrum Sv caused by 
noise in leakage and nonlinear currents is determined as 

 

 2 2
v l Rl n RnS V S V S   ,                                (9) 

 
here Vl = Il R and Vn = InR are transformation coefficients. 

Let us, for simplicity, consider noise in linear leakage (that 
is In =0). At small current, when I-V characteristic of diode is 
nearly linear R  const, the leakage noise is manifested as in 
linear resistor, SvI 2. At rather large current, when R << Rl 
and the increase of the voltage on p–n junction is 
logarithmically slow, V lnI, as it follows from (2) and (3), 
the increase of leakage noise il(t) is also slow. But resistance 
of the diode is decreased much faster, proportionally to the 
current, RrI -1. Thus, after maximum at some current I * the 
1/f voltage noise spectrum decreases nearly proportionally to 
I -2. In the simplest case of very small linear leakage on the 
background of noiseless recombination current, Rl >> Rr(I=0) 
= 2VT /Ir 0 , we find I * = Ir0[exp(1) – 1] and V =2VT . 

In the case of additional nonlinear current subjected to the 
1/f noise the maximum becomes somewhat wider and the 
decrease of Sv at high currents is slower than I -2. 

III. EXPERIMENTAL RESULTS AND DATA TREATMENT 

A LF noise measuring setup was used in our experiments 
(see Fig. 2). 

Channel (electrical) provides measurement of so-called 
open-circuit voltage noise v(t) across diode under test (DUT). 
The diode is biased by a noiseless current. The bias resistance 
RB was always at least 20 times larger than the differential 
resistance of the diode. 

Amplified noise was sampled with rate 48 kHz, digitized by 
two-channel 224 bit A/D converter ADS224x48® (Insys®, 
Moscow), and saved on PC hard disk by 1 million samples per 
channel. Afterwards, the obtained data were processed by 
multifunctional analyzer [31]–[45] developed in programming 
environment LabVIEW® (National Instruments®, USA). 
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Fig. 2 Block-diagram of LF noise measuring setup 

 
We have investigated prototypes of light-emitting diodes 

(LEDs) and laser diodes based on GaAs nanoscale structures: 
1) LEDs with InAs quantum dots (QDs), 
2) LEDs with InAs quantum dots and In0,2Ga0,8As quantum 

well (QW), 
3) Lasers with two In0,2Ga0,8As quantum wells. 

The laser structure is shown in Fig. 1 (a) and has the 
following composition: 
 n+–GaAs (1.0.0) substrate, thickness d=160m; 
 n+–GaAs buffer layer, n=1018cm-3, mobility 

=2000cm2/(Vs), d =700nm; 
 Two InGaP wide–zone bounding layers, n=p=1018cm-3, 

n=700cm2/(Vs), p=35 cm2/(Vs), d=500–550nm; 
 GaAs cavity layer, d=750–800nm, containing two 

In0,2Ga0,8As quantum wells close to middle of the region, 
d=9 nm; 

 p+–GaAs contact layer, p=1019cm-3, =100cm2/(Vs), 
d=500–550nm. 

We have two types of LEDs with different structures (see 
Figs. 1 (b) and (c)). Both types have InAs layer of QDs within 
p–n junction. Light-emitting diodes having index “k” in their 
name belong to structure, which has only a layer of QDs. 
Diodes without this index belong to structure, which has a 
layer of QDs and an additional InGaAs quantum well. 

Both structures have n+–GaAs substrate, and n+–GaAs 
buffer layer with concentration of carriers n=1018 cm-3. Layer 
n–GaAs is a matrix for QDs growing. An active region of 
LEDs is represented by InAs QD layer and placed in the 
middle of abrupt p–n junction. Layer of p+–GaAs is also 
buffer one. 

We have studied the I-V characteristic and current 
dependence of spectrum Sv of 1/f voltage noise in light-
emitting and laser diodes operating in dark and LED modes. 

A few components were detected in I-V characteristic of all 
diodes. The first one is recombination current through QWs 
and/or QDs, with ideality factor 2, see (2), responsible for 

light emission. Other components are related to the leakage 
current, and the additional non-linear current, described by 
(3)–(5). Behavior of these components is significantly 
different from device to device. 

At relatively high currents the base resistance Rb becomes 
visible with magnitudes not more than 0.3 Ohm. 

All diodes exhibit 1/f  noise (Fig. 3) with the frequency 
exponent  1 (Fig. 4). 
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Fig. 3 Family of voltage noise spectra at different currents through 
the diode 

 
The dependence of voltage noise spectrum on the bias 

current was investigated at the range of 50A200mA for 
LEDs and at 50A500mA for lasers. 
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Fig. 4 Family of frequency exponent   versus total current through 
the diode 

 
While the current was increased, the spectrum was 

decreased as a rule. 
Experimental data for I-V characteristic of LED#1, which 

has rather strong leakage, is shown in Fig. 5 by dots. These 
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data may be fitted by superposition of recombination current, 
and nonlinear current (broken lines), I = Ir + In . 
Recombination in QDs (and QW) is described by ηr = 2, and 
Ir0 = 2.810–10 A, see (2). In terms of (4) we have determined 
the ideality factor of nonlinear current ηn=4.9, and 
characteristic current In0=1.310–5 A. From I-V characteristic 
we can detect recombination and the additional nonlinear 
components only. If linear leakage exists, see (3), it can be 
described by resistance Rl > 5 kOhm, which is not pronounced 
in I-V characteristic. Base resistance is Rb = 0.3 Ohm. 
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Fig. 5 Decomposition of I-V characteristic of LED#1 
 

Experimental data for the 1/f voltage noise spectrum Sv  (at 
f=100 Hz) versus total current I are shown by dots in Fig. 6.  
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Fig. 6 1/f noise spectrum at f=100 Hz versus total current of LED#1 
 

It was found that noise in nonlinear current does not allow 
us to describe the region of small currents, I < 0.2 mA, where 
maximization of Sv  takes place. This part may be explained by 
taking into account the 1/f noise in linear leakage resistance Rl . 
Maximization of 1/f noise at bias current I*= 10-4 A yields 
leakage resistance Rl = 5.1 kOhm. Spectrum of relative 1/f 

noise in this resistance SδRl= 1.510-9 Hz-1 (at f=100 Hz) is 
extracted from experimental data. 

In order to explain the total dependence of Sv  on I we must 
add relative noise in additional nonlinear current characterized 
by spectrum SδRn = 410–11 Hz –1 at f=100 Hz. Effects of 1/f 
noise in linear leakage and nonlinear current components are 
shown by broken lines in Fig. 6. The total effect caused by 
both components is shown by solid line, which is in 
satisfactory agreement with experimental data for this diode. 
The accuracy of these measurements was about 5 percent. 

Important result is that the linear leakage of LED#1 is not 
visible in I-V characteristic, but it was detected from the 
dependence of 1/f noise spectrum on the bias current. 

One can see that our theoretical results are in satisfactory 
agreement with experimental data. 

Such an analysis was applied to all types of our structures: 
LEDs with quantum dots; LEDs with quantum dots and 
quantum well; lasers with quantum wells. Through the 
analysis it was proved that noise data for all structures are 
explained by 1/f noise in the leakage current and additional 
nonlinear current. 

We can note that all structures have 1/f noise in the linear 
leakage. This noise determines the spectrum behavior at low 
currents. These structures (except some lasers) have 1/f noise 
in additional nonlinear current, which determine 1/f noise 
spectrum behavior at high currents. Characteristics of noise in 
linear leakage and additional nonlinear current vary in wide 
range between structures. That means these two components 
in the total current are caused by artificial structure defects. 

Thus, observed noise data are explained by 1/f noise in the 
leakage current and in the additional nonlinear current. Noise 
in electrical parameters of quantum wells and quantum dots 
was not detected in our measurements. 

IV. CONCLUSION 

The main results of this work are as follows: 
(1) Leakage and the additional (to recombination through 

quantum wells and/or dots) nonlinear currents have been 
found in nanoscale light-emitting diodes and lasers. 
These currents are appeared to be the main source of 
electrical 1/f noise in devices studied. Suggested model 
of 1/f noise in the leakage and additional nonlinear 
currents describes the dependence of the voltage noise 
spectrum on the bias current in dark and spontaneous 
emission modes, up to lasing threshold. 

(2) Noise in electrical parameters of quantum wells and 
quantum dots was not detected. 
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