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Abstract—This document proposes a method for determining the 

optimal point of integration of distributed generation (DG) in 
distribution grid. Slime mould optimization is applied to determine 
best node in case of one and two injection point. Problem has been 
modeled as an optimization problem where the objective is to 
minimize joule loses and main constraint is to regulate voltage in 
each point. The proposed method has been implemented in 
MATLAB and applied in IEEE network 33 and 69 nodes. Comparing 
results obtained with other algorithms showed that slime mould 
optimization algorithms (SMOA) have the best reduction of power 
losses and good amelioration of voltage profile. 
 

Keywords—Optimization, distributed generation, integration, 
slime mould algorithm. 

I. INTRODUCTION 
OWADAYS, electrical energy is fed into the power grid 
from large power plants, and centralized operation allows 

for optimized production management for the benefit of 
customers. With the increase in energy consumption due to 
industrialization, population growth and then urbanization 
associated with the respect of ecological constraints, 
decentralized production from renewable energies is 
developing in many countries provided that their natural and 
sometimes random fluctuations are accepted [1]. DG is a 
small-scale power generation that is close to the end of the 
load and uses energy sources such as photovoltaic solar 
energy, wind turbines, fuel cells, gas turbines, etc. [2]. DG 
connected to the distribution system has a significant impact 
on energy losses, voltage profile, system stability and thus the 
overall quality of power supplied to customers. Some of the 
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reasons for the growing interest in DG are: 
- The DG is small and requires less space for installation. 
- DGs are located close to consumers, thus minimizing 

transmission and distribution losses and thus the cost of 
electricity transmission. 

- The installation time is much less and the investment risk 
associated with the installation of the plant is less. 

- The overall power quality of the system is improved with 
the installation of DG. 

- The DG uses mainly renewable energy sources to protect 
the environment [2]. 

In order to have the advantages mentioned above, we need 
to choose the optimal size and location of the DG, while 
connecting it to the distribution system. Different 
methodologies have been used to optimally allocate the 
appropriate size and location of the DGs. These methodologies 
include analytical tools, optimization methods or algorithms 
based on artificial intelligence.  

In [3] the bee colony method associated with Newton 
Raphson was used to integrate a DG into the distribution 
network.  

In [4] a newly developed adaptive Particle Swarm 
Optimization (PSO) algorithm, known as Phase Particle 
Swarm Optimization (PPSO), based on the modeling of 
particle control parameters with a phase angle (θ) transforming 
the standard PSO into an independent, self-adaptive and 
parametric metaheuristic optimization algorithm was used to 
determine the optimal placement and sizing of the DG in the 
radial distribution network. The optimal placement of three 
different types of renewable energy resources using target 
optimization algorithms was presented in [5]. A hybrid 
approach for optimal placement of multiple types of DGs was 
discussed in [6]. 

In [7], a new uniform voltage distribution algorithm 
(UVDA) based constructive reconfiguration is implemented 
along with reconfiguration of distribution network to find out 
optimal site and size for a DG unit.  

In [8] a hybrid artificial colony algorithm of bees and ants 
was used for optimal DG placement and sizing. In [9], the 
optimal setting and size of different DGs was determined 
taking into account the harmonic distortion of the system. In 
[10] the method of sensitivity to loss reduction and voltage 
improvement is used to determine the best location for DG 
connection.  

In [11], the harmonic search algorithm is used to place the 
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DG optimally using a multi-objective approach. In [12], a 
combination of the Genetic Algorithm (GA) and the PSO 
algorithm are used to find the optimal location and size of DG 
in the distribution network. The optimal location and sizing of 
DG in a distribution network using the GA is discussed in 
[13]. In [14], DG units are placed on the buses that are most 
sensitive to voltage collapse when the load increases, by 
calculating a factor called Voltage Sensitivity Index (VSI). In 
[14] a new discrete OSP and OPF algorithm has been 
presented for the coordination of DG units. However, in this 
research work, SMOA is proposed to determine the optimal 
allocation and size of DG units in the radial distribution 
system to minimize total losses and have a normalized grid 
voltage. The choice of this algorithm is justified first by [15] 
which has shown that SMOA is an algorithm that is best 
optimized when the problem is complex and with high 
dimensions. This efficiency has been demonstrated most 
recently by [16] which used complex mathematical functions 
and applied several metaheuristic algorithms looking for the 
minimum. Reference [16] concluded that SMOA is more 
efficient than other metaheuristics. 

The rest of the document is organized as follows. Section II 
provides the method for calculating active power losses in the 
distribution system; the problem formulation and the 
optimization algorithm including the SMOA will be described 
in Section II. The implementation of this algorithm will be 
presented in Section III. The results of DG placement and 
sizing in the distribution network obtained by this algorithm 
and the discussion are presented in Section IV through a case 
study on the IEEE 33 node and 69 nodes radial network. 

II. METHODS 

A. Presentation of IEEE Networks 
Our study will focus on distribution networks that are 

characterized by a radial configuration. We have taken the 
standard IEEE 33 and 69 nodes. Figs. 1 and 2 show the 
standard IEEE 33 and 69 node networks. 

The number of nodes is taken as pop size of the problem. 
Figs. 1 and 2 show the test system. The characteristics of the 
networks are given in [17] and [18]. 

 

 

Fig. 1 Structure of the IEEE 33 Node Network [17] 
 

For the IEEE 33 nodes, the system has 33 buses and 32 
sections with a total real and reactive power demand of 
3802.19 kW and 2694.60 kVAr respectively. It is supposed 
that all nodes are available.  

For the IEEE 69 nodes, the system has 69 buses and 68 
sections with a total real and reactive power demand of 

3802.19 kW and 2694.60 kVAr respectively. It is supposed 
that all nodes are available. 

 

 

Fig. 2 Structure of the IEEE 69 Nodes Network [18] 

B. Formulation of the Problem 
Four elements are necessary to solve an optimization 

problem: Definition of the parameters; Choice of the objective 
function with its constraints; Choice of the model; Choice of 
the optimization algorithm.  

C. The Parameters  
We want to work with the IEEE network. The network 

parameters are those of the IEEE network. We are going to 
take a distribution network because the energy to be injected is 
a DG which is generally produced next to the loads and can 
only be injected into a distribution network. An electrical 
network consists of the nodes to which generators or loads can 
be connected and the power lines connecting the nodes. At the 
level of a node, 4 values are needed: The active and reactive 
power; the voltage module and its phase. These 4 values are 
given by (1)-(3) which constitute the power flow equations. 

 

2

22

1,1,1 *
i

ii
iiiLii V

QP
RPPP                   (1) 

 

2

22

1,1,1 *
i

ii
iiiLii V

QP
XQQQ                 (2) 

 

2

22
2

1,
2

1,1,1;
2

1 ****2
i

ii
iiiiiiiiiiiii V

QPXRQXPRVV

            (3) 
 

However, we want to point out that, these are the real 
values and therefore the modules. This is why we do not have 
the phase equation of the voltage.  

We want to inject energy into a network by minimizing 
joule losses and keeping voltages within the acceptable range. 
Joule losses are caused by line resistances. The formula is 
given in (4) [3]: 
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D. Function Objective 
Our function objective is related to the sum of the joule 

losses in the distribution network [3]. 
 

1
,,

i
ilossTLoss PP                                   (5) 

 
It is necessary to minimize these losses, then if we let Fobjto 

be the objective function: 
 

)min( ,Tlossobj PF                                 (6)  

 
Pi and Qi are respectively the active and reactive power at node 
i; Vi is the voltage of node i; N is total number of nodes; R i,i + 

1: line resistance between node i and node i +1; Xi, i + 1: line 
reactance between node i and node i + 1; Since we want to 
keep the node voltage stable we will have constraints. 

E. Constraints 
Injecting energy into an electrical grid can create power 

surges at certain nodes. It is then necessary to limit the voltage 
on the network by using constraints. 

Constraints are related to network parameters that need to 
be constantly monitored [5]. One of the parameters is the 
voltage of the nodes, then the maximum power to be injected 

 
  (7) 

 
  (8) 

 
where, Vmin and Vmax are the minimum and maximum limits of 
the voltages of the ith bus. These values are respectively equal 
to 0.95 pu and 1.05 pu according to [19]. Pinj is the power of 
the DG at the node that we can inject. The maximum value of 
Pinj is fixed at 0.4 * PTload because the power injected must not 
exceed 40% of the total power load [20]. 

III. OVERVIEW OF SMOA 

A. Approach to Feeding 
To model the approach behavior of viscous mould in the 

form of a mathematical equation, the following rule is 
proposed to mimic the contraction mode [16]: 

 

prtXvc
prtXtXWvbtXtX BAb
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,))()(.(.)()1(

 

 (9) 

 
where is a parameter with a range of ,  decreases 
linearly from one to zero. represents the current iteration,  
represents the individual location with the highest odor 
concentration currently found,  represents the location of 
slime mould,  and  represent two individuals randomly 

selected from the swarm,  represents the weight of slime 
mould. [16] 

The formula of is as [16]: 
 

DFiSp )(tanh                                (10) 
 
where ,  represents the fitness of ,  
represents the best fitness obtained in all iterations. 

The formula of is as: 
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The formula of  is listed as: 
 

)(SsortSmellindex                               (12) 
 
where indicates that  ranks first half of the 
population  denotes the random value in the interval of 

 denotes the optimal fitness obtained in the current 
iterative process, denotes the worst fitness value obtained 
in the iterative processcurrently,  denotes the 
sequence of fitness values sorted (ascends in the minimum 
value problem). 

B. Wrap Food 
The mathematical formula for updating the location of 

slime mould is: 
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where  and  denote the lower and upper boundaries of 
the search range, and denote the random value in [0,1]. 
[16] 

C. Grabble Food 

The value of  oscillates randomly between  and 
gradually approaches zero as the iterations increase. The value 
of  oscillates between [-1,1] and tends to zero eventually. 

IV. IMPLEMENTATION OF OPTIMIZATION ALGORITHMS 
The implementation of the algorithm to our injection 

optimization problem is given by the flowchart in Fig. 3. 
Flowchart in Fig. 3 allows us to write a program in MATLAB 
R2018b. The computer used is the AMD A4-5000 APU with 
Radeon (TM) hd GRAPHICS computer with 1.5 GHz 
frequency and 4.00 GB RAM. 
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Fig. 3 Flowchart of the Method by the SMOA 

 
V. VOLTAGE REGULATION 

The injection of the DGs can cause overvoltage in the 
network. This is why it is necessary to regulate this voltage by 
keeping it between the values 0.95 pu and 1.05 pu [19]. For 

this purpose, reactive energy regulation is used. In [21], a 
voltage regulation according to the reactive power is proposed. 
It keeps the voltage within a desired range. The regulation 
scheme is shown in Fig. 4. 

For each node, determine the good fitness(min(fitness)) and 
the bad fitness(max(fitness)). For the good fitness, 
determine the corresponding power. 

Determining the best overall fitness 

Initial settings: Network data; Initialization 
number of iteration, Tmax 

Power flow through (1)-(3) 

Generate initial populations by calculating all the 
fitness corresponding to all the nodes with the 
injection (4) 

Start 

yes 

End 

NO 

- Recalculate the local fitness for the new power levels 
obtained. 
- Compare each new fitness program to the old one and choose 
the best of the two.

Calculate the iteration parameters (p, vc , vb , a) 
and Calculate the weights of each local fitness w 

(10)-(12) 

Update the precised power of each node 
that gave the best local fitness (14) 

Giving the results of the best fitness, 
the corresponding power, and the 
corresponding node 

Compare new fitness to old and choose the best of both. 

t ≤Tmax 
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Algorithm 1 Pseudo-code of SMOA [16] 
Initialize the parameters popsize, ; 
Initialize the positions of slime mould ; 
While (  

Calculate the fitness of all slime mould; 
 

Calculate the W by (13); 
For  

; 
; 

End  
; 

End While 
Return ; 

 

 

Fig. 4 Schematic diagram of voltage regulation 
 

From Fig. 4, (16) can be deduced 
 

                             (16) 

VI. RESULTS AND DISCUSSION 
The results will be presented according to the IEEE 

network. We used two IEEE networks of 33 and 69 nodes.  

A. IEEE-33 Bus System Results 
Maximum iteration: 25; Number of DG unit: 1 and 2. Fig. 5 

shows the variation of active power losses at each node of the 
IEEE 33 node network, when power is injected. The curve is 
given as a function of the nodes. 

By observing Fig. 5 we notice the variations of losses in the 
network when injecting one and two DGs. The blue curve 
shows the evolution of losses at each node when a DG is 
injected. Node 7 represents the node with the optimum losses, 
i.e., 107.12 kW. Similarly, the black curve shows the 
evolution of losses, when two DGs are injected into the 
network. Nodes 7 and 12 represent the optimal injection points 
with the same value of minimum losses which is equal to 76.4 
kW. It can be seen that the injection of two DGs reduces 
losses even more since the percentage of reduction according 
to Table I is 63.79% while it is 49.23% when injecting one 
DG. 

To be sure of the convergence of the method, we traced the 
convergence curve in both cases with the IEEE 33 node 
network. This is to be sure about the convergence criterion. 
Fig. 6 shows the convergence curve in the case where one and 
two DGs are injected.  

The maximum number of convergences has been set at 25. 
Because we had noticed that beyond this number, there were 
not too much variation in values. 

We can see from Fig. 6 that in both cases there is a 
convergence of the method. This convergence is much more 
rapid with higher numbers of DGs injected.  

After that we observed the voltages in the network. Since 
the injection of a DG into a network creates disturbances. The 
curve in Fig. 7 shows the different voltages at the nodes 
without injection and with injection without regulation. 

 

 

Fig. 5 Evolution of losses at each node of IEEE 33 networks 
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Fig. 6 SMOA Convergences curves in 33 Bus System 
 

TABLE I 
COMPARISON OF VALUES FOR THE IEEE 33 NODE NETWORK 

Number of DG 
 

Technique DG installation Power loss 
Size (kVA/P.F) Bus Value (kW) Percentage 

Without DG - - 211 - 
1 DG Algorithm bee colony [3] 9700/1 7 109.12 48.28 

Fire fly algorithm [22] 1190/1 30 116.7 44.69 
Moth-Flame optimization [2] 2590/1 6 111.02 47.38 

PSO [6] 2590/1 6 111.03 47.37 
SMOA (Proposed) 5020/1 7 107.12 49.23 

2 DG Fire fly algorithm [22] 1013/1 
612/1 

30 
14 

96.9 54.08 

Moth-Flame optimization [2] 851.6/1 
1157.5/1 

13 
30 

87.17 58.69 

PSO [6] 850/1 
1160/1 

13 
30 

87.17 58.68 

SMOA (Proposed) 172/1 
1050.4/1 

14 
62 

76.4 63.79 

 

 

Fig. 7 Bus voltage before and after DG installation in 33 bus system without regulation
 

We have also plotted the curves which represent the 
differences between the reference voltage and the voltage 
curves with injection of one and two DGs with regulation, Fig. 
8. These curves are referred to as delta1 and delta2. Equations 
(17) and (18) show the calculations for delta1 and delta2.

     (17) 
 

 (18) 
 
V1DG: node voltage after injection of a DG; V2DG: node voltage 
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after injection of two DGs; Vref: voltage of the node before 
injection taken as reference. 

 

 

 

Fig. 8 Bus voltage before and after DG installation in 33 bus system with regulation 
 

The maximum values of delta1 and delta2 are 0.045pu and 
0.0365 respectively. And the minimum value is 0.003 for both 
voltage differences. In view of these deviations, it can be 
concluded that the regulation was made because the curves are 
not too different. It can also be seen that both curves during 
energy injection are between the maximum value of 1.05 pu 
and the minimum value of 0.95 pu. 

It can be said that the energy injection allowed us to 
improve the voltage, because the minimum value is 0.95 pu, 
whereas it was about 0.92 pu. Table I gives the values of the 
other researchers and the values obtained for the IEEE 33 
node network in order to make the comparison. In this table, 
the value of the losses obtained with SMOA is 107.12 kW by 
injecting a DG with a power equal to 5.02 MW at node 7. And 
it is equal to 76.38 kW when two DGs with values of 0.172 
MW and 1.05 MW are injected at nodes 7 and 12 respectively. 
Compared to other values in the literature, it can be said that 
the SMOA allows a considerable reduction in joule losses, 
especially when two DGs are injected, as the reduction 
percentages are high and are 49.23% and 63.79% for 1 DG 
and 2 DGs respectively. 

B. IEEE-69. Bus System Results 
The proposed method is tested on a radial distribution 

system of 69 buses as shown in Fig 2, assuming that the power 
for all buses in the network is supplied by the substation at 
Node 1. The total real power and reactive power loads of the 
69 radial distribution system are 3.80 MW and 2.69 Mvar 
respectively [23]. Problem size: 69; Maximum iteration: 150 
DG; unit number: 1 and 2. 

Fig. 9 shows the evolution of active losses in the IEEE 69 
node network with the injection of one and two DGs. The 
observation of these curves shows that the minimum losses for 
the injection of a DG are 73.61 kW and are obtained when a 
power of 0.11 MW is injected at node 64. Similarly, for the 
injection of 2 DGs we have minimum active losses which are 

43.98 kW and are found when injecting a power of 1.015 MW 
at node 63 or at node 64 and we find the minimum losses 
which are 43.98 kW. Then, to make sure that we are not 
limited to the local optimum we have drawn the convergence 
curves when injecting 1 and 2 DGs.  

Fig. 10 shows the convergence curves of the SMAO 
algorithm. The convergence number was taken at 150. 

We notice the different convergences of the curves in Fig. 
9. In the case of the injection of one DG, the curve converges 
at about 60 iterations whereas for the curve of the injection of 
two DGs, it is much faster.  

As with the IEEE 33 node network, the IEEE 69 node 
network also shows overvoltage after DG injection. We have 
also regulated the voltage using the reactive power regulation 
method and we have plotted the curves of the regulated 
voltages and the reference voltage, i.e., without injection. 
Then we plotted the deviations between the regulated voltages 
and the reference voltage. 

Fig. 11 shows the different voltages before injecting a DG 
and after injecting one and two DGs into the IEEE 69 node 
network with regulation. This figure also shows the 
differences between the regulated voltages after injection and 
the pre-injection voltage considered as reference voltage for 
each node. It can be seen from the curve that the two post-
injection regulated curves remain in the range of 0.95 pu and 
1.05 pu. The differences between the remaining deviations are 
between -0.12 pu and 0.06 pu. The values of the deviations 
remain small. It can then be concluded that voltage regulation 
has been carried out. In addition, injection after regulation has 
improved the voltage level according to [19], by eliminating 
the low voltages before injection and increasing these voltages 
to a minimum of 0.95 pu.  

All values obtained by the SMOA algorithm are shown in 
Table II. Table II shows that the method described above 
allows us to have losses with very low values when injecting 
one or two DGs into the IEEE 69 node network. This 
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translates into very high reduction percentages in column 6 of 
the table, which is 71.81% when only one DG is injected and 

80.45% when two DGs are injected. 
 

 

 

Fig. 9 Evolution of losses at each node for IEEE 60 bus
 

TABLE II 
COMPARISON OF VALUES FOR THE IEEE 69 NODE NETWORK 

Number 
of DG 

Technique 
 

DG installation Power loss
Size 

(kVA/P.F) 
Bus Value 

(kW) 
Percentage 

Without DG - - 224.94 - 
1 DG ABC [24] 1900/1 61 83.31 62.96 

GA [13] 1794/1 61 83.42 62.91 
CSA [23] 2000/1 61 83.8 62.74 
SGA [23] 2300/1 61 89.4 60.3 
PSO [23] 13378/1 61 83.8 62.74 

MTLBO [25] 18196/1 61 83.323 62.95 
SMOA (Proposed) 840.5/1 64 63.4 71.81 

2 DG GA [26] 1777/1 
555/1 

61 
11 

71.79 68.08 

CSA [23] 600/1 
2100/1 

22 
61 

76.4 66 

SGA [23] 1000/1 
2400/1 

17 
61 

82.9 63.1 

PSO [23] 700/1 
2100/1 

14 
62 

78.8 64.97 

MTLBO [25] 519.71/1 
1732/1

17 
61

71.78 68.09 

ALO [5] 538/1 
1700/1 

17 
61 

70.750 68.547 

SMOA (proposed) 1015/1 
1015/1 

63 
64 

43.98 80.45 

 
On the bases of Tables I and II and in comparison with the 

other results of the literature review, the SMOA gives very 
high percentages of active loss reduction. The method also 
converges and convergence is much more rapid as several 
DGs are injected. This allows us to say that the SMOA is a 
good algorithm to optimize the injection of DGs into the 
power grid. 

As with the IEEE 33 node network, we have also regulated 
the voltage using the reactive power regulation method and we 
have plotted the curves of the regulated voltages, the reference 
voltage, i.e., without injection. Then we plotted the deviations 
between the regulated voltages and the reference voltage. 

Fig. 11 shows the different voltages before injecting a DG 
and after injecting one and two DGs into the IEEE 69 node 
network with regulation. This figure also shows the 
differences between the regulated voltages after injection and 
the pre-injection voltage considered as reference voltage for 
each node. It can be seen from the curve that the two post-
injection regulated curves remain in the range of 0.95 pu and 
1.05 pu. The differences between the remaining deviations are 
between -0.12 pu and 0.06 pu. The values of the deviations 
remain small. It can then be concluded that voltage regulation 
has been carried out. In addition, injection after regulation has 
improved the voltage level according to [19], by eliminating 
the low voltages before injection and increasing these voltages 
to a minimum of 0.95 pu.  

VI. CONCLUSION 
In this work, an algorithm, namely the slime mould 

algorithm, has been proposed to determine the placement and 
amount of power of a DG in a distribution network. This 
algorithm has been tested on IEEE 33 and 69 node networks. 
We managed the power flow and found the optimal point 
based on our objective function. The results show that the 
optimal placement of a generator at one node in a radial 
distribution network results in minimal active power losses in 
the network, and the optimal placement of two generators 
further reduces the power losses considerably. Injection 
creates overvoltages that have been adjusted using reactive 
power with the model we have described. This improved the 
voltage profile in the IEEE power networks by 33 and 69 
nodes. Comparison with the other results of the literature 
review led us to conclude that the algorithm reduces active 
losses more significantly compared to other algorithms and 
converges more rapidly as the number of injection points 
increases.
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Fig. 10 SMOA convergence curves in 69 bus system 
 

 
Fig. 11 Bus voltage before and after injection of DG with regulation in 69 bus 
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