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Abstract—Autonomous structural health monitoring (SHM) of
many structures and bridges became a topic of paramount importance
for maintenance purposes and safety reasons. This paper proposes
a set of machine learning (ML) tools to perform automatic feature
selection and detection of anomalies in a bridge from vibrational
data and compare different feature extraction schemes to increase
the accuracy and reduce the amount of data collected. As a case
study, the Z-24 bridge is considered because of the extensive database
of accelerometric data in both standard and damaged conditions.
The proposed framework starts from the first four fundamental
frequencies extracted through operational modal analysis (OMA)
and clustering, followed by time-domain filtering (tracking). The
fundamental frequencies extracted are then fed to a dimensionality
reduction block implemented through two different approaches:
feature selection (intelligent multiplexer) that tries to estimate
the most reliable frequencies based on the evaluation of some
statistical features (i.e., entropy, variance, kurtosis), and feature
extraction (auto-associative neural network (ANN)) that combine the
fundamental frequencies to extract new damage sensitive features
in a low dimensional feature space. Finally, one-class classification
(OCC) algorithms perform anomaly detection, trained with standard
condition points, and tested with normal and anomaly ones. In
particular, principal component analysis (PCA), kernel principal
component analysis (KPCA), and autoassociative neural network
(ANN) are presented and their performance are compared. It is also
shown that, by evaluating the correct features, the anomaly can be
detected with accuracy and an F1 score greater than 95%.

Keywords—Anomaly detection, dimensionality reduction,
frequencies selection, modal analysis, neural network, structural
health monitoring, vibration measurement.

I. INTRODUCTION

NOWADAYS SHM represents a fundamental research

field in a society where historical and modern

infrastructures coexist harmoniously. In this scenario,

monitoring infrastructures, buildings, and bridges became a

topic of primary importance that aim to maintain and protect

the existing structure instead of replacing it with functionally

and economically costly solutions [1]. As far as bridges

are concerned, some statistics highlight the relevance of the

problem. For example, currently, in Italy there are almost

2000 bridges that require special monitoring; in France, 4000
bridges need to be restored, and 840 are considered in critical

conditions; in Germany, 800 bridges are reputed critic; in

the United States of America, among the 600, 000 bridges,

according to a conservative estimate, at least 1% of them is

considered deficient. Being able to detect anomalies is thus of

paramount importance in this scenario, and structural health

monitoring (SHM) offered numerous solutions [2]–[4].
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A vast overview of damage detection and localization

strategies is present in literature [5], [6]. Over the years,

several techniques have been developed to extract the most

significant damage-sensitive features. Such techniques can

be divided into model-free and model-based. In the first

case, the only information is gathered by measurements (e.g.,

acceleration, temperature, position), while in model-based

approaches, information comes from measurements and prior

knowledge of a model of the structure [7]. An important

research topic is represented by the sensing strategy that can be

implemented with traditional sensing networks, mobile agents

able to perform sensing, and manage the energy supply [8].

Since the whole monitoring procedure is quite complex

and requires fine-tuning of several parameters, specific for the

structure at hand, some works recently put forward the idea of

adoption of ML techniques to detect changes in the damage

sensitive features [9]–[13].

In this work, we attempt to provide a methodology

to detect anomalies in bridges starting from vibrational

data automatically. The proposed framework starts from the

fundamental frequencies extracted from the accelerometer

measurements through stochastic subspace identification (SSI),

cleaning, and clustering [7], [9], [15]–[19], and then performs

modal frequencies tracking in the time domain. The modal

frequencies are then used as starting feature space that will

be reduced through feature selection and feature extraction

techniques. Finally, one-class classifiers are implemented

to perform anomaly detection. In particular, the main

contributions are the following:

• We propose a time-domain tracking algorithm based on

modal frequencies density.

• We investigate strategies to find the reliable frequencies

extracted among all the extracted ones.

• We evaluate the effects of feature extraction and feature

selection on the anomaly detectors’ performance.

• We suggest techniques to increase the anomaly detection

accuracy in SHM and reduce the amount of data.

The performance of the proposed solution is investigated

on a real dataset using the accelerometric data available for

the Z-24 bridge [20], [21]. The proposed anomaly detection

algorithms PCA, KPCA, and ANN are compared in terms

of F1 score, accuracy, recall, and precision. Several tests

are performed to assess the impact of feature extraction and

feature selection on the algorithms’ performance.

Throughout the paper, capital boldface letters denote

matrices and tensors, lowercase bold letters denote vectors,

(·)T stands for transposition, || · || is the �2-norm of a vector,
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(a)

(b)

Fig. 1 (a) Data acquisition setup along the Z24 bridge: the selected accelerometers, their positions, and the measured acceleration direction [14]; (b) Block
diagram for signal acquisition, processing, feature extraction, and detection

and 1{a, b} is the indicator function equal to 1 when a = b,
and zero otherwise.

This paper is organized as follows. In Section II, a brief

overview of the acquisition system, the accelerometers setup,

and the monitoring scenario is presented. The fundamental

frequencies extraction technique adopted is presented in

Section III. The feature extraction and feature selection

paradigms are presented in Section IV. A survey of anomaly

detection techniques is reported in Section V. Numerical

results are given in Section VI. Conclusions are drawn in

Section VII.

II. SYSTEM CONFIGURATION

The Z-24 bridge was located in the Switzerland canton

Bern. The bridge was a part of the road connection between

Koppigen and Utzenstorf, overpassing the A1 highway

between Bern and Zurich. It was a classical post-tensioned

concrete two-cell box girder bridge with a main span of

30m and two side spans of 14m. The bridge was built as a

freestanding frame with the approaches backfilled later. Both

abutments consisted of triple concrete columns connected with

concrete hinges to the girder. Both intermediate supports were

concrete piers clamped into the girder. An extension of the

bridge girder at the approaches provided a sliding slab. Al

supports were rotated with respect to the longitudinal axis

that yielded a skew bridge. The bridge was demolished at

the end of 1998 [20]. Before complete demolition, the bridge

was subjected to a long-term continuous monitoring test and

several progressive damage tests:

• A long-term continuous monitoring test took place during

the year before demolition. The aim was to quantify the

environmental variability of the bridge dynamics.

• Progressive damage tests took place over a month, shortly

before complete demolition. The aim was to prove

experimentally that realistic damage has a measurable

influence on the bridge dynamics. Progressive damage

tests were alternated with short-term monitoring tests

while the continuous monitoring system was still running

during these tests.

The accelerometers position and their measurements axis

are shown in Fig. 1 (a). In this work, we considered l = 8
accelerometers, identified as 03, 05, 06, 07, 10, 12, 14, and

16, which are present in both long-term continuous monitoring

phase and in the progressive damage one.1 Longitudinal

acceleration is collected by sensors 03 and 06, transversal

acceleration is measured by sensors 14 and 16, and all the

remaining sensors gather vertical accelerations.

Every hour Ns = 65536 samples are acquired from

each sensor with sampling frequency fsamp = 100Hz which

corresponds to an acquisition time Ta = 655.36 s. Since the

measurements are not always available, there are Na = 4107
acquisitions collected in 44 weeks.

III. FUNDAMENTAL FREQUENCIES EXTRACTION

The fundamental frequencies extraction chain is depicted

in Fig. 1 (b); from the vibrational data the fundamental

modes μ
(a,n)
p are extracted through the widely known SSI

algorithm [7], where p represents the pth mode, a stays for the

acquisition index, and n represents the model order varied in

the range n ∈ [2, 160] (with step 2) [12]. The resulting modes

can be cleaned up by the spurious ones though classical mode

selection methods (i.e., modal assurance criterion (MAC),

mean phase deviation (MPD), complex conjugate poles check,

and dumping ratios check) [16]–[19] and clustered with

the K-means algorithm [9], [15]. The residual modes after

1Some accelerometers that experienced failures during the long-term
monitoring have been avoided. Moreover, we select a subset of accelerometers
present in both phases to ensure data consistency.
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Fig. 2 (a) Fundamental frequencies extracted through SSI for each measurement; (b) First four natural frequencies estimation after the density-based tracking
algorithm. Blue and green backgrounds highlight the acquisitions made during the bridge’s normal condition, used respectively as training and test sets,

while the red background stands for damaged condition acquisitions used in the test phase

selection are represented with μ̄
(a,n)
p , and the modes after

clustering with μ̄
(a)
p . The results of this approach applied for

all the acquisitions is reported in Fig. 2 (a). After that, a

density-based mode tracking algorithm is proposed to track the

fundamental frequencies, and it is described in the following.

A. Mode Tracking

The tracking phase is the final step in the natural frequencies

extraction chain. Several algorithms can find the frequency

traces starting from the estimation made through the clustering

phase [18]. In this paper, a technique that needs neither

the frequency starting points nor their number is proposed,

contrary to several approaches that infer the number and

the starting position of the fundamental frequencies through

simulation of the physical structure. The proposed tracking

algorithm consists of two steps: a starting phase and an online

phase.

1) Starting Phase: Without any assumption about the

structure, the idea is to analyze the data, μ̄
(a)
p , to find some

clusters of points that could be the starting ones. To perform

this task, the first Nt = 200 acquisitions, i.e., μ̄
(a)
p with

a = 1, 2, . . . , Nt, are considered (see Fig. 2 (a)). From

this initial data, the number of points that fall in frequency

bins of bandwidth Bf = 0.4Hz are counted. The histogram

obtained is depicted in Fig. 2 (b). Selecting the largest

values of the histogram the number of starting points and the

corresponding frequencies, f
(0)
s , are estimated. In particular,

the first estimated frequency is evaluated as the average values

of the frequencies that fall in the respective bins. For example,

according to Fig. 2 (b) the values of the starting points, f
(0)
s ,

in this case s = 1, . . . , 4, are estimated and correspond to

4.0, 5.2, 10.1, and 12.8Hz.

2) Online Phase: In this phase, a rectangular window that

considers three acquisitions jointly (the one selected and the

previous two) of width ws = 0.7Hz is used to track each

frequency evolution. This value is selected because lower

values of ws make the tracking algorithm less sensitive to

prompt frequency variation; on the contrary, greater values

make the tracking less stable and prone to drift effects. For

each acquisition a the window is centered in f
(a−1)
s and

updated evaluating the mean value of the modes that belong

to that acquisition a and the previous two (a− 1 and a− 2),

and fall in the interval defined by f
(a−1)
s ±ws/2 (i.e., for the

first acquisition the window is centered in the starting points

f
(0)
s ±ws/2). More in detail, we can define the set of modes

μ
(a)
w that fall in the specified interval as:

μ̂(a) =
{
μ̄(a)
p : μ̄(a)

p ∈
[
f (a−1)
s ± ws/2

]}

μ(a)
w =

[
μ̂(a), μ̂(a−1), μ̂(a−2)

]

where the concatenated vector μ
(a)
w has cardinality Nw which

varies with the acquisitions and tracks. Then, the updating rule

can be expressed as:

f (a)
s =

1

Nw

∑
p

μ(a)
p,w.

Repeating this procedure iteratively for each acquisition a,

and each track s, the first four fundamental frequency tracks

fs =
{
f
(a)
s

}Na

a=1
with s ∈ {1, . . . , 4} are extracted and stored



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:8, 2021

330

in the following matrix (see also Fig. 2 (b)):

F =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣
f
(1)
1 f

(2)
1 . . . f

(Na)
1

f
(1)
2 f

(2)
2 . . . f

(Na)
2

f
(1)
3 f

(2)
3 . . . f

(Na)
3

f
(1)
4 f

(2)
4 . . . f

(Na)
4

⎤
⎥⎥⎥⎦

T

.

IV. DIMENSIONALITY REDUCTION

In this section, we introduce two possible strategies to

reduce the dimensionality of the damage-sensitive features

extracted, intending to reduce the amount of data stored

and transmitted through the sensor network and increase the

anomaly detection performance.

As described in [20], the damage is introduced at the

acquisition a = Nd = 3253, corresponding to the installation

of a lowering system. Therefore, from now on, the matrix X̄ =
F1:2Nd−Na−1,: contains the training points (blue background

in Fig. 2b), Ȳ = F2Nd−Na:Nd−1,: contains the test points in

standard condition (green background in Fig. 2 (b)), and Ū =
FNd:Na,: contains the test points in damaged condition (red

background in Fig. 2 (b)). The three subsets of acquisitions

that correspond to training, test, and damaged points are,

respectively, Ix = {1, ..., 2Nd − Na − 1}, Iy = {2Nd −
Na, ..., Nd − 1}, and Iu = {Nd, ..., Na}.

Let us define the offset x̂ as the column vector containing

the row-wise mean of the matrix X̄, and the rescaling

factor xm = maxa,s |x̄a,s − x̂a|. Before proceeding with the

anomaly detection, the matrices X̄, Ȳ and Ū are centered and

normalized subtracting the offset x̂ row-wise and dividing each

entry by the rescaling factor xm. The resulting data matrices

are X, Y and U, of size Nx × D, Ny × D, and Nu × D,

respectively, with D = 4 features.

A. Feature Extraction

This technique consists of mapping a set of data in a

low-dimensional feature space, trying to reduce an error

function that represents the distance between the original data

and the remapped data obtained from the mapping subspace.

In this work, we decide to use the ANN as auto-encoders to

accomplish this task [9], [11]. In this case, the normalized

feature matrix X is fed to an ANN with the classic bottleneck

structure that provides:

• Mapping layers, which consist of one or more

hidden layers, with the number of neurons in each

layer decreasing progressively till the last one named

bottleneck. In the bottleneck, the number of neurons is

usually lower than the number of input features;

• Demapping layers, composed of one or more hidden

layers where the number of neurons increases

progressively.

The input and output layers have the same dimension of the

feature space, and the labels during the training phase must

be set equals to the input data point. With this structure,

the data are mapped in lower-dimensional feature space

(with dimension equal to the number of neurons present

in the bottleneck layer) and then reconstructed through the

demapping layers minimizing the error with respect to the

input data.

B. Feature Selection

This approach proposes selecting the most reliable features

among all the available with some metrics to eliminate

noisy components that can deteriorate the damage detection

capability of the one-class classification (OCC) algorithms. In

this work, we decided to evaluate some statistical features (i.e.,

variance, kurtosis, and entropy) to identify the most reliable

fundamental frequencies among the four extracted, which are

widely discussed in Section VI.

V. SURVEY OF ANOMALY DETECTION TECHNIQUES

In this section we briefly review PCA, KPCA, and ANN,

which are often adopted for OCC [22]–[26].

A. Principal Component Analysis

This technique remaps the training data from the feature

space R
D in a subspace R

P (where P < D is the number

of components selected) that minimizes the error (defined as

Euclidean distance) between the data in the feature space and

their projection in the chosen subspace [27]. More in detail,

to find the best subspace to project the training data, we need

to evaluate the D ×D sample covariance matrix:

Σx =
XTX

Nx − 1
. (1)

By eigenvalue decomposition Σx can be factorized as Σx =
VxΛxVx

T, where Vx is an orthonormal matrix whose columns

are the eigenvectors, while Λx is a diagonal matrix that

contains the D eigenvalues. The eigenvalues magnitude

represents the importance of the direction pointed by the

relative eigenvector. In our setting we select the largest

component, hence P = 1, therefore the best linear subspace

of dimension one is vP, which coincides with the eigenvector

related to the largest eigenvalue of Σx. The projection into

the subspace is obtained multiplying the data by vP, i.e.,

xP = XvP, yP = YvP, and uP = UvP.

To evaluate the error between the projected points and the

starting ones, it is necessary to reconstruct the data in the

original feature space, i.e., X̃ = xPv
T
P , Ỹ = yPv

T
P , and

Ũ = uPv
T
P . After the reconstruction, it is possible to evaluate

the error as the Euclidean distance between the original and

reconstructed data.

B. Kernel Principal Component Analysis

In our feature space, the linear boundaries found by

principal component analysis (PCA) represent a severe

limitation [28]. kernel principal component analysis (KPCA)

firstly maps the data with a non-linear function, named kernel,

then applies the standard PCA to find a linear boundary in the

new feature space. Such boundary becomes non-linear in the

original feature space. A crucial point in KPCA is the selection

of the kernel that leads to linearly separable data in the new
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Fig. 3 F1 score varying the considered fundamental frequencies, vertical
dashed red lines indicate the best configuration with 4, 3, and 2 frequencies

feature space. In [29], when the data distribution is unknown,

the radial basis function (RBF) kernel is proposed as a good

candidate to accomplish this task. Given a generic point z that

correspond to a 1×D vector, we can apply the RBF as:

K(z)
n = e−γ||z−xn||2 , with n = 1, 2, . . . , Nx (2)

where γ is a kernel parameter (which controls the width of

the Gaussian function) that must be set properly, xn is the

nth row of X, and K
(z)
n is the nth component of the point

z in the kernel space. Overall, the vector z is mapped in the

vector k(z) = [K
(z)
1 ,K

(z)
2 , . . . ,K

(z)
Nx

]. Remapping all the data

in the kernel space, we obtain the subsequent matrices Kx of

size Nx ×Nx for training, Ky of size Ny ×Nx for validation,

and Ku of size Nu ×Nx for test, respectively.

Applying now the PCA to the new data sets, it is possible

to find non-linear boundaries in the original feature space.

C. Autoassociative Neural Network

The same structure described in IV-A can be used to perform

anomaly detection. After the training phase, the network is fed

with the new test points Y and U; if a new data point belongs

to the normal class, the reconstruction error is expected to be

low; otherwise, if the data refer to an anomaly, the output of

the demapping layers is likely to be very different from the

input.

VI. NUMERICAL RESULTS

In this section, the proposed algorithms are applied to

the Z-24 bridge data set to detect anomaly based on the

fundamental frequencies estimation [7], [30], [31], and a

reduced number of features. The performance is evaluated
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V
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n
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Fig. 4 Modal frequencies variance for different points; vertical dashed red
lines indicate the minimum number of points for the correct frequency

sorting

through the following metrics considering only the test set:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 · Recall · Precision

Recall + Precision

where TP, TN, FP, and FN, represent respectively true

positive, true negative, false positive, and false negative

predictions. Such indicators are obtained comparing the actual

labels [ζ(1), . . . , ζ(Na)], with those predicted by the OCC

[ζ̂(1), . . . , ζ̂(Na)]. In this application, labels are 0 for normal

condition and 1 for anomaly condition, respectively. Therefore,

TP =
∑
a∈Iu

1
{
ζ(a), ζ̂(a)

}
and TN =

∑
a∈Iy

1
{
ζ(a), ζ̂(a)

}

with FN = Nu − TN, and FP = Ny − TP. In the case of

unbalanced classes in the test set, the F1 score represents a

more reliable metric to evaluate the performance with respect

to accuracy.

The feature space has dimension D = 4, and unless

otherwise specified the three data sets used for training, test

in normal condition, and damaged condition, have cardinality

Nx = 2399, Ny = 854, and Nu = 854, respectively. For PCA,

the number of components selected is P = 1. For KPCA, after

several tests the values of P and γ that ensure the minimum

reconstruction error are P = 3 and γ = 8. Regarding the

autoassociative neural network (ANN) we adopted a fully

connected network with 7 layers of, respectively, 50, 20, 10,

k, 10, 20 and 50 neurons with k number of features extracted,

with ReLU activation functions for the feature extraction task,

and a fully connected network with 5 layers of, respectively,

100, 50, 1, 50 and 100 for the anomaly detection. All the
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Fig. 5 Modal frequencies skewness varying the number of points; vertical
dashed red lines indicate the minimum number of points for the correct

frequency sorting

neural networks (NNs) are trained for a number of epochs

Ne = 5000 with a learning rate ρ = 0.05. The error function

adopted for a training set X is:

EX = −
Nx∑
n=1

C∑
c=1

tn,c ln t̃n,c, (3)

where Nx is the number of points in the training set, C is the

number of classes (C = 2), tn,c = 1 if the nth acquisition

belongs to the cth class and zero otherwise, and t̃n,c is the

activation function value for point n of the cth output neuron

[10].

A. Frequencies Selection

First of all, a brute force approach is implemented to

evaluate the fundamental frequencies that provide the best

performance of the anomaly detection algorithms in terms of

F1 score with all the possible combinations of features. As

reported in Fig. 3, the best performance is achieved by the

algorithms with the same feature configuration, highlighted

with the red vertical dashed lines, that allows sorting the

features with increasing importance as f4, f3, f2, and f1.

Hence a good metric to describe the fundamental frequencies

reliability must sort the frequencies in the same order. With

this aim, three statistical metrics are reported as a good

candidate to accomplish this task.

The first one is the sample variance of the frequencies

extracted defined as:

Variance =

∑Nc

i=1(f
(i)
s − f̄s)

2

Nc − 1

where Nc is the number of acquisition considered, f
(i)
s is

the ith acquisition of the sth fundamental frequency, and f̄s
stands for the mean value of the sth frequency evaluated in the

interval {1, . . . , Nc}. As reported in Fig. 4, this feature works

well after Nc = 30 observations; as depicted, the variance of
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Fig. 6 Modal frequencies entropy varying the number of points

reliable features is lower with respect to the noisy ones; hence

this method can be successfully used to sort the frequencies in

the correct order. The second metric proposed is the skewness

that measure the asymmetry of the probability distribution, i.e.,

Skewness =
1
Nc

∑Nc

i=1(f
(i)
s − f̄s)

3

(√
1
Nc

∑Nc

i=1(f
(i)
s − f̄s)2

)3 .

As shown in Fig. 5, also this metric can be used to sort

the frequencies correctly; the method becomes reliable after

around Nc = 100 observations. Finally, in Fig. 6 the entropy

is evaluated as a further metric:

Entropy = −
Nc∑
i=1

P (f (i)
s ) log10 P (f (i)

s )

where the probability density function P (f
(i)
s ) is evaluated

numerically implementing data binning. In this case, the

trend is descendent because the information introduced by

new measurements decreases by increasing the number of

observations. This metric can also be used to sort the

frequencies, but in this case, f3 and f4 are inverted for some

values of Nc and f2 is very close to the previous two and can

be missorted.

B. Performance Comparison

This paragraph provides a performance comparison of the

anomaly detection algorithms and dimensionality reduction

techniques. In Fig. 7 the performance of PCA, KPCA,

and ANN is evaluated in term of F1 score, varying the

dimensionality of the features considered. Dashed curves are

referred to features extracted with auto-encoder implemented

with ANN. As we can observe from the plot, the

dimensionality reduction slightly decreases the algorithms’

performance; hence, for this application, feature extraction

does not improve the system’s anomaly detection capability.

On the contrary, continuous lines are referred to feature
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Fig. 8 Comparison of the classification algorithms in terms of F1 score,
recall, precision, and accuracy with the best feature configuration

selected through the metrics described in the previous

paragraph; in this case, the selection of the correct fundamental

frequencies tend to increase the detection performance, hence

it is strongly suggested for this application for the fact that

both reduce the dimensionality of the problem and increase the

anomaly detection capability. In Fig. 8 the performance of the

algorithms in terms of F1 score, recall, precision, and accuracy

is reported in the best configuration, hence considering only

the first two fundamental frequencies selected by the described

metrics (f1 and f2). As we can see, the F1 score of both KPCA

and ANN are around 95%, and the accuracy for ANN is greater

than 96% that represents a remarkable result in this anomaly

detection application.

VII. CONCLUSION

In this paper, we present a SHM system that aims to extract

the most reliable damage sensitive features to implement

anomaly detection with high accuracy. An overview of some

widely used anomaly detection algorithms is provided. Two

different paradigms to implement dimensionality reduction

are presented and compared in terms of damage detection

capability. In this sense, a best practice is to select the

most reliable fundamental frequencies among all the extracted

ones, which provide low dimensionality of the problem and

better performance with respect to the feature extraction

implemented through auto-encoders. A set of metrics with

which select the most reliable frequencies is presented and

widely discussed. Finally, a detailed comparison of algorithm

performance is reported in the best system configuration, and

it is shown that in these conditions, it is possible to detect

damage with accuracy greater than 96%.
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