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Hybrid Weighted Multiple Attribute Decision Making
Handover Method for Heterogeneous Networks

Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract—Small cell deployment in 5G networks is a promising
technology to enhance the capacity and coverage. However,
unplanned deployment may cause high interference levels and high
number of unnecessary handovers, which in turn result in an
increase in the signalling overhead. To guarantee service continuity,
minimize unnecessary handovers and reduce signalling overhead in
heterogeneous networks, it is essential to properly model the handover
decision problem. In this paper, we model the handover decision
problem using Multiple Attribute Decision Making (MADM) method,
specifically Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to
control the handover in heterogeneous network. The proposed method
adopts a hybrid weighting policy, which is a combination of entropy
and standard deviation. A hybrid weighting control parameter is
introduced to balance the impact of the standard deviation and
entropy weighting on the network selection process and the overall
performance. Our proposed method show better performance, in
terms of the number of frequent handovers and the mean user
throughput, compared to the existing methods.

Keywords—Handover, HetNets, interference, MADM, small

cells, TOPSIS, weight.

I. INTRODUCTION

THE capacity demand of the cellular network tends to be

more than 1000x by end of year 2021 [1]. The existing

homogeneous network is insufficient to meet such traffic because

of the cost needed to deploy macrocells (MCs). The technology of

small cells (SCs) has been implemented to meet the increasing

demand of capacity. Networks consisting of both MCs and

SCs are defined as heterogeneous networks (HetNets) [2]. The

implementation of ultra-dense SCs results in interference and

unnecessary handovers issues. The number of handovers is

extremely higher in HetNets compared to the homogeneous

networks. This can cause high probability of radio link failure

(RLF), leading to poor quality of service (QoS) [3]. There have

been many works in the literature dealing with the handover (HO)

problem. In [4]–[6], we proposed different methods to deal with the

HO-related problems in HetNets. This includes the minimization

of unnecessary HO, reducing HO failure and load balancing.

MADM techniques deal with the selection of the best

alternatives which are characterised according to multiple

attributes. The HO decision is usually affected by multiple metrics

[7]. Therefore, MADM techniques are natural choice in modelling

the HO decision problem.

TOPSIS is regarded as one of the utmost broadly exploited

MADM methods. When deployed in wireless network field,

TOPSIS is used to elect the target which is closest to the positive
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ideal solution and farthest from the negative ideal solution. Positive

ideal solution relays on the best value for the attributes deployed in

decision making, while negative ideal solution relays on the worst

attributes [8]. In [9], the authors proposed a TOPSIS method using

cost, total bandwidth, network utilization, delay, and jitter when

forming the HO decision matrix. In [10], a TOPSIS method is

presented to rank the available networks. Many metrics are utilized

when building the decision matrix, such as the available bandwidth,

cost, and security level. In [11], a TOPSIS technique is deployed to

avoid the connection failure in HetNets. User executes HO to the

target cell in one of two ways. Initially, once the received power is

low, even earlier than the time to trigger expiry. Subsequent, once

the received signal from the source cell is adequately higher but the

downlink SINR gets less than a threshold. Results reveal that this

method minimized the number of HOs, packet loss and increase

user mean throughput. However, the use of predefined values to

weight the HO metrics could show some deficiency in HO decision

due to the large variation in signal power because of user mobility

specially for high speed ones in ultra dense SCs scenarios. In [12],

we proposed two TOPSIS HO methods exploiting the standard

deviation (SD) and entropy weighting techniques separately. The

two methods are applied to a two-tier HetNet where it has been

found that the entropy-based method is suitable for home-based

SCs, while the SD-based method is more suitable for other SC

types at the cost of slightly higher complexity in operation. In this

paper, the HO decision uses the time of stay (ToS) in the target

cell, user angle of movement and the SINR for the target cell. We

proposed a method which adopts a hybrid weighting technique

motivated by [12]. The new proposal improves the work in [12]

by combining two weighting techniques in one technique. Using

numerical simulations, the proposed method is compared with the

exiting methods in terms of the number of HOs, RLFs and user

mean throughput. The contribution of this paper can be listed as

follows:

• TOPSIS is utilized to model the HO problem. The proposed

method uses the user angle of movement, ToS and SINR to

build the HO decision matrix.

• The proposed method combines both standard deviation and

entropy weighting techniques, hybrid weighting. Thus, this

method is named as hybrid weighted technique for order

preference by similarity to an ideal solution (HW-TOPSIS).

• Results revealed that the proposed HW-TOPSIS method

has outperformed the existing methods in the literature

by reducing the number of HOs and RLF, in addition to

improving the mean user throughput.

The rest of the paper is organized as follows. System model is

described in Section II. The proposed method’s procedures are

illustrated in Section III. Section IV gives the proposed weighting

techniques. The performance and results analysis are given in
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Section V. Finally, the conclusion is drawn in Section VI.

II. SYSTEM MODEL

The system model consists of a two-tier downlink HetNet

scenario with a single MC of 500m radius and Nsc number of SCs

with a radius of 100m each. Thus, the total number of base stations

in the network is Nbs . SCs are randomly deployed following

uniform distribution. The minimum distance is adjusted to 75m
between MC and SC sites and 40m between SC and SC site

[2] ensuring the existence of overlapping between SCs. Users are

distributed uniformly in the MC coverage area. Random direction

mobility model is deployed for users movement, in which the UE

travels in straight line with a constant speed.

A large scale channel is taken into account using the path loss

model and shadowing effects. The path loss between the MC and

the user is expressed as [13]

δm,k = 128.1 + 37.6 log10(dm,k), (1)

where dm,k is the distance between the user and the MC in

kilometres. The path loss between the SC and the user is expressed

as [14]

δsci ,k = 38 + 30 log10(dsci ,k), (2)

where dsci ,k is the distance between the user and SC i in metres.

The SINR received from SC i at user k is defined as

γrsci ,k =
Pr
sci ,k∑Nbs

j=1, j�i Pr
bsj ,k

+ σ2
, (3)

while the SINR received from MC at user k is given as

γrm,k =
Pr
m,k∑Nbs

j=1, j�m Pr
bsj ,k

+ σ2
, (4)

where Pr
sci ,k

and Pr
m,k

are respectively the reference signal received

power (RSRP) received from SC i and MC, Pr
bsj ,k

is the RSRP

from the interfering MC/SCs, γr
m,k

is the SINR received from MC

at user k, γr
sci ,k

is the SINR received from SC i at user k, σ2 is

the noise power, and Nbs is the total number of base stations in

the network.

As illustrated in Fig. 1, the real ToS, ToSreal
k

, can be computed

as

ToSreal
k =

|
−−−−−−→
AinAout |

Vk

=
2Ri cos(α)

Vk
,

(5)

where Ain, and Aout are respectively the entry and the exit points

of the UE to and from base station i, Ri is the radius of the base

station, and Vk is the user velocity k.

The following can be obtained from Fig. 1

| A1 A0 |

sin(180 − α)
=

Ri

sin(θ)
, (6)

where A0, and A1 are respectively the location of base station i,
and the previous location of the UE. Equation (6) can be rewritten

as

sin(α) =
| A1 A0 | sin(θ)

Ri
(7)

Thus

cos(α) =

√√
1 −

(
| A1 A0 | sin(θ)

)2
R2
i

(8)

..... UE movement 

direction

Base stationn ii

...
... ...

....

....

....

..... ... ......
..................A0

Fig. 1 Time of stay measurement

The angle between base station i and the trajectory of the user, θ,
can be computed as

θ = arccos

( −−−−→
A1 A0 ·

−−−−→
A1 A2

|
−−−−→
A1 A0 | × |

−−−−→
A1 A2 |

)
, (9)

where A2 is the current location of the UE.

Finally, we substitute (8) and (9) in (5) to obtain the real time

of stay as

ToSreal
k =

2Ri

√√√√√√
1 −

(
|
−−−−→
A1A0 | · sin

(
arccos

( −−−−−−→
A1 A0 ·

−−−−−−→
A1 A2

|
−−−−−−→
A1 A0 |×|

−−−−−−→
A1 A2 |

) ))2

R2
i

Vk
. (10)

III. PROPOSED HYBRID WEIGHTED TOPSIS (HW-TOPSIS)

The proposed method uses TOPSIS technique to choose the

adequate base station for HO by ranking the candidates. The HO

metrics (i.e. attributes) utilized to rank the target cells are: the

time of stay (ToSreal
k

), the user angle of movement (θ) and the

SINR of the target cell. The HW-TOPSIS method grants that

the chosen cell is suboptimal solution i.e. close to the positive

ideal solution and far from the negative ideal solution. Henceforth

the cell(s)/base station(s) will be named alternative(s) and the

HO decision metric(s) will be named attribute(s). The user has

a set of Nbs target alternatives m = {1,2, · · · ,Nbs}, a set of

attributes n = {1,2,3} and weighting vector w. The procedures

of HW-TOPSIS method can be summarized as follows:

Step 1: A decision matrix, D, is built by mapping the alternatives

against attributes as

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rm1 rm2 · · · rmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

where each row means one alternative and the columns mean

their correspondent attributes, n = 1, · · · ,3, m = 1,2, · · · ,Nbs , ri j
represents the value of the j th attribute for the ith alternative. In

this work, ri1 = θ, ri2 = ToS, and ri3 = SINR.

Step 2: Decision matrix normalization using a Square root

normalization method as

rnormij =
ri j√∑m
i=1 r2

i j

, rnormij ∈ [0,1], (12)

where rnormij is the j th normalized attribute of the ith alternative.

Step 3: Weighting the normalized matrix to consider the influence
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of each attribute as in (13). The detailed hybrid weighting

computations are illustrated in section IV.

Dn,w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rnorm11 · w1 rnorm12 · w2 rnorm13 · w3

rnorm21 · w1 rnorm22 · w2 rnorm23 · w3

...
...

...
rnorm
m1 · w1 rnorm

m2 · w2 rnorm
m3 · w3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13
d21 d22 d23
...

...
...

dm1 dm2 dm3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(13)

subject to
∑
j∈n

wj = 1, (14)

where di j is the j th weighted normalized attribute of the ith

alternative i.e., d11 = rnorm11 · w1, d12 = rnorm12 · w2 and so on.

Step 4: The weighted normalized decision matrix is utilized to

obtain the ideal positive solution (best alternative which has the

best attribute values, denoted as r+) and the ideal negative solution

(worst alternative which has the worst attribute values, denoted as

r−) by

r+ =
{
(max
i∈m

Dn,w
ij | j ∈ j+), (min

i∈m
Dn,w
ij | j ∈ j−)

}
=
{
d+1 , d

+
2 , d

+
3

}
,

(15)

r− =
{
(min
i∈m

Dn,w
ij | j ∈ j+), (max

i∈m
Dn,w
ij | j ∈ j−)

}
=
{
d−

1 , d
−
2 , d

−
3

}
,

(16)

where j+ is the set with attributes having positive impact, for

instance SINR and ToS, and j− is the set with attributes having

negative impact, for instance θ. Thus, θ is a cost attribute and both

ToS and SINR are benefit attributes.

Step 5: Determine the Euclidean distance between every alternative

and both the positive and negative ideal solutions as

dist+ =

√√√ n∑
j=1

(Dn,w
ij − d+j )

2, ∀i = 1, · · · ,m (17)

dist− =

√√√ n∑
j=1

(Dn,w
ij − d−

j )
2, ∀i = 1, · · · ,m (18)

Step 6: Network ranking by obtaining the vector a to measure the

relative closeness of each candidate alternative to the ideal solution

as

a =
dist−

max(dist−)
−

dist+

min(dist+)
, ∀i = 1, · · · ,m. (19)

In fact, ∀i = 1, · · · ,m, a(i) ≤ 0, bigger (a) means the better

alternative. When an existing alternative satisfies both of the

conditions
(
max(dist−) = dist−

)
and

(
min(dist+) = dist+

)
, this

means that this alternative is the best one, i.e. it is close to the

positive ideal solution and far from the negative ideal solution.

Step 7: Vector a is then ranked in descending order and the best

alternative (with the highest rank) is chosen as a target (i.e., a HO

target cell)

HOtarget = arg max
i∈m

a(i). (20)

IV. HYBRID ATTRIBUTE WEIGHTING TECHNIQUE

Attributes weighting represents a very considerable role in

HO decision. Therefore, the way of determining the weights is

a significant factor for the proposed HW-TOPSIS method. The

proposed hybrid weighting technique is based on entropy and

standard deviation (SD) weighting techniques. In this section, we

first define the entropy and SD techniques. Then, the proposed

hybrid technique.

A. Entropy and Standard Deviation Weighting Techniques

The entropy weighting technique accurately computes the

amount of decision information that each attribute has in the

decision matrix [15]. The entropy technique is a type of

objective weighting techniques which calculates the attribute

weight according to the relative difference between them. The

resultant weight of the attribute is then passed for normalization

to get the entropy weight of that attribute [16]. The j th entropy

coefficients divergence degree, denoted ej , can be computed by

utilizing the normalized decision matrix as

ej = 1 − cj, (21)

where cj =

[
1

ln(n)

n∑
i=1

rnormij ln(rnormij )

]
, (22)

the term 1
ln(n) is a constant which ensures that the value of

coefficient cj ∈ [0,1] i.e., 0 ≤ cj ≤ 1.

The entropy coefficient divergence degree ej represents the

inherent contrast intensity of the attributes. The more divergent the

values of rnormij for attribute j, the higher its corresponding entropy

coefficient divergence degree ej , and the more important the

attribute j for HO decision. In other words, this means that if the

alternatives have a comparable performance ratings for an attribute,

then this attribute has less impact in HO decision. Otherwise, if an

attribute j for all alternatives in the decision matrix is the same,

then this attribute is ineffective in HO decision since it has no

valuable information for the decision maker [17]. Ultimately, the

entropy weighting of the j th attribute can be identified as

we
j =

ej∑n
j=1 ej

, (23)

where we
j is the final weight of the j th attribute.

The SD weighting technique computes the weights of each

attribute in terms of the standard deviation [18]. The SD technique

assigns a small weight for identical-valued attribute with respect to

all alternatives. For instance, if an attribute has an identical values

on all alternatives, then it has no influence on HO decision and

therefore, its weight is null. In other words, attributes having high

standard deviation are given higher weights and vice versa.

The vector w characterises the importance of the attribute. Thus,

w1, w2, and w3 are respectively the weights of θ, ToS, and SINR.

The weights can be restrained by SD method as

wsd
j =

σj∑3
k=1 σk

, (24)

σj =

√√
1
m

m∑
i=1

(rnormij − μj)2, (25)
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μj =
1
m

m∑
i=1

rnormij , (26)

where σj and μj are respectively the standard deviation and the

mean value of the j th normalized attribute.

B. Hybrid Attributes Weighting

In this subsection, we propose a hybrid weighting technique to 
obtain the weighting vector w used in (13).

The proposed hybrid weighting technique combines the good

properties of both entropy and SD weighting techniques by using

a specific parameter λ. The hybrid weighting technique determines

the weight of each attribute by integrating the SD weight of each

attribute with its correspondent entropy weight using the control

parameter λ. The introduced parameter, λ, allows to exploit both of

SD and entropy weighting techniques with adjustable priority for

each technique. The hybrid weighting technique can be expressed

using the following

wh
j = λ · w

e
j + (1 − λ) · wsd

j , (27)

where λ is a constant parameter which can be used to assign

the percentage of the impact of both SD and entropy weighting

techniques together. The higher the value of λ means the higher

impact in weighting is given to the entropy technique and vice

versa. In order to validate and compare the variations in the

weighting techniques, we test a numerical example, whose decision

matrix is defined as

D =

⎡⎢⎢⎢⎢⎢⎢⎣

θ ToS SINR

A1 80 100 −109
A2 45 20 −106
A3 20 50 −81
A4 5 90 −45

⎤⎥⎥⎥⎥⎥⎥⎦
where Ai is the ith alternative ∀i = 1, · · · ,4.

First, we apply the Square root normalization on the decision

matrix

Dn =

⎡⎢⎢⎢⎢⎢⎢⎣

θ ToS SINR

A1 0.8504 0.6901 0.6149
A2 0.4783 0.1380 0.5937
A3 0.2126 0.3450 0.4537
A4 0.0531 0.6211 0.2521

⎤⎥⎥⎥⎥⎥⎥⎦
Then, the weighting vectors for the entropy, SD and hybrid

techniques are obtained respectively as

we =
[
0.0189 0.0144 0.9667

]
,

wsd =
[
0.4522 0.3310 0.2168

]
,

wh =
[
0.3222 0.2360 0.4418

]
.

Visibly, the three methods (entropy, SD and hybrid) assess the

attributes with various ranking, i.e., w3 > w1 > w2 for entropy, w1
> w2 > w3 for SD and w3 > w1 > w2 for hybrid, where w1, w2
and w3 are respectively the weights of θ, ToS and SINR.

The entropy method allocates exceptionally high weight for the

SINR, nearly 97%, and less weight for θ and ToS, nearly 1.8%

and 1.4% respectively. Inversely, the SD method assigns 45%,

33% and 21% weights for θ, ToS and SINR respectively. The

hybrid technique assigns more moderate and accurate weights for

the attributes, about 32%, 24% and 44% for θ, ToS and SINR

respectively. The entropy technique nearly assigns the complete

weight to one attribute (i.e., SINR) which is unfavourable, since

the ToS and θ attributes are also influential factors in HO decision.

The user could receive high SINR from a specific cell but its

ToS is very short and its moving direction is not towards the

cell (i.e., θ is very large) and hence, giving a higher weight for

only SINR is interpreted as a disadvantage of this technique. This

problem has been avoided by the SD and hybrid techniques with

the hybrid technique distributing the weights more moderately

among attributes. The proposed method uses the hybrid weighting

technique for measuring the weighting vector w and is called

HW-TOPSIS and its procedures are described in Algorithm 1. The

procedures start by first getting the cells that have an RSRP higher

than or equal to a predefined threshold (RSRPth). Then, the metrics

θ, ToS, and SINR are calculated to form the decision matrix. The

normalization is then performed on the decision matrix. After that,

the weighting vector w is computed using the hybrid weighting

technique. The obtained cells from the previous steps are gathered

in vector a. Finally, the highest ranked cells in vector a is selected

as HO target.

Algorithm 1 HW-TOPSIS Method

1: Start procedures
2: Obtain metrics, θ, ToS and SINR for all cells with RSRP ≥

RSRPth

3: Built the decision matrix D
4: Normalize the decision matrix
5: Obtain the weighting vector w using Hybrid technique

6: Rank the cells to obtain vector a
7: Perform HO to the cell with the highest rank in a
8: End procedures

V. PERFORMANCE AND RESULTS ANALYSIS

The performance of the HW-TOPSIS method is evaluated in 
terms of number of handovers, RLF and user mean throughput 
and compared against other two methods, the conventional method, 
the method in [11] denoted as TOPSIS, which uses a predefined 
weighting vector with fixed values. Simulation parameters are 
listed in Table I [19].

TABLE I 
SIMULATION PARAMETERS

Parameter Value
MC radius 500 meters
SC radius 100 meters
Number of SCs 50
Bandwidth 20 MHz
MC transmission power 46 dBm
SC transmission power 30 dBm
MC Shadowing standard deviation 8 dB
SC Shadowing standard deviation 10 dB
UE velocity {1, 20, 40, 60, 80, 100} km/h
RSRPth -70 dBm
γth -8 dB
T310 1 sec

A. Number of Handovers

Fig. 2 shows the total number of HOs per second. Obviously,

the conventional method has higher number of HOs compared

to TOPSIS and HW-TOPSIS. This is clearly resulted from the

fact that the conventional method does not predict the target
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Fig. 2 Number of handovers

cell and it does the HO when the downlink received power

from the neighbour cell is offset greater than that of the serving

cell for TTT time period. Differently, less number of HOs is

noticed in the performance of TOPSIS and HW-TOPSIS methods.

The HW-TOPSIS has also outperformed the TOPSIS method,

for all λ values, by minimizing the number of HOs due to the

hybrid weighting computations which causes a proper assigning

of importance to the attributes θ, ToS and SINR, different from

TOPSIS method, which gives fixed weights to the attributes.

Contrasting fast moving users, slow moving users will not result

in a short ToS phenomena, consequently, the number of HOs is

lower for slow moving users which explains the gain of realising

the ToS criterion. Moreover, the angle criterion removes the base

stations that are not in the user’s movement direction leading to

a fewer number of target base stations, and hence, minimizes the

number of unnecessary HOs compared to the other methods.

B. Radio Link Failure
A radio link failure is defined if the HO is initiated to a cell from

vector a but the SINR of that cell goes below the threshold γth for

a period of time window T310, which is 1 second, as described

in [20]. The RLF is depicted in Fig. 3. The RLF increases with

the speed for all methods with the conventional method having

the higher increase due to the frequent undesired HOs, hence,

the HO will be initiated but interrupted before finishing due to

the sudden drop in the target cell received power. Both TOPSIS

and HW-TOPSIS methods have the lowest RLF with HW-TOPSIS

outperforming, for all values of λ, particularly at high speeds due

to the early HO to the correctly predicted cell. The low RLF

in the HW-TOPSIS method affirms the accuracy of weighting

assignment to HO metrics which results into an accurate cell

selection. Moreover, the low link failure in HW-TOPSIS method

comes from the positive influence of incorporating the angle metric

where the users will avert initiating the HO to a cell located

away from its movement direction, and hence, the failure will be

decreased.

C. User Mean Throughput

The user mean throughout is depicted in Fig. 4. Noticeably,

the throughout decreases as the velocity increases for all methods

with the conventional method having the highest decrease because

of their higher number of unnecessary HOs which causes a

lower throughput for the user (since the high speed users will
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cause RLF which results in a poor throughput). The TOPSIS

and HW-TOPSIS methods produce higher throughput since they

perform the HO upon the proper target prediction with the

HW-TOPSIS outperforming TOPSIS method for all values of

λ. Higher throughout especially for low speed users reflects

the receiving of high SINR at the user side. Therefore, the

implementation of SINR metric has the advantage of enhancing

the throughput for different velocities.

D. Comparing HW-TOPSIS with PE-TOPSIS

In this subsection we compare the performance of the

proposed method, HW-TOPSIS, with that of our previous method

PE-TOPSIS, presented in [12]. Fig. 5 depicts that the number

of HOs is minimized in HW-TOPSIS method compared to
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Fig. 7 User mean throughput

PE-TOPSIS. For all values of λ, the HW-TOPSIS method gives

less number of HOs. The hybrid weighting technique gives more

stable weights to the attributes which in turn causes an efficient

alternative selection among the available alternatives. Obviously,

from Fig. 5, the influence of the weighting control parameter λ is

clear. The lower the value of λ the lower the number of HOs for

all velocities.

The RLF is shown in Fig. 6. The HW-TOPSIS method decreases

the RLF, which could cause HO failure. The level of increase in

the link failure increases with the increase in velocity according

to the common sense because the high speed users may leave the

coverage area of the cell before finishing the HO process, hence the

failure increases. The weighting control parameter λ also shows a

clear impact on minimizing the failure.

In Fig. 7, the mean user throughput is depicted. A smaller value

of λ in the proposed hybrid weighting technique produces higher

achieved throughput for the user.

To further validate the influence of the hybrid weighting

technique on the proposed method, we compare the performance

in a form of tables. Tables II and III give the numerical results

of the PE-TOPSIS and HW-TOPSIS methods when the velocity is

40km/h and 80km/h respectively. The influence of the proposed

hybrid weighting technique is obvious at medium and high

velocities (e.g., at 40 and 80km/h). The lower the value of the

parameter λ the lower the number of HOs, the lower the RLF

and the higher the achieved user throughput. For instance, when

the velocity is 40km/h, the number of HOs is reduced by 9.38%

when the value of λ is changed from 0.7 to 0.3. Additionally, the

RLF is reduced by 17.46% in the same case and the user mean

throughput is enhanced by 2.54%. The impact of λ is more clear

at high velocity (e.g., 80km/h). The number of HOs is reduced by

17% when the value of λ is changed from 0.7 to 0.3. Additionally,

the RLF is reduced by 16% in the same case and the user mean

throughput is enhanced by 12.9%.

TABLE II
PERFORMANCE ANALYSIS AT 40 KM/H

Method λ HOs/sec RLF UE throughput(Mbps)
0.3 0.1605 0.0063 0.889

HW-TOPSIS 0.5 0.1683 0.0076 0.883
0.7 0.175 0.0074 0.867

PE-TOPSIS 0.19 0.0085 0.815

TABLE II
PERFORMANCE ANALYSIS AT 80 KM/H

Method λ HOs/sec RLF UE throughput(Mbps)
0.3 0.282 0.023 0.768

HW-TOPSIS 0.5 0.313 0.027 0.70
0.7 0.34 0.0274 0.68

PE-TOPSIS 0.363 0.030 0.63

In the proposed hybrid technique, when λ = 0.3, which

means 30% is given to entropy weighing technique and 70% is

given to the SD weighting technique, the overall performance is

better. However, when λ = 0.7, which means 70% is given to

entropy weighing technique and 30% is given to the SD weighting

technique, the overall performance gets worse. On the other hand,

when only using the entropy weighting technique, the overall

performance is the worst compared to that when using hybrid

weighting. This proves the advantage of the proposed hybrid

weighting technique which exploits the good properties of both SD

and entropy weighting techniques. Furthermore, Fig. 9 depicts the

influence of different values of λ on the overall performance when

the velocity is fixed at 40km/h. Obviously, lower values of λ give

lower number of HOs and RLF but higher throughput compared

to higher values of λ. Therefore, we can conclude that selecting a

proper value of λ for a network depends on the requirements of the

service provider and/or the deployed type of SCs, in addition to the

network tolerance for the number of HOs, RLF and complexity.

E. Complexity Analysis

The complexity analysis of the proposed HW-TOPSIS method

is tested in this section and compared with that of our two previous

methods in [12]. Fig. 8 shows the computational complexity

where the total number of floating point operations (flops) is

evaluated with different sizes of the decision matrix (i.e., different

numbers of SCs). We used the Matlab function defined in [21].

Obviously, the complexity increases linearly with the increase

in the number of SCs for all methods. The HW-TOPSIS has

slightly higher complexity operations compared to PSD-TOPSIS

and PE-TOPSIS methods. Clearly, when the complexity is not

an issue in the application, then HW-TOPSIS method would be

a better solution at the expense of slightly higher complexity.

Additionally, higher complexity means higher energy consumption.

Therefore, deploying HW-TOPSIS, PE-TOPSIS or PSD-TOPSIS

also depends on the type of SCs. For instance, when home-based

SCs are deployed (e.g. femtocells), then the PE-TOPSIS is more

preferred due to the limited calculation abilities of the femtocell.

On the other hand, when other SC types are used (e.g. picocell),

then the PSD-TOPSIS could be the best option. Alternatively,

when using multi-tier SCs HetNet, then the HW-TOPSIS can be

considered as best option.
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VI. CONCLUSION

In this paper, a hybrid weighted MADM TOPSIS method

has been presented. The proposed method deploys the TOPSIS

technique of ranking the HO candidate cells according to the

influence of their attributes. We proposed a hybrid weighted

TOPSIS method, HW-TOPSIS, which combines the properties

of standard deviation and entropy weighting techniques via a

weighting control parameter λ. This method shows better results in

enhancing the network performance by minimizing the number of

HOs and RLF, in addition to enhancing the mean user throughput.

By using lower values of λ, which means that i.e., deceasing the

weight given to the entropy and increasing the weight to standard

deviation technique, the user mean throughput is enhanced, while

the RLF remains low especially for medium and high speeds.
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