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Abstract—Breadth-First Search (BFS) is a core graph algorithm
that is widely used for graph analysis. As it is frequently used in many
graph applications, improving the BFS performance is essential. In
this paper, we present a graph ordering method that could reorder
the graph nodes to achieve better data locality, thus, improving
the BFS performance. Our method is based on an observation that
the sibling relationships will dominate the cache access pattern
during the BFS traversal. Therefore, we propose a frequency-based
model to construct the graph order. First, we optimize the graph
order according to the nodes’ visit frequency. Nodes with high visit
frequency will be processed in priority. Second, we try to maximize
the child nodes’ overlap layer by layer. As it is proved to be
NP-hard, we propose a heuristic method that could greatly reduce
the preprocessing overheads. We conduct extensive experiments on 16
real-world datasets. The result shows that our method could achieve
comparable performance with the state-of-the-art methods while the
graph ordering overheads are only about 1/15.

Keywords—Breadth-first search, BFS, graph ordering, graph
algorithm.

I. INTRODUCTION

GRAPH representation is widely used for various

scenarios [15], [26], [28], [29], [10], [9] such as social

networks, citation networks, and computer networks. As

graphs are frequently used in the real world, graph analysis

is becoming more and more important. Among all the graph

analysis methods, the Breadth-first search is one of the core

methods that draw much attention.

A plethora of works have focused on improving the BFS

performance. The most popular methods [2], [5], [11], [19]

try to parallel the BFS procedure to speed up the traversal

performance. However, existing works [3], [30] have shown

that the cache stall costs great overheads in the BFS process.

Only engage more CPUs in the computation could hardly

improve the BFS performance. Thus, how to reduce the cache

misses is the core problem.

An intuitive idea to reduce the cache misses is to optimize

the adjacent list. We show an example in Fig. 1. Fig. 1(a) is

an example graph that we will use throughout the paper and

Fig. 1(b) is the corresponding adjacent list. We optimize the

adjacent list by sorting the edge arrays and show it in Fig. 1(c).

In this scenario, all the edge arrays are sorted according to their

destinations. As the graph nodes are kept in memory according

to their index, the sorting achieves better data locality. For

instance, if we perform a BFS from node 5, for the adjacent

list in Fig. 1(b), we will visit nodes 4, 8, and 3 one by one.

Although node 4 and node 3 are close to each other, they

show a terrible locality in data access. However, if we use

the adjacent list in Fig. 1(c) in which the edge arrays are

sorted according to the node index, node 5’s child nodes will
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be visited in the order of 3, 4, and 8. In this scenario, the

node 4 will be visited after node 3. As they are very likely

to be in the same cache line, better data locality could be

achieved. Nevertheless, Malicevic et al. [27] prove that only

optimizing the adjacent list could not reduce the cache misses.

The real-world graph is huge that the destination nodes in the

adjacent list are very likely to be kept far away from each

other. No matter how we order the adjacent list, the destination

nodes could hardly be located in the same cache line. Thus,

graph ordering methods are proposed.

There have been extensive researches [30], [22], [8],

[25], [23] focusing on developing graph ordering techniques.

However, although they could significantly speed up the graph

algorithms, they are either of low efficiency or incur extremely

high overheads. For example, Gorder [30] tries to cluster

the nodes that are frequently accessed together in the local

area to achieve better cache utilization. Nevertheless, for large

graphs with tens of millions of edges like LiveJournal, their

preprocessing time could be 39.54 seconds, while the average

BFS time is only about 0.49s. Compared with the performance

gains, the large preprocessing overheads are unacceptable.

Therefore, lightweight graph ordering methods are needed.

Several lightweight graph ordering methods [31], [4], [6]

have been proposed recently. Different from Gorder, they

concentrate on end-to-end performance improvements. That

is, their preprocessing overheads could be easily amortized

even if the graph application is just executed a few times.

However, [6] proves that the BFS procedure could hardly

benefit from the existing lightweight graph ordering methods.

This is because [6] BFS will process a small fraction of edges

per iteration, leading to limited reuse of cache line.

We present the Maximum Overlap (MO) method in this

paper. Our method is based on an observation that the sibling

nodes’ access dominates the cache access pattern in the BFS

procedure. Thus, we try to reorder the graph nodes according

to the sibling relationships. The most straightforward method

is to order the graph in the BFS visit order. An example is

shown in Fig. 1(d). We assume that we want to perform a

BFS from node 1. As node 4 is next to node 5, node 5 and

node 4 will be sequentially visited. After that, node 5 try to

visit its child nodes in the order 4, 3, and 8. Again, as they

are in the adjacent memory position, the number of cache

misses will be significantly reduced. However, the method

is inefficient as it ignores the node visit frequency and the

child nodes overlap. Thus, we present our hierarchical graph

order method that could reorder the graph nodes layer by layer.

First, we propose a frequency-based model that could optimize

the graph order according to the node visit frequency. Then,

we try to maximize the child nodes overlap to improve the

data locality further. The experiments prove that our method

is very efficient in graph order construction and could achieve
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(a) (b) (c) (d)

Fig. 1 Fig. 1(a) is an example graph that will be used all over the paper. Fig. 1(b) is the corresponding adjacent list. Fig. 1(c) is the optimized adjacent list.
Fig. 1(d) is the adjacent list optimized by the graph ordering method

comparable performance with state-of-the-art methods.

Hereby, we summarize the contributions as the following:

• First, we propose a frequency graph ordering model

that focuses on the speedup of BFS traversal. Different

from the existing methods, we consider the node visit

frequency.

• Second, we propose a hierarchical node cluster method

that could maximize the child node overlap layer by layer.

Moreover, the method is readily comprehensible and easy

to implement.

• Finally, we compare our method against the

state-of-the-art approach, using 16 large real-world

datasets. We confirm that our method could make a

comparable performance against the state-of-the-art

methods while the preprocessing overheads are only

about 1/15.

The rest of the paper is organized as follows: Section II

shows the related works. Section V proposes the MO method.

The experiment is reported in Section V. Section VI concludes

the paper.

II. RELATED WORK

Graph ordering has been studied for decades. At the very

beginning, graph ordering [14], [18] was proposed for reducing

the bandwidth in matrix computation. Cuthill-McKee [14] and

Reverse CuthillMcKee (RCM) [18] methods reorder the graph

nodes into BFS visit order, thus the matrix fill will be reduced

which in turn reducing the space and time required to perform

the matrix computation. As RCM shows a great importance in

paralleled computing, the paralleled RCM [16], [20] are also

studied.

Recent years, graph ordering [31], [6], [22], [4], [30] is

popular for speedup graph analysis. Wei et al. present Gorder

[30], a general approach that tries to improve graph memory

access by reordering the graph nodes. They optimize the cache

utilization by greedy strategy. When deciding the node in

the next position, they always try to find out the node with

the most relations with the front nodes. Here, the relation

means the neighbor relationships and the sibling relationships.

However, as we aforementioned, Gorder will incur significant

overheads in the graph ordering procedure. The processing

time is unacceptable for large graphs. Thus, lightweight graph

ordering methods are studied.

Zhang et al. propose Frequency-Based Clustering [31]

which focuses on the graph ordering in power-law graphs.

They find that the hub nodes with numerous edges are

much more likely to be accessed than the other nodes. Thus,

they reorder the graph nodes according to the nodes’ degree

such that the nodes with large degrees will be clustered

together. It is generally a sorting process. Therefore, it shows

high efficiency in graph order construction. Hub Clustering

[6] is a variation of Frequency-Based Clustering. Unlike

Frequency-Based Clustering, it does not guarantee that the

nodes are ordered in descending order of degree. Thus, it

achieves a reduced speedup compared with Frequency-Based

Clustering. As both the methods are lightweight graph ordering

methods, they could achieve end-to-end speedup for graph

analysis. Nevertheless, their performance lift may be very

limited in some scenarios.

Community based graph ordering methods [17], [25], [12],

[8], [4] are also studied. However, most of them [25], [12],

[8] focus on the compression of social networks. Arai et

al. [4] present Rabbit, which is a community-based graph

ordering method that tries to speed up the graph analysis. Their

approach is based on an observation that a community has

dense inner-edges, and hence, during graph analysis, a node in

a community involves frequent accesses to other nodes in the

community [4]. They propose a hierarchical community-based

ordering method that tries to improve locality by co-locating

nodes in each community and within each subordinate inner

community recursively [4]. Nevertheless, their approach tends

to be effective only in graphs with community structures.

Lakhotia et al. [22] propose the Block Reordering approach.

In addition to the spatial locality, they consider temporal

locality. They define a notion of dynamically matching

memory access patterns with cache contents in a way that

jointly maximizes both cache data reuse and cache line

utilization [22]. They prove that Block Reordering can achieve

up to 2.3x speedup over the original graph order.

III. MAXIMUM OVERLAP METHOD

Given a directed graph G(V,E), V is the nodes set, and

E is the edges set. The number of nodes and edges in G is
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denoted as n = |V | and m = |E|. Given a node u, we denote

the in-neighbor (resp. out-neighbour) of u as Nin(u) (resp.

Nout(u)). The in-degree and out-degree of node u are denoted

as din(u)=|Nin(u)| and dout(u)=|Nout(u)|. For an edge from

node u to node v, we denote it as (u, v). Two nodes are defined

as sibling nodes if they share a common in-neighbor.

The key idea for speedup the BFS traversal is to access the

sibling node as much as possible sequentially. That means, in

addition to the techniques we proposed in this paper, we will

also sort the adjacent list like the example shown in Fig. 1(c).

In order to measure the benefit that we could achieve from the

cluster of sibling nodes, we define a score function.

Score(vi, vi+1, u) =

⎧⎨
⎩

1 if vi and vi+1 share a

common father node u
0 otherwise

(1)

Here, vi and vi+1 are two graph nodes. The subscript i
indicates the nodes’ index in the new graph order. For a

specific node u in the graph, the score it could acquire is:

F (u) =

n∑
i=0

Score(vi, vi+1, u) (2)

Thus, for the new graph order, the total score we could achieve

is:

F (π(V )) =
∑
u∈V

n∑
i=0

Score(vi, vi+1, u) (3)

Here, π(V ) is a permutation function that maps every node

in V to a natural number. Equation (3) will measure how well

the sibling nodes are clustered in the new graph order.

The model is readily comprehensible. However, the node

visit frequency is ignored. It is well known that nodes in

the graph have different visit frequencies. Some nodes are

frequently visited, and some other nodes are seldom visited.

For example, in Fig. 1(a), on the one hand, node 4 and node

5 are the child nodes of node 1. on the other hand, node 5,

8 and 9 are the child nodes of node 6. We could either put

node 5 together with node 4 or together with nodes 8 and 9.

If we consider the nodes’ visit frequency, we could find that

nodes 4 and 5 will be accessed together only when node 1 is

visited. However, the visit of nodes 6 and 3 will both incur the

co-access of nodes 5, 8, and 9. Thus, co-locate node 5, 8 and

9 are reasonable. To achieve better graph order performance,

we define a new score function that considers the nodes’ visit

frequency. For node u in the graph, the score it could achieve

is:

F (u) = ρu ∗
n∑

i=0

Score(vi, vi+1, u) (4)

where ρu is the frequency that node u is visited or, in

other words, the frequency that node u’s child nodes are

co-accessed.

Obviously, the more the sequential memory accesses are

executed, the better cache locality we could achieve. Our

problem is to find an optimal permutation of the graph nodes

that could maximize the sum of all the nodes’ scores. We show

the problem definition here.

Problem 1. Given a graph G(V,E), we find an optimal

permutation π : V → N that maximizing the score of

F (π(V )),

F (π(V )) =
∑
u∈V

ρu ∗
n∑

i=0

Score(vi, vi+1, u) (5)

Theorem 1. Maximizing F (π(V )) to achieve the optimal

permutation π(V ) for directed graph G(V,E) is NP-hard.

Proof: First, we assume that all the nodes will be visited

with the same frequency. To simplify the proof, we assume

ρ = 1 for all the nodes in the graph. Thus, the score F (π(V ))
will only correlate to how many sequential accesses could be

executed with the specific permutation. In some cases, some

graph nodes may share a bunch of child nodes. Co-accessing

the shared child nodes will result in a higher score as they

could provide more sequential node access for the common

father nodes. However, in our proof, we assume that such

sharing does not exist in the graph. Thus, the sequential access

of the specific nodes will only benefit their common father

node. In this scenario, as there are only n nodes in the graph,

at most n− 1 sequential memory accesses could be executed.

For node u in the graph, there are dout(u) child nodes and

could perform at most dout(u)− 1 sequential memory access.

The fewer father nodes we used to cover the n− 1 sequential

access, the more sequential accesses could be performed. Thus,

we should try to use the least number of father nodes to cover

the n− 1 sequential access. Our problem could be reduced to

the minimum set cover problem, which is NP-hard.

As we have proved, Problem 1 is NP-hard. It is difficult

to find the optimal solutions. Thus, we propose to use a

heuristic method to maximize the score function. Our method

is based on two observations: 1) The hub nodes will make

a big difference in the total score. We could infer from (4)

that, for a given node u, the node visit frequency ρu and the

corresponding sequence score
∑n

i=0 Score(vi, vi+1, u) will

greatly affect the total score. On the one hand, as the hub nodes

usually get a high in-degree, they are more likely to be visited.

That means their visit frequency is high. On the other hand,

the hub nodes usually get a large out-degree which tends to

achieve a high score in
∑n

i=0 Score(vi, vi+1, u). Consider the

large difference in nodes’ visit frequency; the hub nodes may

get a huge F (·) score, which will overwhelm the nodes with

a few neighbors. Thus, prioritize the hub nodes is reasonable.

2) Maximum the child nodes overlap will improve the score.

Until now, we only consider the scenario that there are no

child nodes overlap in the graph. That is, the sibling nodes will

only share one father node. However, in practice, it is quite

common that the sibling nodes share several father nodes. For

example, if we insert an edge (6, 3) into the graph, nodes 3
and 8 will share two common father nodes: node 5 and 6.

In this scenario, if we co-locate node 3 and 8 together, we

could achieve a higher score from both F (5) and F (6). Thus,

maximum the child nodes overlap is another problem we try

to solve.
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Fig. 2 The data structure used in our algorithm

To achieve a good performance, our method will apply

a greedy strategy. We will always try to process the nodes

with high visit frequency and large F (·) score. However, as

the node visit frequency is hard to acquire, we will use the

nodes’ in-degree to approximate the value. Thus, (5) will be

transformed into an in-degree based equation:

F (π(V )) =
∑
u∈V

din(u) ∗
n∑

i=0

Score(vi, vi+1, u) (6)

It needs to be noted that, due to the power-law property,

the nodes’ in-degree maybe have a more significant difference

than the node visit frequency in some social networks.

Equation (6) tends to stress more on the hub nodes.

IV. IMPLEMENTATION

We have proposed the model in the previous section.

However, due to its NP-hard nature, it is not easy to find

out the optimal solution. Thus, in this section, we focus on an

efficient heuristic algorithm.

As we aforementioned, we adopt a greedy strategy in our

method. Our method aims to modify the memory location

of the graph nodes to maximize the child nodes’ overlap.

However, frequently moving the memory block is costly. Thus,

we use a link list to simulate the data moving process. The

data structure is shown in Fig. 2. The graph is stored in an

adjacent list. Every node will use two pointers to locate its

position in the link list. During the processing, our method

will continuously re-link the link list. Finally, we will get a

new link list in which the index indicates the new graph order.

The method is shown in Algorithm 1. We call it MO

(maximum overlap) algorithm because it tries to overlap the

children nodes as many as possible. We will process the hub

nodes in priority as they show great importance in our model.

Thus, we first sort the nodes according to the nodes’ in-degree

and out-degree product in descending order in line 5. From

line 7 to line 10 we process the first hub nodes with the most

significant product of the in-degree and out-degree. Its child

nodes will be added to the link list and be marked as visited.

Then, we set their group(gp) property as the index of its father

node.

The other nodes will be handled from line 11 to 30. For

every unvisited node, we will inspect its child nodes one by

one. If the child node is unvisited, that means the node has not

been added to the link list. We will add it to the end of the link

list and set its visit/group(gp) property (from line 13 to 19).

Otherwise, the node has been visited before, which means it

is an overlapped child node that has been visited from other

nodes. We will push it into the ”overlap” array (line 19).

Algorithm 1 Maximum Overlap Algorithm

1: procedure MO(G(V,E))
2: //sort all the nodes in descending order

3: //according to the product of nodes’s

4: //in-degree and out-degree

5: ord = sort(G(V,E))
6: groupCnt = 1

7: for node x ∈ Nout(ord[0]) do
8: add x to the end of the link list

9: x.visit = true

10: x.gp = ord[0]

11: for int i from 1 to n do
12: for node y ∈ Nout(ord[i)) do
13: if y.visit = false then
14: y.visit = true

15: y.gp = ord[i]

16: add y to the end of the link list

17: else
18: //add y into the array overlap

19: overlap.add(y)

20: //sort the visited according to the gp property

21: sort(overlap)

22: if overlap.size > threshold then
23: for int j from 0 to overlap.size do
24: if overlap[j].gp=overlap[j+1].gp then
25: re-link the link list

26: link overlap[j+1] next to overlap[j]

27: overlap[j].gp = |v|+groupCnt

28: overlap[j+1].gp = |v|+groupCnt

29: else
30: groupCnt++

31: //add the unvisited nodes into the link list

32: for node z ∈ V do
33: if z.visit=false then
34: add z to the end of the link list

The most important technique we used in our method is

sorting the ”overlap” array according to nodes’ gp property

(line 21). In this way, nodes in the same group will be clustered

together. The next step is to re-link the link list. However, we

use a predefined variable ”threshold” to restrict the process

(line 22). If there are few nodes in the array overlap, we will

not execute the re-link process as there may be few child nodes

overlapped.

From lines 23 to 30 we re-link the link list according to the

”overlap” array. For the nodes in the array, we will check its

group(gp) property (line 24). If the currently visited node is

in the same group as the next node, they will be linked in an

adjacent position. After that, they will be allocated with a new

group number (lines 27 and line 28). Finally, we will add the

unvisited nodes to the end of the link list (line 32 to 34).

It needs to be noted that our algorithm could continuously

overlap the already visited child nodes. However, it will not

break the sibling relationship that has been constructed in

adjacent positions. We show an example in Fig. 3. Assume that

node v1 is the largest hub node. Thus, the nodes in the graph
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Fig. 3 Graph nodes divided by node v1 and v2

will be divided by node v1 at first. They are split into two set:

{Nout(v1)} and {V − Nout(v1)}. Nodes in {Nout(v1)} will

be added to the link list and marked as visited. Assume node

v2 is the next hub node that needs to be processed. We try to

find out the child nodes that have been added to the link list

before. After sorting the ”overlap” array (line 21), the nodes

with group number v1 will be linked together, which is the

set {Nout(v1)
⋂

Nout(v2)}. The other child nodes of v1 will

be located just behind them, which is {Nout(v1)−Nout(v2)}.

Our adjustment in the link list will not break the sequential

access of node v1’s child nodes.

Discussion: As we have stated, our method tries to

maximize the child nodes overlap. That means our method

tends to be more efficient in dense graphs or graphs with

community structures. For social networks, nodes in the same

community are more likely to share common child nodes. For

dense graphs, as there are more edges in the graph, the nodes

in the graph tend to share more child nodes. On the contrary,

in sparse graphs, the performance of our method will degrade.

On the one hand, in the sparse graphs, every node may have

only a few edges, the nodes are less likely to share common

child nodes. On the other hand, our method is a hierarchical

technique that the child nodes will be split layer by layer. In

sparse graphs, the hierarchical technique will be inefficient.

V. EXPERIMENT

In this section, we compare the MO method with the

state-of-the-art approaches. First, we will introduce the

experimental setup in Section V-A. Second, we show the

graph ordering overheads in Section V-B. Third, we conduct

a comparison in terms of BFS running time in Section V-C.

A. Experimental Setup

We conduct our experiments on a server with an Intel

Xeon CPU E5-2680 v3 2.50GHz, 64GB RAM, 32KB Level

1 cache, 256KB Level 2 cache, and 30MB Level 3 cache.

We compare our maximum overlap(MO) method with several

state-of-the-art approaches:

• Original: This is the original graph that we acquire from

the web.

• Gorder [30]: The state-of-the-art approach proposes a

locality metric(Gscore) to measure the graph ordering

efficiency. It maximizes the Gscore by a proposed greed

strategy.

• Rabbit [4]: A lightweight graph ordering approach that

focuses on the graph’s community property. Nodes in the

same community tend to be clustered together.

• HC [6]: The HubCluster method that will reorder the

nodes according to the nodes’ in-degree and out-degree.

• MO: The maximum overlap method proposed in this

paper.

We will use the classic BFS algorithm [13] to evaluate the

performance.

The experiments are conducted on 16 real-world datasets.

We show the statistics of the dataset in Table I. All the datasets

are collected from SNAP [24], KONECT [21], and LAW [1].

In our experiment, they are transferred into the compressed

sparse row (CSR) format.

TABLE I
DATASET STATISTICS

Dataset |V | |E| davg
LJ 4,847,571 68,993,773 14.23

Web 875,713 5,105,039 5.83
Email 265,214 420,045 1.58
Wiki 2,394,385 5,021,410 2.09
Pokec 1,632,803 30,622,564 18.75

BS 685,231 7,600,595 11.09
Twitter 2,881,151 6,439,178 2.23
Reddit 2,628,904 57,493,332 21.86

Amazon 400,727 3,200,440 16.79
Wiki-t 1,140,149 7,833,140 6.87

Youtube 1,138,499 4,942,297 8.68
CS 384,413 1,751,463 4.06
DB 3,966,924 13,820,853 6.96
Trec 1,601,787 8,063,026 10.06

Arabic 22,744,080 639,999,458 28.14
Uk 18,520,486 298,113,762 16.09

UK and Arabic [7] are two large web datasets with

hundreds of million edges. LJ, Youtube, Reddit, and Pokec

are power-law graphs collected from social networking sites.

CS is a citation network that each edge indicate that an author

has (co-)published a given publication. It is collected from

the CiteSeer digital library. Wiki and Wiki-t are collected

from Wikipedia, and Wiki-t is a wiki talk communication

network. BS is a web graph of Berkeley and Stanford. Web

is a web graph dataset from Google. Every node in the

graph represents a web page, and the directed edges represent

hyperlinks between them. Trec is a web graph collected from

the TREC conference, and Amazon is an Amazon product

co-purchasing network from June 1, 2003. DB is a complete
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Fig. 4 Graph order construction time

DBpedia network. The data is extracted from version 3.6 of

DBpedia.

B. Order Construction

We show the graph order construction time for all the

methods in Fig. 4. Gorder will cost the highest overheads

in graph order construction. As we have stated, Gorder

is based on a greedy strategy, and it approximates the

traveling salesman problem(TSP). Their overheads are very

high due to their high time complexity. After they optimize the

construction process by priority queue, their time complexity

could be O(
∑

u∈V (dout(u))
2). Among all the methods,

HC could achieve the most minor graph order construction

overheads. According to their method, HC will only sort the

graph nodes based on their out-degree numbers. The time

complexity depends on the sorting approach they used. Benefit

from their simple processing method, HC could construct all

the graph orders in less than 1 second. Rabbit is the only

graph ordering method that could be paralleled. The author

claim that Rabbit’s time complexity is roughly in proportion

to m. For a fair comparison, we use one thread to construct

the graph order. For most of the datasets, they could construct

the graph order in less than 10 seconds. MO could achieve a

suboptimal performance. As we also need to sort the nodes,

the time complexity is related to the sorting algorithm we

use. However, we want to highlight that MO could be orders

of magnitude faster than Gorder and Rabbit in graph order

construction.

C. BFS Time

For all the approaches, we evaluate the BFS running time

in Fig. 5. We perform 100 BFS traversals from randomly

generated source nodes, and report the average running time

of 10 repeats.

HC shows the worst performance in our experiment. For all

the 16 datasets, HC can only surpass the original in 6 of them.

In most cases, HC will degrade the BFS performance. This is

because the original graph obtained from the web may have

a certain degree of locality in nature. The reorder procedure

may break its original locality. The experiment proves that,

although HC method could efficiently construct the graph

order, its performance is not satisfactory.

Compared with HC, Rabbit achieves a better performance.

It could speed up 8 datasets, and the improvement is more

significant than HC. Nevertheless, as we aforementioned,

it could only speed up the datasets that have community

structure. For example, in LJ, Email, Pokec, Twitter, and

Wiki-t, Rabbit shows notable improvement. All these datasets

are social networks or communication networks that have

community structures. On the contrary, when applied to other

scenarios with no communities, Rabbit could not improve the

BFS performance. For example, in BS, CS, Amazon, and

DBpedia, Rabbit could achieve no improvement.

For all the baselines, Gorder acquire the best overall

performance. Therefore, in the remainder of this paper, we

will only compare our method with Gorder.

LJ, Youtube, Reddit, and Pokec are social networks.

However, Gorder and MO methods show different

performances in these datasets. In LJ, Reddit, and Pokec,

both Gorder and MO could speed up the BFS procedure. On

average, Gorder could achieve a speedup of 16%, while MO

could achieve 21%. In Youtube, Gorder and MO could not

achieve any improvement. As Youtube’s average degree is

8.68, it is much sparser than the other three datasets, which

means nodes in the graph are less likely to share common

child nodes. Thus, maximizing the child nodes overlap is

invalid. We want to highlight that, for Gorder, construct the

graph order for LJ, Reddit and Pokec will incur significant

overheads (56.91s, 19.98s and 94.08s, respectively). Our

method can reduce 95% of the graph order construction time

and the BFS performance could be even better.

Email and Wiki-t are communication networks. As we

aforementioned, our method is good at handling graphs

with community structures. Thus, compared with the original

graph, we could achieve an average improvement of 33%.

Nonetheless, due to the sparse nature of Wiki-t, our

method could only achieve a suboptimal performance. Similar

tendency could also be achieved in Web, BS, Twitter, DB and

Arabic. In all these datasets, Gorder continuously outperform

MO.

Arabic and UK are two large datasets with several hundred

million edges. We notice that all the methods could hardly

speed up their BFS performance. Gorder could speedup Arabic

by about 11%. However, it would worsen the BFS performance

in UK by about 3%. MO could acquire a very similar
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Fig. 5 BFS traversal time

performance, and the performance lift is also very limited.

It is because the graph is huge, and Arabic has the highest

average degree. Therefore, the BFS visit will traversal a large

number of nodes that the cache could not contain. Although

we optimize the graph order, the traversal will still incur a

large number of random memory access.

Our experiments show that MO method could achieve

comparable performance with the state-of-the-art method. For

all the 16 datasets, MO outperforms Gorder in 8 of them.

Generally, MO method could acquire the best performance in

social networks and communication networks like LJ, Pokec,

Reddit and Email. However, in sparse graphs like DB, Wiki-t,

and Twitter, Gorder is better than MO method. As the graphs

are sparse, every node will only connect a few child nodes.

Thus it is hard to overlap their child nodes. Our MO method

will be degraded in this scenario. It needs to be noted that,

even in these datasets, MO could still acquire a suboptimal

performance. Although Gorder could outperform MO method

in some scenarios, MO will significantly reduce the graph

order construction overheads. Compared with Gorder, MO’s

graph order construction overheads are only about 1/15.

VI. CONCLUSION

In this paper, we present MO method to speed up the

BFS performance. Different from the existing works, our

method focuses on sibling relationships. First, we proposed

a frequency-based model. Then, we proved that maximize the

score function to achieve the optimal graph order is NP-hard.

Thus, we proposed a heuristic method based on a greedy

strategy. Generally, we first clustered the sibling nodes in

adjacent memory addresses. Then, we maximized the child

nodes’ overlap layer by layer. We conducted experiments

on 16 real-world graphs. Our experiments show that MO

method could achieve comparable performance with the
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state-of-the-art approaches while the graph order construction

speed is orders of magnitude faster. Our future work will focus

on speeding up the DFS-based methods and the graph order

maintaining in dynamic graphs.
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