
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

127


Abstract—The availability of inexpensive, yet competent

hardware allows for increased level of automation and self-
optimization in the context of Industry 4.0. However, such agents
require high quality information about their surroundings along with a
robust strategy for collision avoidance, as they may cause expensive
damage to equipment or other agents otherwise. Manually defining a
strategy to cover all possibilities is both time-consuming and counter-
productive given the capabilities of modern hardware. This paper
explores the idea of a model-free self-optimizing obstacle avoidance
strategy for multiple autonomous agents in a simulated dynamic
environment using the Q-learning algorithm.

Keywords—Autonomous vehicles, industry 4.0, multi-agent
system, obstacle avoidance, Q-learning, simulation.

I. INTRODUCTION

N recent years, the increased availability of high-accuracy
sensors, inexpensive computational power and internet-

enabled devices democratized smart products and self-
optimizing systems in multiple domains. In the context of
Industry 4.0, this development opens up the ability to assist
humans with dangerous or repetitive work. Smart products span
the range from simple, zero-intelligence products to proactive
entities. Sensors play an important part in making a product
smart, allowing it to detect and report problems, or even make
decisions on its own [1]. As the manufacturing industry moves
towards a more customer-driven market [2], companies are
required to shorten product life cycles and reduce time-to
market without negatively impacting quality and costs. Such a
shift demands more decentralized, flexible control and
increased robustness. The use of smart products in the form of
autonomous guided vehicles (AGVs) may help improve
effectiveness, safety and flexibility of resource transportation in
the context of Industry 4.0 [3]. However, with great power
comes great responsibility. Such autonomous agents must
therefore have a solid strategy for avoiding collisions in a
complex and dynamic environment. In order to manually define
such a strategy, every conceivable and even unconceivable
situation an AGV may find itself in must be examined and
modelled. This is not only time-consuming and resource-
intensive, but also counter-productive given the capabilities of
modern hardware, both in respect to raw computing power and
sensory input and processing. This paper aims to investigate a

A. D. Jansson is with the Department of Computer Science and

Computational Engineering, UiT The Arctic University of Norway, 8505
Narvik, Norway (e-mail: andreas.d.jansson@uit.no).

method for learning a general strategy by means of a model-free
approach. Specifically, how to train multiple agents
representing AGVs to avoid collisions in an unknown dynamic
environment. To do this, a simple multi-agent simulator will be
implemented and tested. Furthermore, a set of benchmarks for
the system will be defined and run in order to measure learning
performance and validate learned obstacle avoidance strategies.
Performance will be discussed and further improvements to the
approach will be suggested.

II. RELATED WORK

The use of both model-based and model-free learning
combined with sensor data, smart products and autonomous
agents have been documented in several instances. Relevant
examples include [4] where they used LiDAR sensor data
combined with odometer data to determine a robot’s position in
an unknown environment. Simultaneous Localization and
Mapping, along with A-star search, was used for path planning.
Simulated trajectories based on the robot’s motion model were
evaluated based on their ability to avoid obstacles and reach a
predefined goal. This demonstrated how a LiDAR sensor could
be utilized for obstacle avoidance in an unknown environment.
However, this approach required a map to be created up-front,
by letting the robot explore its environment exhaustively.
During mapping, the robot was controlled manually using a
game pad.

A similar approach is the work by Malavaz et al. in which
they examined a LiDAR-only based navigation algorithm for
agricultural robots [5]. Here, they documented efforts in
developing a general and robust approach for autonomous robot
navigation in an unknown environment. In this case, the
environment consisted of rows of crops with unknown spacing
and size. A model of the environment was constructed in real-
time using line detection based on 2D point clouds collected by
LiDAR. The robot was then tasked to move along detected lines
in the crop and remove weeds. Placement of the LiDAR may
affect performance if it is placed too low, as tall weeds may
blind the sensor. Similarly, if the LiDAR is placed too high, it
will not detect crops. The authors suggested using a 3D sensor
to overcome these challenges. Furthermore, as this approach
relied on LiDAR only, no visual information was available, and
thus the robot was unable to identify the type of obstacle. This

Andreas D. Jansson

Simulation of Obstacle Avoidance for Multiple
Autonomous Vehicles in a Dynamic Environment

Using Q-Learning

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

128

becomes an issue when weeding crops, as the robot was unable
to act according to the type of obstacle, i.e., a harmless obstacle
(weeds) and a potentially harmful obstacle (rocks, branches
etc.). However, the authors concluded that this approach was
promising and served as a robust method when no prior
information about an environment was available.

In [6], the use of visual data combined with LiDAR scans
was discussed. The authors used a set of extensive pre-collected
image data to address the problem of global localization in an
unknown indoor environment, dubbed “the kidnapped robot
problem”. Their effort resulted in a solid basis for a strategy for
the robot, with highly accurate results, the major drawback
being the extensive manual effort required upfront. This model
also becomes less useful when the environment changes
visually.

Combining multiple sensors to increase performance has also
been discussed in [7]. In their work, they used an RGB-D
camera and a 2D LiDAR in order to learn a classifier in 3D in a
semi-supervised context. The classifier was trained online,
eliminating the need for data to be collected prior to training.
Combined with existing classifiers for the camera and 2D
LiDAR, the authors managed to successfully train a human-
tracking classifier for a mobile service robot.

III. APPROACH AND IMPLEMENTATION

There already exist several excellent simulation platforms
and environments for multi-agent and robotics experimentation
and visualization [8], [9]. However, with all their extensive
features, they also introduce computational overhead and in
general offer higher level representations of robotics and smart
products. As more fine-grained control and low-level tinkering
ability were desired, it was decided to implement a simple agent
simulator from scratch. This simulator was designed and
implemented to serve a single objective only, this being the
visualization of multiple agents navigating in a dynamic
environment. Furthermore, in order to be truly dynamic, a level
of interactivity was also required. When running the program,
the user should be able to add or remove obstacles in the
environment.

Agents learned to avoid the obstacles using Q-learning,
which is a model-free reinforcement learning approach [10]. To
detect the obstacles, a simple sensor was implemented. This
virtual sensor could report distance d and relative angle a of an
agent’s closest obstacle. Distance and angle values were
discretized to construct the state space, defined as a 2D matrix
of width W and height H. Sensor values were discretized to a’
and d’ using the following formulae:

𝑎ᇱ ൌ ௔ାଵ଼଴

ଷ଺଴
ൈ ሺ𝐻 െ 1ሻ (1)

and

𝑑ᇱ ൌ ௗ

ଵଶ଴
ൈ ሺ𝑊 െ 1ሻ. (2)

For the experiments conducted and results presented in this

paper, W = 20 and H = 25.

Fig. 1 Virtual sensor range, discretization, and state space mapping

Fig. 1 (a) shows a visual representation of the state space, as
seen by the sensor of a square agent. A circular obstacle is
present within the sensor’s range, and its position and relative
angle defines the current state of the agent. The corresponding
state matrix and agent position is shown in Fig. 1 (b). In every
state, an agent may take one of three actions: turn left, turn right,
or keep going. For example, in the situation seen in Fig. 1, the
agent should either A) keep going or B) turn right. Both actions
would yield a positive reward in the next time step, with B)
being the best action. The reward received was based on the
distance from the obstacle in the current state compared to the
previous state. However, if the agent turned left, it would
receive a smaller reward, since its distance to the obstacle
would decrease compared to not deviating from its initial
course. In order to drive exploration, agents were programmed
to take a random action in 5% of cases, regardless of prior
knowledge.

Following the standard Q-learning algorithm definition (6.6,
p. 157) in [10], empty q- and r-matrices were initialized and
then populated by letting the agent roam its environment in a
random fashion.

To demonstrate the performance of the simulator, a set of
benchmarks were defined, listed in Table I.

TABLE I

BENCHMARK DEFINITIONS

ID Number of agents Type of obstacle

1 5 100 static obstacles

2 5
100 initial static obstacles, with 100 static

obstacles added after 30 seconds

3 10
100 initial static obstacles, with 100 static

obstacles added after 30 seconds

4 10 100 dynamic obstacles disappearing and
appearing randomly every 2 seconds

5 20
100 initial static obstacles, with 100 static

obstacles added after 30 sec.

6 20
100 dynamic obstacles disappearing and

appearing randomly every 2 seconds
7 20 200 static obstacles

Benchmarks were conducted in two configurations, where in
the first, agents did not share knowledge and maintained their
own set of q- and r-matrices. For the next set of benchmarks,
agents were able to communicate and share experience in the
form of q- and r-matrices. The performance was measured in
the form of collisions over time and the total number of
collisions. To account for the random nature of the simulation,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

129

each benchmark was performed 10 times and the values
averaged. This also meant that running the simulator for longer
than 60 seconds for each benchmark became impractical.

All benchmarks were performed and timed on a system with
the following specifications:
 CPU: AMD Ryzen7 5800X@4.4GHz
 Memory: 32 Gb
 Windows 10 20H2 64-bit build 19042.

IV. RESULTS

For visualization purposes, agents representing AGVs were

rendered as solid-colored squares, with a straight line
representing the current heading and sensor range. Each agent
also left a trail to easier track their movements in the
environment. Obstacles were randomly generated and
visualized as black dots. Furthermore, the last action taken
along with the reward received was displayed in a label attached
to each agent (Fig. 3). The program consisted of an interactive
window where it was possible to add or remove obstacles by
left- and right-clicking in the simulator area as shown in Fig. 2.
The simulation was set to run automatically, with agents
exploring the environment as soon as the program was
launched.

Fig. 2 Screenshot of simulator window

In the first seconds of the simulation, agents often left the
designated area. Over time, agents started to learn to avoid the
obstacles, as well as staying within the defined world boundary,
as may be seen in Fig. 3.

Fig. 3 An agent with status label avoiding obstacles

 Figs. 4-10 show the number of collisions over time (a) along

with the total number of collisions (b) in individual knowledge
mode (black) and shared knowledge mode (gray).

V. DISCUSSION OF RESULTS

Letting autonomous agents roam around in a random fashion
is only practical in a simulated environment, where no physical
damage can be done to obstacles in the case of collisions. This
random exploration enabled learning without any upfront

knowledge of the environment, nor the position of obstacles.
This is the major benefit of the proposed approach. When
examining the results in Figs. 4-9, it is clear that the number of
agents has an impact on learning performance. As seen in Fig.
4, when running the system with five agents, sharing knowledge
is only slightly beneficial in the long run, and hurts short-term
performance. When doubling the number of obstacles in the
environment, sharing knowledge appears to become even less
beneficial with few agents. It is clear from Fig. 5 that the
number of collisions start to increase at this point. Also seen in
Fig. 5, the number of collisions was consistently lower for the
shared knowledge run up until the point where more obstacles
were added. This may indicate that the agents’ strategy emerged
too quickly to be able to adapt to the increased number of
obstacles. A similar trend is seen in Fig. 6, where single- and
multi-agent performance are similar up until more obstacles are
added, even though the number of agents was double compared
to benchmark 2. Performance deteriorates further in Fig. 7,
where obstacles disappear and reappear randomly, although it
appears to stabilize in the long term compared to Figs. 5 and 6.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

130

Fig. 4 Benchmark 1 collisions per time step and total collisions

Fig. 5 Benchmark 2 collisions per time step and total collisions

Fig. 6 Benchmark 3 collisions per time step and total collisions

Fig. 7 Benchmark 4 collisions per time step and total collisions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

131

Fig. 8 Benchmark 5 collisions per time step and total collisions

Fig. 9 Benchmark 6 collisions per time step and total collisions

Fig. 10 Benchmark 7, after running the simulator for 40 minutes

When increasing the number of agents to 20, performance of

the shared knowledge approach (gray) starts to surpass that of a
single agent (black). As seen in Fig. 8, multi-agent performance
is only slightly worse than that of a single agent and starts to
surpass it after an average of 50 seconds. The long-term total
number of collisions drops below that of a single agent.
Furthermore, when comparing Fig. 5 to Fig. 8, it shows that
quadrupling the number of agents from five to 20 did not
quadruple the total number of collisions in the shared
knowledge case (gray). The results from Fig. 9 show the most
promise, as both the number of collisions per time step (a) and
the number of total collisions (b) are lower in the multi-agent
approach. Performance also seems to be more stable in the long
term. As this was a highly dynamic environment, with obstacles
changing positions every 2 seconds, this approach to learn a
collision avoidance strategy with multiple agents shows some
promise. The fact that an agent is indeed able to learn a strategy
to avoid obstacles is perhaps best observed when looking at Fig.
3, where the path taken to avoid the obstacles can be seen
clearly.

Running the simulator for longer did not produce better
results, as shown in Fig. 10. Performance was stable and the
total number of collisions (b) increased in a linear fashion.

The virtual sensor implemented in the simulator was only
able to sense its nearest obstacle. This means that an agent was
only able to make decisions that were rewarding in the short
run. An agent could for example navigate head-first into a
cluster of obstacles in order to avoid a single obstacle, and then
be unable to successfully avoid all obstacles in the cluster.
Extending the virtual sensor to classify a cluster of obstacles as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

132

a general region to avoid is expected to help increase
performance in this regard.

The way the state space was discretized is also expected to
have negatively impacted performance. In order to remedy this,
some alternative approach to continuous state space
reinforcement learning should be investigated. One approach
that may produce better results is the use of deep reinforcement
learning, for instance deep-Q-learning. An alternative approach
could be to increase the resolution of the virtual sensor and thus
the size of the Q- and r-matrix. However, this may impact
performance in other ways, especially if using this approach on
a physical robot with limited computational power. The
approach presented in this paper requires only simple
computations for mapping and reward calculation. Finally,
although implementing a simulator from scratch gave full
control over all aspects of the program, visualization is minimal
compared to existing simulators. The basic Q-learning
approach presented in this paper can easily be ported to various
programming languages and simulation environment if desired.

VI. CONCLUSION

Results indicate that using a model-free reinforcement
learning approach in order to learn an obstacle avoidance
strategy in an unknown and dynamic environment has some
potential. Its major benefit compared to similar work is that no
prior information about the environment is required, and agents
are able to learn in a virtual environment without human
intervention. Increasing the number of agents and having them
share knowledge was beneficial compared to fewer agents,
especially in a highly dynamic environment. Running agents in
this random fashion in a virtual environment is also safer
compared to a physical environment. Although visualization is
minimal compared to comparable simulators, it is possible to
notice some learning progress by observing the movement of
the simulated agents. With some more attention to sensor
implementation and state space definition, the proposed
approach may have some potential to be useful for avoiding
dynamic obstacles when applied to autonomous resource
transportation vehicles in enclosed spaces within the context of
Industry 4.0.

APPENDIX

A complete copy of the simulator source code may be found
at bitbucket.org/ADJansson/selfdrivingcarsimulator

REFERENCES
[1] G. G. Meyer, K. Främling, and J. Holmström, “Intelligent products: a

survey”, Computers in Industry, vol. 60, issue 3, pp. 137-148, Apr. 2009.
[2] T. Skjoett-Larsen, “European logistics beyond 2000”, International

Journal of Physical Distribution & Logistics Management, vol. 30, issue
5, pp. 377-387, June 2000.

[3] R. Sella, A. Rassõlkinb, R. Wanga, and T. Otto, “Integration of
autonomous vehicles and industry 4.0”, in Proceedings of the Estonian
Academy of Sciences, Tallin, Estonia, 2019, pp. 389–394.

[4] Y. Cheng, and G. Y. Wang, “Mobile robot navigation based on lidar”,
2018 Chinese Control and Decision Conference (CCDC), Shenyang,
China, 2018, pp. 1243-1246.

[5] F. B. P. Malavazi, R. Guyonneau, J.-B Fasquel, S. Lagrange, and F.
Mercier, “LiDAR-only based navigation algorithm for an autonomous

agricultural robot”, Computers and Electronics in Agriculture, vol. 154,
pp. 71-79, Nov. 2018.

[6] B Z. Su, X. Zhou, T. Cheng, H. Zhang, B. Xu, and W. Chen, "Global
localization of a mobile robot using lidar and visual features," 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Macau,
Macao, 2017, pp. 2377-2383.

[7] Z. Yan, L. Sun, T. Duckctr, and N. Bellotto, "Multisensor online transfer
learning for 3D LiDAR-based human detection with a mobile robot,"
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 2018, pp. 7635-7640.

[8] M. Freese, S. Singh., F. Ozaki, and N. Matsuhira, “Virtual robot
experimentation platform V-REP: a versatile 3D robot simulator” in
Simulation, Modeling, and Programming for Autonomous Robots, N.
Ando, S. Balakirsky, T. Hemker, M. Reggiani, and O. von Stryk, Ed.
Berlin Heidelberg: Springer-Verlag, 2010, pp. 51-62.

[9] S. Nakaoka, "Choreonoid: Extensible virtual robot environment built on
an integrated GUI framework," 2012 IEEE/SICE International
Symposium on System Integration (SII), Fukuoka, Japan, 2012, pp. 79-85.

[10] R. S. Sutton, and A. G. Barto, Reinforcement learning: an introduction,
2nd edition. Cambridge, MA: The MIT Press, 2015, ch. 6.5.

