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 
Abstract—In this research, a method is developed to obtain high-

dimensional configuration space for path planning problems. In typical 
cases, the path planning problems are solved directly in the 3-
dimensional (D) workspace. However, this method is inefficient in 
handling the robots with various geometrical and mechanical 
restrictions. To overcome these difficulties, path planning may be 
formalized and solved in a new space which is called configuration 
space. The number of dimensions of the configuration space comes 
from the degree of freedoms of the system of interest. The method can 
be applied in two ways. In the first way, the point clouds of all the 
bodies of the system and interaction of them are used. The second way 
is performed via using the clearance function of simulation software 
where the minimum distances between surfaces of bodies are 
simultaneously measured. A double-turret system is held in the scope 
of this study. The 4-D configuration space of a double-turret system is 
obtained in these two ways. As a result, the difference between these 
two methods is around 1%, depending on the density of the point 
cloud. The disparity between the two forms steadily decreases as the 
point cloud density increases. At the end of the study, in order to verify 
4-D configuration space obtained, 4-D path planning problem was 
realized as 2-D + 2-D and a sample path planning is carried out with 
using A* algorithm. Then, the accuracy of the configuration space is 
proved using the obtained paths on the simulation model of the double-
turret system.  
 

Keywords—A* Algorithm, autonomous turrets, high-dimensional 
C-Space, manifold C-Space, point clouds. 

I. INTRODUCTION 

HE robotic manipulation is an established technology that 
is widely used in the industry [1]. Besides, the topic of 

Industry 4.0 has become popular among many companies, 
research centers, and universities. The transition to industry 4.0, 
the rise of unmanned and smart factories, smart production, 
machine-to-machine and advanced manufacturing have greatly 
increased the need for co-working robots and so that this 
situation has made robots with a certain degree of independence 
more attractive [1]-[4]. However, with the development of 
complex and intelligent operations, complex tasks in some 
processes cannot be completed effectively by only using a 
single manipulator. At the same time, it is known that the 
coordination of two manipulators increases the complexity of 
the task and improves the efficiency of the operation as well. 
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However, when the two manipulators operate in a common 
workspace, it is possible to encounter collision between the 
manipulators and with the obstacles standing around, so the 
coordinated operation of the two manipulators becomes also a 
hot topic for researchers [5].  

The number of dimensions of the configuration space comes 
from the degree of freedoms (DOFs) of the system that is 
interested in. In the literature, there are many studies about path 
planning in configuration space. They commonly used a sample 
2 or 3-dimensional configuration space to verify their path 
planning approach [5]-[8]. However, unlike those studies, this 
study aims to construct ways to obtain high dimensional 
configuration spaces for real systems like robotic manipulators, 
turrets, etc. [9], [10].  

A multiple cradle launcher named Jobaria in Fig. 1 can be an 
example for this study. 3 dependent turrets that have 2 DOFs in 
each one means that the whole system has 6 DOFs in total [9] 
with some constraints. It is impossible to rotate launchers 
independently because of the space restrictions. Likewise, an 
infantry fighting vehicle with two turrets which have 2 DOFs 
each can be considered as an example for this study as well [10]. 
Also, the configurations in Fig. 2 can be similar examples 
where two robotic manipulators or dual-arm robots are working 
together in the same environment which creates collision 
problems [5]. The motion of two dual-arm robots, each of 
which has 2 degrees of freedom in Fig. 2 (a), can be defined as 
4-dimensional C-Space. Each manipulator in Fig. 2 (b) has 6-
DOFs and satisfies the Pieper criterion, that is, the three 
consecutive axes of the robot intersect at one point, and 
therefore it is possible to model the last 3 DOFs of the 
manipulator as a sphere that covers all the motion of last 3 links. 
So, the motions of two manipulators can be expressed as a 6-
dimensional configuration space which helps to conduct the 
path planning without colliding. To handle these difficulties and 
obtain high-dimensional configuration space, there are on-line 
and off-line methods to conduct path planning. These methods 
can provide advantages and disadvantages to the systems they 
are used. Because the online methods recognize objects in the 
workspace simultaneously, it constantly updates the 
configuration space.  
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Fig. 1 Jobaria multiple cradle launcher [9] 
 

 

Fig. 2 (a) Collaborative dual-arm robots, (b) model of two 
manipulators

 

 
The continuous updating of the configuration space provides 

advantages for this method, while the electronic devices used 
for updating can make the system more expensive. As long as 
the workspaces of the robots which are working together do not 
change, off-line methods are cheaper. 

II. CONFIGURATION SPACE 

The motion planning problems can be directly formalized 
and solved in the 3-D workspace, generally by the potential 
field algorithms [11]. However, it cannot be easily handled the 
robots with various geometrical and mechanical restrictions by 
these workspace solutions. To solve these difficulties, path 
planning may be formalized and solved in a new space which is 
called configuration space [8], [12]-[14]. The complex 
geometric shaped robot in a 3-D workspace is mapped to a point 
robot, therefore the motion of the robot corresponds to a 
continuous curve in the high-dimensional configuration space 
as given in Fig. 3.  

 

 

Fig. 3 Workspace and C-Space representations 
 

We can solve the motion planning problem in two steps [8]. 

For robots or manipulators to be driven to desired locations 
without colliding, firstly it is required to obtain the 
configuration space and perform an optimization on the found 
C-Space. The configuration space is created by combining all 
the possible motions that cooperative systems can do. Besides, 
the mapping of the obstacles in configuration space may be 
expanded by a specified safety factor. The safety factor is 
determined according to the safe distance that must be between 
the co-operators. It can be done by "Minkowski" sum method 
[8] for the 2-D cases.  

In this study, we will be interested in the configuration space 
of the systems which does not change frequently, in other 
words, focused on the off-line systems. If the workspace is 
changed, then the corresponding configuration space should be 
updated. During this study, we do not focus on path planning 
itself. Besides, there will be some path planning solutions to 
verify the obtained n-dimensional configuration space. There 
are two ways to obtain n-dimensional configuration spaces 
which will be input for n-dimensional path planning. One of 
them is to obtain n-dimensional configuration space for a 
system by using point clouds and the detection of the 
intersection of these clouds. The other is to handle 3-D models 
and DOFs by using simulation softwares. During this study, the 
configuration space will be obtained by using these two ways. 

A. First Way: Obtain by Point Clouds 

To obtain configuration space by using point clouds, firstly 
all the 3-D shapes are converted into point clouds. For this 
purpose, any finite element meshing software can be used. After 
creating a mesh of 3-D shapes, the point cloud representation of 
the double-turret system can be seen as in Fig. 4.  

 

 
Fig. 4 Point cloud representation of double-turret system 

 
The point clouds can be classified and represented as moving 

and fixed point clouds as seen in (1) and (2): 
 

𝑀𝑃𝐶 ൌ ሼ𝑀𝑃𝐶ଵ   𝑀𝑃𝐶ଶ   𝑀𝑃𝐶ଷ   . . . . . ሽ (1) 
 

𝐹𝑃𝐶 ൌ  ሼ𝐹𝑃𝐶ଵ   𝐹𝑃𝐶ଶ   𝐹𝑃𝐶ଷ   . . . . . ሽ  (2) 
 
Each element of MPC and FPC can be represented as in (3): 
 

𝑀𝑃𝐶௜ ൌ ሾ𝑋௜௡ 𝑌௜௡ 𝑍௜௡ሿ    𝐹𝑃𝐶௞ ൌ ሾ𝑋௞௠ 𝑌௞௠ 𝑍௞௠ሿ   (3) 
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where 
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For a given point cloud 𝑀𝑃𝐶ଵ  (𝑛 ൈ 3)  in Cartesian 

coordinates, the translational and rotational operations can be 
represented as: 

 
ሺ𝑀𝑃𝐶ଵ ሻ௧௥௔௡௦௟௔௧௘ ൌ 𝑀𝑃𝐶ଵ ൅ 𝐼௨  ൈ 𝑇,  (5) 

 
where 𝐼௨ is unity column array with a length of n, and 
translation vector 𝑇 ൌ ሾ𝑡௫ 𝑡௬ 𝑡௭ሿ. First, the rotation vectors 
are defined in three-axes as in (6): 

 
𝑅𝐴௫ ൌ ሾ0 𝑟௬ 𝑟௭ሿ, 𝑅𝐴௬ ൌ ሾ𝑟௫ 0 𝑟௭ሿ , 
𝑅𝐴௭ ൌ ሾ𝑟௫ 𝑟௬ 0ሿ     (6) 

 
Rotations are defined by 3×3 transformation matrices. 

Rotation about X-axis by an angle of α, rotation about Y axis 
by an angle of β, and rotation about Z by an angle of  γ are 
defined, respectively, as 

 

𝑅௫ሺ𝛼ሻ ൌ ൥
1 0 0
0 𝑐𝑜𝑠𝛼 െ𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

൩ 

𝑅௬ሺ𝛽ሻ ൌ ൥
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
െ𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩  

    𝑅௭ሺ𝛾ሻ ൌ ൥
𝑐𝑜𝑠𝛾 െ𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

0 0 1
൩  (7) 

 
Finally, rotated point clouds can be obtained as in (8): 
 

ሺ𝑀𝑃𝐶ଵ ሻ௫ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨  ൈ  𝑅𝐴௫ ሿ ൈ  𝑅௫ ሺ𝛼ሻ ൅ 𝐼௨  ൈ  𝑅𝐴௫   
 
ሺ𝑀𝑃𝐶ଵ ሻ௬ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨  ൈ  𝑅𝐴௬ ሿ ൈ 𝑅௬ ሺ𝛽ሻ ൅ 𝐼௨  ൈ 𝑅𝐴௬  
 

ሺ𝑀𝑃𝐶ଵ ሻ௭ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨  ൈ  𝑅𝐴௭ ሿ ൈ  𝑅௭ ሺ𝛾ሻ ൅ 𝐼௨  ൈ  𝑅𝐴௭  (8) 
 
To find the distances between any point in 𝑀𝑃𝐶௜ and any 

point in 𝐹𝑃𝐶௝, the matrix operations given below are used. 
 

𝑋 ൌ 𝑋௜௡ െ 𝑋௞௠
்      𝑌 ൌ 𝑌௜௡ െ 𝑌௞௠

்       𝑍 ൌ 𝑍௜௡ െ 𝑍௞௠
்  (9) 

 
X, Y and Z matrices are as follows. 
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Finally, distance matrix between two point clouds is found as 

in (11): 
 

𝐷 ൌ √𝑋ଶ ൅ 𝑌ଶ ൅ 𝑍ଶ  (11) 
 
The condition to check collision between point clouds is 

given in (12) where δ is the safe distance defined in the 
definition of the collision. The value of δ may not be less than 
maximum mesh distance. 

 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ൌ ൜
1, 𝑖𝑓   𝑚𝑖𝑛ሺ𝐷ሻ ൑ 𝛿
0, 𝑖𝑓  𝑚𝑖 𝑛ሺ𝐷ሻ ൐ 𝛿

 (12) 

 
As mentioned before, the 3-D point clouds are created from 

3-D shapes. It is assumed that the length of any mesh in 3-D 
shape is approximately equal and named as dm. The worst case 
of placing two point clouds and x-y and x-z views of the worst-
case are given in Fig. 5 which will help to find the minimum 
required safe distance, δ. 

 

 

Fig. 5 Positioning of two PCs in worst case 
 

According to Fig. 5, the safe distance should satisfy the 
criterion in (13) which is necessary and sufficient. 

 

𝛿 ൒ 𝑑 ൌ √ଷ

ଶ
  𝑑௠ (12) 

 
The overall algorithm for obtaining the high-dimensional 

configuration space can be summarized as in Algorithm-1. 
There is given the information about a 3-D environment such 
as moving point clouds (MPC), fixed-point clouds (FPC), safe 
distance (δ), the number of variables (n), initial values of n 
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variables (𝜃௜௡), final values of n variables (𝜃௘௡ௗ) and step angles 
of n variables (𝛿𝜃). There is n number of nested loops in the 
algorithm where each of them belongs to a variable, in order to 
be an example, during this study the number of variables (n) is 
kept as 4. As a result of the algorithm, n-dimensional 
configuration space which is named ConfMap is obtained. 
Lines between 1-4 and 13-16 vary according to number of 
variables. The location of MPC is updated according to 
instantaneous variable values in Line 5. In Line 6-7, it is 
checked whether there is collision between MPC and FPC, and 
in Line 8-9 between MPC and MPC by avoiding matching of 
same point clouds according to the safe distance (δ). Also, the 
Algorithm-1 calls Algorithm-2 named CheckCollision which is 
used to detect any collision between point cloud sets to fill 
configuration space map for corresponding variables. The 
Algorithm-2 expects the MPC, FPC and δ as inputs and also 
needs three different functions which are named CheckLap, 
RemovePoints and FindDistance. In Line 3, it is checked 
whether there is an intersection between bounding volumes 
(BV) of two point clouds. 

 
Algorithm 1: ObtainConfSpace 
 In: 𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝜃௜௡, 𝛿𝜃, 𝜃௘௡ௗ, 𝛿 

Out: 𝐶𝑆𝑝𝑎𝑐𝑒 
1 for θଵ ൌ θ୧୬

ଵ ∶  δθଵ: θୣ୬ୢ
ଵ  ሺ𝑠ଵ ൅ ൅ሻ 

2  for θଶ ൌ θ୧୬
ଶ ∶  δθଶ: θୣ୬ୢ

ଶ  ሺ𝑠ଶ ൅ ൅ሻ 
3   for θଷ ൌ θ୧୬

ଷ ∶  δθଷ: θୣ୬ୢ
ଷ ሺ𝑠ଷ ൅ ൅ሻ 

4    for θସ ൌ θ୧୬
ସ ∶  δθସ: θୣ୬ୢ

ସ  ሺ𝑠ସ ൅ ൅ሻ 
5     𝑢𝑝𝑑𝑎𝑡𝑒 𝑴𝑷𝑪 𝑢𝑠𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 θଵ, θଶ, θଷ 𝑎𝑛𝑑 θସ 
6     if 𝑪𝒉𝒆𝒄𝒌𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 ሺ𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝛿ሻ ൌ

1 ሺ𝑡𝑟𝑢𝑒ሻ 
7      𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 1 
8     elseif 𝑪𝒉𝒆𝒄𝒌𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 ሺ𝑀𝑃𝐶, 𝑀𝑃𝐶, 𝛿ሻ ൌ

1 ሺ𝑡𝑟𝑢𝑒ሻ 
ሺ𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑎𝑚𝑒 𝑝. 𝑐𝑙𝑜𝑢𝑑𝑠 𝑖𝑠 𝑎𝑣𝑜𝑖𝑑𝑒𝑑ሻ  

9      𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 1 
10     else  
11      𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 0  
12     end if 
13    end for  
14   end for  
15  end for   
16 end for   
17 return  𝐶𝑆𝑝𝑎𝑐𝑒 

 
Algorithm 2: CheckCollision 
 In: 𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝛿 

Out: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 
1 for i ← number of P. clouds in MPC ሺi ൅ ൅ሻ 
2  for k ← number of P. clouds in FPC ሺk ൅ ൅ሻ 
3   ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ ൌ 𝑪𝒉𝒆𝒄𝒌𝑳𝒂𝒑 ሺ𝑀𝑃𝐶௜, 𝐹𝑃𝐶௞ሻ 
4   if  𝐿𝑎𝑝 ൌ 1 ሺ𝑡𝑟𝑢𝑒ሻ  → 𝑃. 𝑐𝑙𝑜𝑢𝑑𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑  
5    𝑀𝑃𝐶௜

ᇱ ൌ 𝑹𝒆𝒎𝒐𝒗𝒆𝑷𝒐𝒊𝒏𝒕𝒔 ሺ𝑀𝑃𝐶௜, 𝐼𝐵ሻ 
6    𝐹𝑃𝐶௞

ᇱ ൌ 𝑹𝒆𝒎𝒐𝒗𝒆𝑷𝒐𝒊𝒏𝒕𝒔 ሺ𝐹𝑃𝐶௞, 𝐼𝐵ሻ 
7    𝑑 ൌ 𝑭𝒊𝒏𝒅𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 ሺ𝑀𝑃𝐶௜

ᇱ, 𝐹𝑃𝐶௞
ᇱ ሻ 

8    if  minሺ𝑑ሻ ൑ 𝛿   
9     𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ ൌ  1 
10     return  𝑚𝑎𝑥ሺ𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሻ 
11    else   
12     𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ ൌ  0 

13    end if 
14   else   
15    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ  ൌ  0 
16   end if 
17  end for   
18 end for   
19 return  𝑚𝑎𝑥ሺ𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሻ 
 

If there is no intersection, then it can be said that there is no 
collision between the two point clouds. In the case of an 
intersection, the point clouds are updated by getting rid of the 
points outside the intersection box and a distance matrix is 
obtained between them to see if the minimum distance is 
smaller than the safe distance (δ). 

To effectively check collision between point clouds, it is 
advisable to approximate objects with bounding volumes (BV) 
[18], [19].  Various bounding volume types which are widely 
used in the literature are presented in Fig. 6. 

 

 

Fig. 6 The types of bounding volumes 
 

 

Fig. 7 Two point clouds and their AABBs in 3-D Space 
 

The selection of a bounding volume type depends on the 
usage. To easily select correct bounding volume, the type of 
objects should be known beforehand. If no information is 
available for the object size or shape, the more general shape is 
always better. However, the more general bounding volume 
adds extra complexity and hence heavier computationally [15]-
[21]. To overcome this difficulty and uncertainty, the sphere or 
axis-aligned bounding boxes (AABB) can be preferred. In this 
study, AABB is used for that reason. The following function 
checks whether the AABBs of two point clouds (PC1 and PC2) 
are intersected. If there exists an intersection between AABBs, 
the function gives information about the intersection box (IB), 
otherwise the overall algorithm returns to no-collision-detected 
state. Two point clouds and their AABBs are given in Fig. 7. 
As seen in this figure, there is an intersection between these two 
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AABBs. Also, the intersection box (IB) is given in Fig. 8. 
 

 

Fig. 8 AABBs of two point clouds and their intersection box (IB) 
 

The following Function-1 named CheckLap allows to see if 
the AABBs of the two point cloud intersect, and also to obtain 
intersection box (IB) information in case of intersection. 

 
Function 1: CheckLap 
 In: 𝑃𝐶ଵ, 𝑃𝐶ଶ 

Out: ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ 
1 for 𝑖 ൌ ሾ1, 2, 3ሿ ሺx: 1, y: 2, z: 3ሻ 
2  if min ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ ൒ min ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
3   𝑚𝑖𝑛௜ ൌ  min ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
4  else 
5   𝑚𝑖𝑛௜ ൌ  min ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
6  end if 
7  if max ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ ൑ max ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
8   𝑚𝑎𝑥௜ ൌ  max ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
9  else 
10   𝑚𝑎𝑥௜ ൌ  max ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ 
11  end if 
12  𝐼𝐵ሺ𝑖, 1ሻ ൌ 𝑚𝑖𝑛௜ ,     𝐼𝐵ሺ𝑖, 2ሻ ൌ 𝑚𝑎𝑥௜ 
13  if  𝑚𝑖𝑛௜ ൑ 𝑚𝑎𝑥௜ 
14   𝐿𝑎𝑝௜ ൌ  1 
15  else 
16   𝐿𝑎𝑝௜ ൌ  0 
17  end if 
18 end for 
19 𝐿𝑎𝑝 ൌ 𝐿𝑎𝑝ଵ ∙ 𝐿𝑎𝑝ଶ ∙ 𝐿𝑎𝑝ଷ 
20 return  ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ 
 
After determining the intersection box (IB) and providing 

point clouds and information about IB to the Function-2 named 
RemovePoints, now it is time to get rid of excess points that do 
not belong to IB. By using this function, the point clouds are 
modified and the points outside the IB are removed as seen in 
Fig. 9. 

Firstly, the number of points is decreased by deleting the 
points outside the intersection box (IB) and then the modified 
MPC and FPC are created which only belong to the IB. Now, 
in order to decide whether there is a collision between point 
clouds, the distances between any combination of the points in 
MPC and FPC are measured. The following Function-3 named 
FindDistance measures g*h distances and gives g×h sized 

matrix where the PCs have g and h number of points, 
respectively.  

 

 

Fig. 9 Modified point clouds after removing points outside 
intersection box (IB) 

 
Function 2: RemovePoints 
 In: 𝑃𝐶, 𝐼𝐵 

Out: 𝑃𝐶ᇱ 
1 
 

if  ሼ𝑥 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝑃𝐶 ൐ 𝐼𝐵ሺ1,2ሻ  𝑶𝑹 ൏ 𝐼𝐵ሺ1,1ሻሽ  
 𝑶𝑹 ሼ𝑦 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈  𝑃𝐶 ൐ 𝐼𝐵ሺ2,2ሻ  𝑶𝑹 ൏ 𝐼𝐵ሺ2,1ሻሽ 
 𝑶𝑹 ሼ𝑧 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈  𝑃𝐶 ൐ 𝐼𝐵ሺ3,2ሻ  𝑶𝑹 ൏ 𝐼𝐵ሺ3,1ሻሽ 

2   → 𝑟𝑒𝑚𝑜𝑣𝑒 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑃𝐶 ∉  𝐼𝐵  
3   𝑃𝐶ᇱ ൌ ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑃𝐶 ∈  𝐼𝐵 
4 else 
5  𝑃𝐶ᇱ ൌ 𝑃𝐶 
6 end if 
7 return  𝑃𝐶ᇱ 
 
Function 3: FindDistance 
 In: 𝑃𝐶ଵ, 𝑃𝐶ଶ 

Out: 𝑑 
1 𝑥ଵ ൌ 𝑃𝐶ଵሺ1௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ 
2 𝑦ଵ ൌ 𝑃𝐶ଵሺ2௡ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ 
3 𝑧ଵ ൌ 𝑃𝐶ଵሺ3௥ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ 
4 𝑥ଶ ൌ 𝑃𝐶ଶሺ1௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ 
5 𝑦ଶ ൌ 𝑃𝐶ଶሺ2௡ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ 
6 𝑧ଶ ൌ 𝑃𝐶ଶሺ3௥ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ 
7 𝑋 ൌ 𝑥ଵ െ 𝑥ଶ

் → ሺ𝑚 ൈ 𝑛ሻ 
8 𝑌 ൌ 𝑦ଵ െ 𝑦ଶ

் → ሺ𝑚 ൈ 𝑛ሻ 
9 𝑍 ൌ 𝑧ଵ െ 𝑧ଶ

் → ሺ𝑚 ൈ 𝑛ሻ 
10 𝑑 ൌ ඥ𝑋ଶ ൅ 𝑌ଶ ൅ 𝑍ଶ → ሺ𝑚 ൈ 𝑛ሻ 
11 return 𝑑 

 
After obtaining the distance matrix, now it is easy to decide 

if there is a collision at that moment. If we sort and draw the 
elements of the distance matrix, the distances between points 
can be obtained as in Fig. 10. If there is any distance lower than 
safe distance (δ), then we can decide that there is a collision for 
corresponding variables. 

B. Second Way: Obtain by a Simulation Software 

In the first way, obtaining the configuration space by 
detection of intersection of point clouds is explained in detail. 
In this way, the only collision detection algorithm is changed 
with the clearance function of the simulation software. 
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Clearance function measures the minimum distance between 
the surfaces of bodies and only focuses the surfaces of bodies 
so that the bodies are assumed to be hollow. During any contact 
between the bodies, the clearance returns to zero which shows 
that there is a collision. We can summarize the steps of this way 
as shown in Fig. 11. 

 

 

Fig. 10 Sorting and drawing distance matrix to check collision 
 

 

Fig. 11 The sequence of the second way 
 

1. Create position profiles for variables by converting the 
nested for-loops to time-domain. As an example, the 
position profiles for four variables in time-domain are 

illustrated as in Fig. 12. 
 

 

(a) smoothing on    (b) smoothing off 

Fig. 12 Converting nested for-loops into time-domain position 
profiles for variables 

 
The position profiles are directly mapped from 4 nested for-

loops with sharp edges as shown in Fig 12 (b). The hard 
transition from the maximum to minimum value causes some 
problems during solving kinematic equations in simulation 
software. Therefore, by doing a smoothing operation the 
position profiles are updated as shown in Fig. 12 (a) and so that 
the possible errors in simulation are prevented. 
2. Create the exact simulation model of the system in MSC 

Adams. For instance, the simulation model of the 4-DOF 
double-turret system is given in Fig. 13. 

 

 

Fig. 13 The simulation model of a sample system 
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All joints, motions and clearances between stationary (obst-
1 to 5) and moving bodies (hull and gun barrel) have to be 
defined. The position profiles in time-domain which are 
explained in the first step have to be imported and assigned to 
motions on the joints (θ1, θ2). According to steps and step time 
of position profiles, simulation is conducted. 

 

 

Fig. 14 The change of minimum clearances as a result of sample run 
 

3. After completing the analysis, the change of clearances 
again in time-domain are obtained as in Table I and sent to 
other simulation software (MATLAB) in order to obtain 
configuration space by processing with position profiles 
inputs. 

 
TABLE I 

RESULTS OF SIMULATION  

t ሾsሿ θଵሾ °ሿ θଶሾ °ሿ θଷሾ °ሿ θସሾ °ሿ Collisionሺδሻ 
0 0 -10 0 0 0 

ts 0 -10 0 20 0 

2ts 0 -10 0 40 0 

…. …. …. …. …. …. 

𝑡௘௡ௗ 358 0 358 0 0 

III. CASE STUDY 

To compare 2 ways of obtaining configuration space, a 
double-turret system is considered as an example. The 
simulation and point cloud models of the double-turret system 
are given in Figs. 15 and 4, respectively. 

The turret has two DOFs, one for traverse and the other for 
elevation. In this example, we have 4 DOFs because of two 
turrets in the same environment. Also, there are 5 stationary 
obstacles around these two turrets. Finally, the configuration 
space up to 4 dimensions can be obtained. Point numbers in the 
point clouds of all the elements used in the double-turret system 
are as in Table II. Within scope of this study, the capital or 
lowercase letters g, o and h represent guns, obstacles and hulls 

respectively. Also, the ground was not included in the 
calculations because it is known that no part interacts with the 
ground at maximum and minimum operating limits for faster 
results. 

 

 

Fig. 15 The Simulation model of double-turret system with stationary 
obstacles 

 
TABLE II 

NUMBER OF POINTS 

Parts Number of Points (for each) 

O1, O2, O3, O5 4065 

O4 18831 

H1 and H2 5614 

G1 and G2 3624 

 

The 4-D configuration space of the example is obtained. In 
this 4-D C-Space, the elevation axes (𝜃ଶ, 𝜃ସ) start from - 10°, 
end at 60° with a step size of 2°. The traverse axes (𝜃ଵ, 𝜃ଷ) start 
from 0°, end at 358° with a step size of 2°. In the method of 
path planning on the C-Space, the grid number of C-Space has 
great effect on the algorithm itself. If the grid is too great, the 
precision of planning will decrease. If the grid is small, the 
calculation payload will increase. A reasonable grid 
decomposition should be based on some optimum criterion 
[25]. The 4-D C-Space can be represented by a certain number 
of 3-D configuration spaces. For this example, it can be 
obtained with 36 different 3-D C-Spaces for each value of 
elevation axis of turret-2 (𝜃ସ) in the example of double-turret 
system. The 3-D representations of this 4-D C-Space are given 
for eight different 𝜃ସ angles in Figs. 16 and 17. As can be seen 
from the figures, as the angle of 𝜃ସ increases, the volume of the 
disabled area in the C-Space decreases. 

The obtained 3-D configuration spaces of two ways (by point 
cloud, by MSC software) are almost the same. The difference 
between them is about 1% which comes from the method 
difference. In the first way, the clearances between bodies are 
measured from point to point. However, in the second way, they 
are measured from the surface to surface. In this example, the 
distance between points in the point clouds is about 5 mm which 
creates a 1% difference than the mentioned and also the safe 
distance is 5 mm. The difference between these two ways 
depends on the distance between points. Difference between 
methods decreases when the distance between points decreases. 
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Also, the first way is only created to obtain configuration space, 
however in the second one, we only use the power of clearance 
function of the MSC Adams simulation software in order to 
create an alternative for obtaining configuration space.  

 

 

Fig. 16 3-D C-Space of double-turret system (for θ4 equals -10°, 0°, 
10° and 20°) 

 

 

Fig. 17 3-D C-Space of double-turret system (for θ4 equals 30°, 40°, 
50° and 60°) 

 
The computation times for obtaining one of the 3-D 

configuration space in Figs. 16 and 17 with first and second way 
are 298.5 and 2414.5 minutes, respectively. One of the 3-D C-
Space has 180×180×36 = 1166400 configurations. Since 4-D 

C-Space consists of 36 3-D C-Spaces, it contains approximately 
42 million different configurations. It took approximately 179 
hours to calculate 4-D C-Space using the first method. Since 
this simulation of 42 million will take about a month with the 
second method, the performance comparison of the two 
methods was carried out over the time it took to obtain 3-
dimensional C-Spaces. For that reason, it can be said that the 
first way is 8.1 times more efficient. Since C-Spaces do not 
change frequently in off-line systems, calculation times are 
quite reasonable. 

IV. VERIFICATION OF THE RESULTS 

After obtaining the configuration space, the rest is related to 
path planning algorithms which can be A* [7,22], many 
variants of rapidly exploring random tree (RRT) [23], 
probabilistic roadmap (PRM) [24] and so forth. In order to 
verify obtained 4-D C-Space, 4-D path planning problem was 
realized as 2-D + 2-D by choosing two axis sets from four 
existing axes. Whichever two axes from four existing axes will 
be driven first, motion planning of these two axes is made by 
taking the 2-D section of the 4-D C-Space corresponding to the 
starting positions of the other two axes. In order to drive the 
second axes pair, motion planning is made by taking the 2-D 
section of the 4-D C-Space corresponding to the target position 
of the first two axes. For this example, first 1st and 2nd, then 3rd 
and 4th axes are driven simultaneously. 

In order to plan a sample path, the starting and target 
positions are selected as in (14) and (15), respectively. 

 
𝜃௦ ൌ ሾ 𝜃௦

ଵ, 𝜃௦
ଶ, 𝜃௦

ଷ, 𝜃௦
ସሿ ൌ ሾ40°, െ10°, 160°, 16°ሿ (14) 

 
𝜃௧ ൌ ሾ 𝜃௧

ଵ, 𝜃௧
ଶ, 𝜃௧

ଷ, 𝜃௧
ସሿ ൌ ሾ264°, 0°, 10°, െ10°ሿ (15) 

 

 

Fig. 18 2-D C-Space of double-turret system for first driven axis pair 
and path planning result 

 

The configuration space of first driven axes pair and second 
driven axes pair are given in Figs. 18 and 19. The configuration 
space is shown in a circular instead of rectangular since the 
second and fourth axes can be rotated full. Each of the circular 
C-Spaces has 180×36 grids (axes are divided into 2° steps). A 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

97

 

 

sample path is planned with the help of A * path planning 
algorithm using two circular C-Spaces as shown in Figs. 18 and 
19. 

 

 

 

Fig. 19 2-D C-Space of double-turret system for second driven axis 
pair and path planning result 

 

 

Fig. 20 The change of position profiles concerning path planning 
result space 

 
The shortest path is calculated so that the turrets can rotate to 

the goal position. The turrets will reach the goal position 
without any collision if the system performs simultaneous 
traverse and elevation rotations as shown in Figs. 18 and 19. 
The traverse and elevation motion profiles should be created 
according to angular speed, acceleration or time requirements. 
If the angular velocities of the axes are set to 2 °/s, the time 
required to pass one grid is approximately 1 second. In this case, 

the system can reach the target position from the specified start 
position in 156 seconds. Thus, the traverse and elevation motion 
profiles are created as shown in Fig. 20. In order to drive 
double-turret system, the absolute changes of positions are 
converted into incremental position changes by resetting 
starting positions as zero. 

Once the motion profiles are obtained, the rotations of the 
turret system were simulated on simulation model. As a result 
of this simulation, the changes of minimum clearances between 
bodies are obtained as shown in Fig. 21. 

 

 

Fig. 21 The Change of minimum clearances between bodies 
 

Accordingly, as the turrets are rotated to their goal positions, 
the minimum clearance is between g1-o3 which is 5.4 mm and 
no collision occurs as expected.  

V. CONCLUSION 

In this research, a method has been developed with two 
different ways to obtain a high-dimensional configuration 
space. One of the ways is obtaining by using point clouds and 
the second one is using only simulation software. In first way, 
the bodies in the system are meshed and converted into points 
and then the configuration space is obtained by using the 
method of intersection of point clouds. In the second way, this 
work is carried out using clearance function which measured 
minimum distance between the surfaces of defined bodies that 
are defined. A double-turret system is held in the scope of this 
study. 4-D configuration space of double-turret system is 
obtained by these two ways. As a result of this, the difference 
between these two ways is about 1% which depends on the 
point cloud density. As the point cloud density increases, the 
difference between the two ways decreases gradually. By the 
way, the first way is 8.1 times more efficient than the second 
way which is an advantage of the first way. The need to create 
a point cloud for each part is seen as a disadvantage of the first 
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way. However, for the second way, 3-D cad models of parts and 
appropriate input profiles are sufficient to carry out the analysis. 
At the end of the study, a sample path planning with A* 
algorithm was made by using the previously obtained 4-D 
configuration space. Then, the accuracy of the configuration 
space was proved via using the obtained paths on the simulation 
model of the double-turret system. To fully verify the results of 
two different methods on the 3 or more dimensions, different 
path planning algorithms such as RRT and RRT* can be used 
or different approach like potential field methods can be 
proposed. Therefore, the focus should be on full verification of 
the methods for future work by conducting path planning 
studies on more cases.  
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