
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

89


Abstract—In this research, a method is developed to obtain high-

dimensional configuration space for path planning problems. In typical
cases, the path planning problems are solved directly in the 3-
dimensional (D) workspace. However, this method is inefficient in
handling the robots with various geometrical and mechanical
restrictions. To overcome these difficulties, path planning may be
formalized and solved in a new space which is called configuration
space. The number of dimensions of the configuration space comes
from the degree of freedoms of the system of interest. The method can
be applied in two ways. In the first way, the point clouds of all the
bodies of the system and interaction of them are used. The second way
is performed via using the clearance function of simulation software
where the minimum distances between surfaces of bodies are
simultaneously measured. A double-turret system is held in the scope
of this study. The 4-D configuration space of a double-turret system is
obtained in these two ways. As a result, the difference between these
two methods is around 1%, depending on the density of the point
cloud. The disparity between the two forms steadily decreases as the
point cloud density increases. At the end of the study, in order to verify
4-D configuration space obtained, 4-D path planning problem was
realized as 2-D + 2-D and a sample path planning is carried out with
using A* algorithm. Then, the accuracy of the configuration space is
proved using the obtained paths on the simulation model of the double-
turret system.

Keywords—A* Algorithm, autonomous turrets, high-dimensional
C-Space, manifold C-Space, point clouds.

I. INTRODUCTION

HE robotic manipulation is an established technology that
is widely used in the industry [1]. Besides, the topic of

Industry 4.0 has become popular among many companies,
research centers, and universities. The transition to industry 4.0,
the rise of unmanned and smart factories, smart production,
machine-to-machine and advanced manufacturing have greatly
increased the need for co-working robots and so that this
situation has made robots with a certain degree of independence
more attractive [1]-[4]. However, with the development of
complex and intelligent operations, complex tasks in some
processes cannot be completed effectively by only using a
single manipulator. At the same time, it is known that the
coordination of two manipulators increases the complexity of
the task and improves the efficiency of the operation as well.

Ümit Yerlikaya is with both Mechanical Engineering, Middle East

Technical University and FNSS Defense Systems Inc., Ankara, Turkey (e-mail:
umit.yerlikaya@metu.edu.tr).

R. Tuna Balkan is with Mechanical Engineering, Middle East Technical
University, Ankara, Turkey (e-mail: balkan@metu.edu.tr).

However, when the two manipulators operate in a common
workspace, it is possible to encounter collision between the
manipulators and with the obstacles standing around, so the
coordinated operation of the two manipulators becomes also a
hot topic for researchers [5].

The number of dimensions of the configuration space comes
from the degree of freedoms (DOFs) of the system that is
interested in. In the literature, there are many studies about path
planning in configuration space. They commonly used a sample
2 or 3-dimensional configuration space to verify their path
planning approach [5]-[8]. However, unlike those studies, this
study aims to construct ways to obtain high dimensional
configuration spaces for real systems like robotic manipulators,
turrets, etc. [9], [10].

A multiple cradle launcher named Jobaria in Fig. 1 can be an
example for this study. 3 dependent turrets that have 2 DOFs in
each one means that the whole system has 6 DOFs in total [9]
with some constraints. It is impossible to rotate launchers
independently because of the space restrictions. Likewise, an
infantry fighting vehicle with two turrets which have 2 DOFs
each can be considered as an example for this study as well [10].
Also, the configurations in Fig. 2 can be similar examples
where two robotic manipulators or dual-arm robots are working
together in the same environment which creates collision
problems [5]. The motion of two dual-arm robots, each of
which has 2 degrees of freedom in Fig. 2 (a), can be defined as
4-dimensional C-Space. Each manipulator in Fig. 2 (b) has 6-
DOFs and satisfies the Pieper criterion, that is, the three
consecutive axes of the robot intersect at one point, and
therefore it is possible to model the last 3 DOFs of the
manipulator as a sphere that covers all the motion of last 3 links.
So, the motions of two manipulators can be expressed as a 6-
dimensional configuration space which helps to conduct the
path planning without colliding. To handle these difficulties and
obtain high-dimensional configuration space, there are on-line
and off-line methods to conduct path planning. These methods
can provide advantages and disadvantages to the systems they
are used. Because the online methods recognize objects in the
workspace simultaneously, it constantly updates the
configuration space.

U. Yerlikaya, R. T. Balkan

Obtaining High-Dimensional Configuration Space for
Robotic Systems Operating in a Common

Environment

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

90

Fig. 1 Jobaria multiple cradle launcher [9]

Fig. 2 (a) Collaborative dual-arm robots, (b) model of two
manipulators

The continuous updating of the configuration space provides

advantages for this method, while the electronic devices used
for updating can make the system more expensive. As long as
the workspaces of the robots which are working together do not
change, off-line methods are cheaper.

II. CONFIGURATION SPACE

The motion planning problems can be directly formalized
and solved in the 3-D workspace, generally by the potential
field algorithms [11]. However, it cannot be easily handled the
robots with various geometrical and mechanical restrictions by
these workspace solutions. To solve these difficulties, path
planning may be formalized and solved in a new space which is
called configuration space [8], [12]-[14]. The complex
geometric shaped robot in a 3-D workspace is mapped to a point
robot, therefore the motion of the robot corresponds to a
continuous curve in the high-dimensional configuration space
as given in Fig. 3.

Fig. 3 Workspace and C-Space representations

We can solve the motion planning problem in two steps [8].

For robots or manipulators to be driven to desired locations
without colliding, firstly it is required to obtain the
configuration space and perform an optimization on the found
C-Space. The configuration space is created by combining all
the possible motions that cooperative systems can do. Besides,
the mapping of the obstacles in configuration space may be
expanded by a specified safety factor. The safety factor is
determined according to the safe distance that must be between
the co-operators. It can be done by "Minkowski" sum method
[8] for the 2-D cases.

In this study, we will be interested in the configuration space
of the systems which does not change frequently, in other
words, focused on the off-line systems. If the workspace is
changed, then the corresponding configuration space should be
updated. During this study, we do not focus on path planning
itself. Besides, there will be some path planning solutions to
verify the obtained n-dimensional configuration space. There
are two ways to obtain n-dimensional configuration spaces
which will be input for n-dimensional path planning. One of
them is to obtain n-dimensional configuration space for a
system by using point clouds and the detection of the
intersection of these clouds. The other is to handle 3-D models
and DOFs by using simulation softwares. During this study, the
configuration space will be obtained by using these two ways.

A. First Way: Obtain by Point Clouds

To obtain configuration space by using point clouds, firstly
all the 3-D shapes are converted into point clouds. For this
purpose, any finite element meshing software can be used. After
creating a mesh of 3-D shapes, the point cloud representation of
the double-turret system can be seen as in Fig. 4.

Fig. 4 Point cloud representation of double-turret system

The point clouds can be classified and represented as moving

and fixed point clouds as seen in (1) and (2):

𝑀𝑃𝐶 ൌ ሼ𝑀𝑃𝐶ଵ 𝑀𝑃𝐶ଶ 𝑀𝑃𝐶ଷ ሽ (1)

𝐹𝑃𝐶 ൌ ሼ𝐹𝑃𝐶ଵ 𝐹𝑃𝐶ଶ 𝐹𝑃𝐶ଷ ሽ (2)

Each element of MPC and FPC can be represented as in (3):

𝑀𝑃𝐶௜ ൌ ሾ𝑋௜௡ 𝑌௜௡ 𝑍௜௡ሿ 𝐹𝑃𝐶௞ ൌ ሾ𝑋௞௠ 𝑌௞௠ 𝑍௞௠ሿ (3)

-1000-800-600-400-2000200400600800
X Axis [mm]

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Rep. of Double-Turret System with Point Clouds

Turret-1

Turret-2

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

91

where

𝑋௜௡ ൌ

⎣
⎢
⎢
⎢
⎡
𝑥௜ଵ
𝑥௜ଶ

∙
∙

𝑥௜௡⎦
⎥
⎥
⎥
⎤
 𝑌௜௡ ൌ

⎣
⎢
⎢
⎢
⎡
𝑦௜ଵ
𝑦௜ଶ

∙
∙

𝑦௜௡⎦
⎥
⎥
⎥
⎤
 𝑍௜௡ ൌ

⎣
⎢
⎢
⎢
⎡
𝑧௜ଵ
𝑧௜ଶ

∙
∙

𝑧௜௡⎦
⎥
⎥
⎥
⎤

𝑋௞௠ ൌ

⎣
⎢
⎢
⎢
⎡

𝑥௞ଵ
𝑥௞ଶ

∙
∙

𝑥௞௠⎦
⎥
⎥
⎥
⎤
 𝑌௞௠ ൌ

⎣
⎢
⎢
⎢
⎡

𝑦௞ଵ
𝑦௞ଶ

∙
∙

𝑦௞௠⎦
⎥
⎥
⎥
⎤
 𝑍௞௠ ൌ

⎣
⎢
⎢
⎢
⎡

𝑧௞ଵ
𝑧௞ଶ

∙
∙

𝑧௞௠⎦
⎥
⎥
⎥
⎤
 (4)

For a given point cloud 𝑀𝑃𝐶ଵ (𝑛 ൈ 3) in Cartesian

coordinates, the translational and rotational operations can be
represented as:

ሺ𝑀𝑃𝐶ଵ ሻ௧௥௔௡௦௟௔௧௘ ൌ 𝑀𝑃𝐶ଵ ൅ 𝐼௨ ൈ 𝑇, (5)

where 𝐼௨ is unity column array with a length of n, and
translation vector 𝑇 ൌ ሾ𝑡௫ 𝑡௬ 𝑡௭ሿ. First, the rotation vectors
are defined in three-axes as in (6):

𝑅𝐴௫ ൌ ሾ0 𝑟௬ 𝑟௭ሿ, 𝑅𝐴௬ ൌ ሾ𝑟௫ 0 𝑟௭ሿ ,
𝑅𝐴௭ ൌ ሾ𝑟௫ 𝑟௬ 0ሿ (6)

Rotations are defined by 3×3 transformation matrices.

Rotation about X-axis by an angle of α, rotation about Y axis
by an angle of β, and rotation about Z by an angle of γ are
defined, respectively, as

𝑅௫ሺ𝛼ሻ ൌ ൥
1 0 0
0 𝑐𝑜𝑠𝛼 െ𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

൩

𝑅௬ሺ𝛽ሻ ൌ ൥
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
െ𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩

 𝑅௭ሺ𝛾ሻ ൌ ൥
𝑐𝑜𝑠𝛾 െ𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

0 0 1
൩ (7)

Finally, rotated point clouds can be obtained as in (8):

ሺ𝑀𝑃𝐶ଵ ሻ௫ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨ ൈ 𝑅𝐴௫ ሿ ൈ 𝑅௫ ሺ𝛼ሻ ൅ 𝐼௨ ൈ 𝑅𝐴௫

ሺ𝑀𝑃𝐶ଵ ሻ௬ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨ ൈ 𝑅𝐴௬ ሿ ൈ 𝑅௬ ሺ𝛽ሻ ൅ 𝐼௨ ൈ 𝑅𝐴௬

ሺ𝑀𝑃𝐶ଵ ሻ௭ ൌ ሾ𝑀𝑃𝐶ଵ െ 𝐼௨ ൈ 𝑅𝐴௭ ሿ ൈ 𝑅௭ ሺ𝛾ሻ ൅ 𝐼௨ ൈ 𝑅𝐴௭ (8)

To find the distances between any point in 𝑀𝑃𝐶௜ and any

point in 𝐹𝑃𝐶௝, the matrix operations given below are used.

𝑋 ൌ 𝑋௜௡ െ 𝑋௞௠
் 𝑌 ൌ 𝑌௜௡ െ 𝑌௞௠

் 𝑍 ൌ 𝑍௜௡ െ 𝑍௞௠
் (9)

X, Y and Z matrices are as follows.

𝑋 ൌ

⎣
⎢
⎢
⎢
⎡
𝑥௜ଵ െ 𝑥௞ଵ 𝑥௜ଵ െ 𝑥௞ଶ . . 𝑥௜ଵ െ 𝑥௞௠

𝑥௜ଶ െ 𝑥௞ଵ 𝑥௜ଶ െ 𝑥௞ଶ . . 𝑥௜ଶ െ 𝑥௞௠
.
.

𝑥௜௡ െ 𝑥௞ଵ

.

.
𝑥௜௡ െ 𝑥௞ଶ

.

.

.

.

.

.

.

.
𝑥௜௡ െ 𝑥௞௠⎦

⎥
⎥
⎥
⎤

𝑌 ൌ

⎣
⎢
⎢
⎢
⎡
𝑦௜ଵ െ 𝑦௞ଵ 𝑦௜ଵ െ 𝑦௞ଶ . . 𝑦௜ଵ െ 𝑦௞௠

𝑦௜ଶ െ 𝑦௞ଵ 𝑦௜ଶ െ 𝑦௞ଶ . . 𝑦௜ଶ െ 𝑦௞௠
.
.

𝑦௜௡ െ 𝑦௞ଵ

.

.
𝑦௜௡ െ 𝑦௞ଶ

.

.

.

.

.

.

.

.
𝑦௜௡ െ 𝑦௞௠⎦

⎥
⎥
⎥
⎤

𝑍 ൌ

⎣
⎢
⎢
⎢
⎡
𝑧௜ଵ െ 𝑧௞ଵ 𝑧௜ଵ െ 𝑧௞ଶ . . 𝑧௜ଵ െ 𝑧௞௠

𝑧௜ଶ െ 𝑧௞ଵ 𝑧௜ଶ െ 𝑧௞ଶ . . 𝑧௜ଶ െ 𝑧௞௠
.
.

𝑧௜௡ െ 𝑧௞ଵ

.

.
𝑧௜௡ െ 𝑧௞ଶ

.

.

.

.

.

.

.

.
𝑧௜௡ െ 𝑧௞௠⎦

⎥
⎥
⎥
⎤
 (10)

Finally, distance matrix between two point clouds is found as

in (11):

𝐷 ൌ √𝑋ଶ ൅ 𝑌ଶ ൅ 𝑍ଶ (11)

The condition to check collision between point clouds is

given in (12) where δ is the safe distance defined in the
definition of the collision. The value of δ may not be less than
maximum mesh distance.

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ൌ ൜
1, 𝑖𝑓 𝑚𝑖𝑛ሺ𝐷ሻ ൑ 𝛿
0, 𝑖𝑓 𝑚𝑖 𝑛ሺ𝐷ሻ ൐ 𝛿

 (12)

As mentioned before, the 3-D point clouds are created from

3-D shapes. It is assumed that the length of any mesh in 3-D
shape is approximately equal and named as dm. The worst case
of placing two point clouds and x-y and x-z views of the worst-
case are given in Fig. 5 which will help to find the minimum
required safe distance, δ.

Fig. 5 Positioning of two PCs in worst case

According to Fig. 5, the safe distance should satisfy the
criterion in (13) which is necessary and sufficient.

𝛿 ൒ 𝑑 ൌ √ଷ

ଶ
 𝑑௠ (12)

The overall algorithm for obtaining the high-dimensional

configuration space can be summarized as in Algorithm-1.
There is given the information about a 3-D environment such
as moving point clouds (MPC), fixed-point clouds (FPC), safe
distance (δ), the number of variables (n), initial values of n

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

92

variables (𝜃௜௡), final values of n variables (𝜃௘௡ௗ) and step angles
of n variables (𝛿𝜃). There is n number of nested loops in the
algorithm where each of them belongs to a variable, in order to
be an example, during this study the number of variables (n) is
kept as 4. As a result of the algorithm, n-dimensional
configuration space which is named ConfMap is obtained.
Lines between 1-4 and 13-16 vary according to number of
variables. The location of MPC is updated according to
instantaneous variable values in Line 5. In Line 6-7, it is
checked whether there is collision between MPC and FPC, and
in Line 8-9 between MPC and MPC by avoiding matching of
same point clouds according to the safe distance (δ). Also, the
Algorithm-1 calls Algorithm-2 named CheckCollision which is
used to detect any collision between point cloud sets to fill
configuration space map for corresponding variables. The
Algorithm-2 expects the MPC, FPC and δ as inputs and also
needs three different functions which are named CheckLap,
RemovePoints and FindDistance. In Line 3, it is checked
whether there is an intersection between bounding volumes
(BV) of two point clouds.

Algorithm 1: ObtainConfSpace
 In: 𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝜃௜௡, 𝛿𝜃, 𝜃௘௡ௗ, 𝛿

Out: 𝐶𝑆𝑝𝑎𝑐𝑒
1 for θଵ ൌ θ୧୬

ଵ ∶ δθଵ: θୣ୬ୢ
ଵ ሺ𝑠ଵ ൅ ൅ሻ

2 for θଶ ൌ θ୧୬
ଶ ∶ δθଶ: θୣ୬ୢ

ଶ ሺ𝑠ଶ ൅ ൅ሻ
3 for θଷ ൌ θ୧୬

ଷ ∶ δθଷ: θୣ୬ୢ
ଷ ሺ𝑠ଷ ൅ ൅ሻ

4 for θସ ൌ θ୧୬
ସ ∶ δθସ: θୣ୬ୢ

ସ ሺ𝑠ସ ൅ ൅ሻ
5 𝑢𝑝𝑑𝑎𝑡𝑒 𝑴𝑷𝑪 𝑢𝑠𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 θଵ, θଶ, θଷ 𝑎𝑛𝑑 θସ
6 if 𝑪𝒉𝒆𝒄𝒌𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 ሺ𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝛿ሻ ൌ

1 ሺ𝑡𝑟𝑢𝑒ሻ
7 𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 1
8 elseif 𝑪𝒉𝒆𝒄𝒌𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 ሺ𝑀𝑃𝐶, 𝑀𝑃𝐶, 𝛿ሻ ൌ

1 ሺ𝑡𝑟𝑢𝑒ሻ
ሺ𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑎𝑚𝑒 𝑝. 𝑐𝑙𝑜𝑢𝑑𝑠 𝑖𝑠 𝑎𝑣𝑜𝑖𝑑𝑒𝑑ሻ

9 𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 1
10 else
11 𝐶𝑆𝑝𝑎𝑐𝑒 ሺ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସሻ ൌ 0
12 end if
13 end for
14 end for
15 end for
16 end for
17 return 𝐶𝑆𝑝𝑎𝑐𝑒

Algorithm 2: CheckCollision
 In: 𝑀𝑃𝐶, 𝐹𝑃𝐶, 𝛿

Out: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
1 for i ← number of P. clouds in MPC ሺi ൅ ൅ሻ
2 for k ← number of P. clouds in FPC ሺk ൅ ൅ሻ
3 ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ ൌ 𝑪𝒉𝒆𝒄𝒌𝑳𝒂𝒑 ሺ𝑀𝑃𝐶௜, 𝐹𝑃𝐶௞ሻ
4 if 𝐿𝑎𝑝 ൌ 1 ሺ𝑡𝑟𝑢𝑒ሻ → 𝑃. 𝑐𝑙𝑜𝑢𝑑𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑
5 𝑀𝑃𝐶௜

ᇱ ൌ 𝑹𝒆𝒎𝒐𝒗𝒆𝑷𝒐𝒊𝒏𝒕𝒔 ሺ𝑀𝑃𝐶௜, 𝐼𝐵ሻ
6 𝐹𝑃𝐶௞

ᇱ ൌ 𝑹𝒆𝒎𝒐𝒗𝒆𝑷𝒐𝒊𝒏𝒕𝒔 ሺ𝐹𝑃𝐶௞, 𝐼𝐵ሻ
7 𝑑 ൌ 𝑭𝒊𝒏𝒅𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 ሺ𝑀𝑃𝐶௜

ᇱ, 𝐹𝑃𝐶௞
ᇱ ሻ

8 if minሺ𝑑ሻ ൑ 𝛿
9 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ ൌ 1
10 return 𝑚𝑎𝑥ሺ𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሻ
11 else
12 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ ൌ 0

13 end if
14 else
15 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑘ሻ ൌ 0
16 end if
17 end for
18 end for
19 return 𝑚𝑎𝑥ሺ𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛ሻ

If there is no intersection, then it can be said that there is no
collision between the two point clouds. In the case of an
intersection, the point clouds are updated by getting rid of the
points outside the intersection box and a distance matrix is
obtained between them to see if the minimum distance is
smaller than the safe distance (δ).

To effectively check collision between point clouds, it is
advisable to approximate objects with bounding volumes (BV)
[18], [19]. Various bounding volume types which are widely
used in the literature are presented in Fig. 6.

Fig. 6 The types of bounding volumes

Fig. 7 Two point clouds and their AABBs in 3-D Space

The selection of a bounding volume type depends on the
usage. To easily select correct bounding volume, the type of
objects should be known beforehand. If no information is
available for the object size or shape, the more general shape is
always better. However, the more general bounding volume
adds extra complexity and hence heavier computationally [15]-
[21]. To overcome this difficulty and uncertainty, the sphere or
axis-aligned bounding boxes (AABB) can be preferred. In this
study, AABB is used for that reason. The following function
checks whether the AABBs of two point clouds (PC1 and PC2)
are intersected. If there exists an intersection between AABBs,
the function gives information about the intersection box (IB),
otherwise the overall algorithm returns to no-collision-detected
state. Two point clouds and their AABBs are given in Fig. 7.
As seen in this figure, there is an intersection between these two

1600

800

1800

600

2000

400

Y Axis

200

2200

Moving and Fixed Point Clouds

0
300

X Axis

-200 2001000-100-200

Fixed Obstacle
Moving Gun Barrel

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

93

AABBs. Also, the intersection box (IB) is given in Fig. 8.

Fig. 8 AABBs of two point clouds and their intersection box (IB)

The following Function-1 named CheckLap allows to see if
the AABBs of the two point cloud intersect, and also to obtain
intersection box (IB) information in case of intersection.

Function 1: CheckLap
 In: 𝑃𝐶ଵ, 𝑃𝐶ଶ

Out: ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ
1 for 𝑖 ൌ ሾ1, 2, 3ሿ ሺx: 1, y: 2, z: 3ሻ
2 if min ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ ൒ min ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
3 𝑚𝑖𝑛௜ ൌ min ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
4 else
5 𝑚𝑖𝑛௜ ൌ min ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
6 end if
7 if max ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ ൑ max ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
8 𝑚𝑎𝑥௜ ൌ max ሼ𝑃𝐶ଵሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
9 else
10 𝑚𝑎𝑥௜ ൌ max ሼ𝑃𝐶ଶሺ𝑖௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻሽ
11 end if
12 𝐼𝐵ሺ𝑖, 1ሻ ൌ 𝑚𝑖𝑛௜ , 𝐼𝐵ሺ𝑖, 2ሻ ൌ 𝑚𝑎𝑥௜
13 if 𝑚𝑖𝑛௜ ൑ 𝑚𝑎𝑥௜
14 𝐿𝑎𝑝௜ ൌ 1
15 else
16 𝐿𝑎𝑝௜ ൌ 0
17 end if
18 end for
19 𝐿𝑎𝑝 ൌ 𝐿𝑎𝑝ଵ ∙ 𝐿𝑎𝑝ଶ ∙ 𝐿𝑎𝑝ଷ
20 return ሾ𝐿𝑎𝑝, 𝐼𝐵ሿ

After determining the intersection box (IB) and providing

point clouds and information about IB to the Function-2 named
RemovePoints, now it is time to get rid of excess points that do
not belong to IB. By using this function, the point clouds are
modified and the points outside the IB are removed as seen in
Fig. 9.

Firstly, the number of points is decreased by deleting the
points outside the intersection box (IB) and then the modified
MPC and FPC are created which only belong to the IB. Now,
in order to decide whether there is a collision between point
clouds, the distances between any combination of the points in
MPC and FPC are measured. The following Function-3 named
FindDistance measures g*h distances and gives g×h sized

matrix where the PCs have g and h number of points,
respectively.

Fig. 9 Modified point clouds after removing points outside
intersection box (IB)

Function 2: RemovePoints
 In: 𝑃𝐶, 𝐼𝐵

Out: 𝑃𝐶ᇱ
1

if ሼ𝑥 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝑃𝐶 ൐ 𝐼𝐵ሺ1,2ሻ 𝑶𝑹 ൏ 𝐼𝐵ሺ1,1ሻሽ
 𝑶𝑹 ሼ𝑦 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝑃𝐶 ൐ 𝐼𝐵ሺ2,2ሻ 𝑶𝑹 ൏ 𝐼𝐵ሺ2,1ሻሽ
 𝑶𝑹 ሼ𝑧 𝑜𝑓 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝑃𝐶 ൐ 𝐼𝐵ሺ3,2ሻ 𝑶𝑹 ൏ 𝐼𝐵ሺ3,1ሻሽ

2 → 𝑟𝑒𝑚𝑜𝑣𝑒 ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑃𝐶 ∉ 𝐼𝐵
3 𝑃𝐶ᇱ ൌ ∀ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑃𝐶 ∈ 𝐼𝐵
4 else
5 𝑃𝐶ᇱ ൌ 𝑃𝐶
6 end if
7 return 𝑃𝐶ᇱ

Function 3: FindDistance
 In: 𝑃𝐶ଵ, 𝑃𝐶ଶ

Out: 𝑑
1 𝑥ଵ ൌ 𝑃𝐶ଵሺ1௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ
2 𝑦ଵ ൌ 𝑃𝐶ଵሺ2௡ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ
3 𝑧ଵ ൌ 𝑃𝐶ଵሺ3௥ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑚 ൈ 1ሻ
4 𝑥ଶ ൌ 𝑃𝐶ଶሺ1௧௛ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ
5 𝑦ଶ ൌ 𝑃𝐶ଶሺ2௡ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ
6 𝑧ଶ ൌ 𝑃𝐶ଶሺ3௥ௗ 𝑐𝑜𝑙𝑢𝑚𝑛ሻ → ሺ𝑛 ൈ 1ሻ
7 𝑋 ൌ 𝑥ଵ െ 𝑥ଶ

் → ሺ𝑚 ൈ 𝑛ሻ
8 𝑌 ൌ 𝑦ଵ െ 𝑦ଶ

் → ሺ𝑚 ൈ 𝑛ሻ
9 𝑍 ൌ 𝑧ଵ െ 𝑧ଶ

் → ሺ𝑚 ൈ 𝑛ሻ
10 𝑑 ൌ ඥ𝑋ଶ ൅ 𝑌ଶ ൅ 𝑍ଶ → ሺ𝑚 ൈ 𝑛ሻ
11 return 𝑑

After obtaining the distance matrix, now it is easy to decide

if there is a collision at that moment. If we sort and draw the
elements of the distance matrix, the distances between points
can be obtained as in Fig. 10. If there is any distance lower than
safe distance (δ), then we can decide that there is a collision for
corresponding variables.

B. Second Way: Obtain by a Simulation Software

In the first way, obtaining the configuration space by
detection of intersection of point clouds is explained in detail.
In this way, the only collision detection algorithm is changed
with the clearance function of the simulation software.

Z
 A

x
is

Z
 A

x
is

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

94

Clearance function measures the minimum distance between
the surfaces of bodies and only focuses the surfaces of bodies
so that the bodies are assumed to be hollow. During any contact
between the bodies, the clearance returns to zero which shows
that there is a collision. We can summarize the steps of this way
as shown in Fig. 11.

Fig. 10 Sorting and drawing distance matrix to check collision

Fig. 11 The sequence of the second way

1. Create position profiles for variables by converting the
nested for-loops to time-domain. As an example, the
position profiles for four variables in time-domain are

illustrated as in Fig. 12.

(a) smoothing on (b) smoothing off

Fig. 12 Converting nested for-loops into time-domain position
profiles for variables

The position profiles are directly mapped from 4 nested for-

loops with sharp edges as shown in Fig 12 (b). The hard
transition from the maximum to minimum value causes some
problems during solving kinematic equations in simulation
software. Therefore, by doing a smoothing operation the
position profiles are updated as shown in Fig. 12 (a) and so that
the possible errors in simulation are prevented.
2. Create the exact simulation model of the system in MSC

Adams. For instance, the simulation model of the 4-DOF
double-turret system is given in Fig. 13.

Fig. 13 The simulation model of a sample system

0 1 2 3
0

200

400
Smoothing ON

0 1 2 3
0

200

400
Smoothing OFF

0 1 2 3

0

20

40

60

0 1 2 3

0

20

40

60

0 1 2 3
0

200

400

0 1 2 3
0

200

400

0 1 2 3

Time [s]

0

20

40

60

0 1 2 3

Time [s]

0

20

40

60

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

95

All joints, motions and clearances between stationary (obst-
1 to 5) and moving bodies (hull and gun barrel) have to be
defined. The position profiles in time-domain which are
explained in the first step have to be imported and assigned to
motions on the joints (θ1, θ2). According to steps and step time
of position profiles, simulation is conducted.

Fig. 14 The change of minimum clearances as a result of sample run

3. After completing the analysis, the change of clearances
again in time-domain are obtained as in Table I and sent to
other simulation software (MATLAB) in order to obtain
configuration space by processing with position profiles
inputs.

TABLE I

RESULTS OF SIMULATION

t ሾsሿ θଵሾ °ሿ θଶሾ °ሿ θଷሾ °ሿ θସሾ °ሿ Collisionሺδሻ
0 0 -10 0 0 0

ts 0 -10 0 20 0

2ts 0 -10 0 40 0

…. …. …. …. …. ….

𝑡௘௡ௗ 358 0 358 0 0

III. CASE STUDY

To compare 2 ways of obtaining configuration space, a
double-turret system is considered as an example. The
simulation and point cloud models of the double-turret system
are given in Figs. 15 and 4, respectively.

The turret has two DOFs, one for traverse and the other for
elevation. In this example, we have 4 DOFs because of two
turrets in the same environment. Also, there are 5 stationary
obstacles around these two turrets. Finally, the configuration
space up to 4 dimensions can be obtained. Point numbers in the
point clouds of all the elements used in the double-turret system
are as in Table II. Within scope of this study, the capital or
lowercase letters g, o and h represent guns, obstacles and hulls

respectively. Also, the ground was not included in the
calculations because it is known that no part interacts with the
ground at maximum and minimum operating limits for faster
results.

Fig. 15 The Simulation model of double-turret system with stationary
obstacles

TABLE II

NUMBER OF POINTS

Parts Number of Points (for each)

O1, O2, O3, O5 4065

O4 18831

H1 and H2 5614

G1 and G2 3624

The 4-D configuration space of the example is obtained. In
this 4-D C-Space, the elevation axes (𝜃ଶ, 𝜃ସ) start from - 10°,
end at 60° with a step size of 2°. The traverse axes (𝜃ଵ, 𝜃ଷ) start
from 0°, end at 358° with a step size of 2°. In the method of
path planning on the C-Space, the grid number of C-Space has
great effect on the algorithm itself. If the grid is too great, the
precision of planning will decrease. If the grid is small, the
calculation payload will increase. A reasonable grid
decomposition should be based on some optimum criterion
[25]. The 4-D C-Space can be represented by a certain number
of 3-D configuration spaces. For this example, it can be
obtained with 36 different 3-D C-Spaces for each value of
elevation axis of turret-2 (𝜃ସ) in the example of double-turret
system. The 3-D representations of this 4-D C-Space are given
for eight different 𝜃ସ angles in Figs. 16 and 17. As can be seen
from the figures, as the angle of 𝜃ସ increases, the volume of the
disabled area in the C-Space decreases.

The obtained 3-D configuration spaces of two ways (by point
cloud, by MSC software) are almost the same. The difference
between them is about 1% which comes from the method
difference. In the first way, the clearances between bodies are
measured from point to point. However, in the second way, they
are measured from the surface to surface. In this example, the
distance between points in the point clouds is about 5 mm which
creates a 1% difference than the mentioned and also the safe
distance is 5 mm. The difference between these two ways
depends on the distance between points. Difference between
methods decreases when the distance between points decreases.

0 0.5 1 1.5 2 2.5 3

Time [s]

0

200

400

600

800

g1-g2
g1-h2
g1-o1
g1-o2
g1-o3
g1-o4
g1-o5

0 0.5 1 1.5 2 2.5 3

Time [s]

0

200

400

600

800
g2-h1
g2-o1
g2-o2
g2-o3
g2-o4
g2-o5
h2-h1

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

96

Also, the first way is only created to obtain configuration space,
however in the second one, we only use the power of clearance
function of the MSC Adams simulation software in order to
create an alternative for obtaining configuration space.

Fig. 16 3-D C-Space of double-turret system (for θ4 equals -10°, 0°,
10° and 20°)

Fig. 17 3-D C-Space of double-turret system (for θ4 equals 30°, 40°,
50° and 60°)

The computation times for obtaining one of the 3-D

configuration space in Figs. 16 and 17 with first and second way
are 298.5 and 2414.5 minutes, respectively. One of the 3-D C-
Space has 180×180×36 = 1166400 configurations. Since 4-D

C-Space consists of 36 3-D C-Spaces, it contains approximately
42 million different configurations. It took approximately 179
hours to calculate 4-D C-Space using the first method. Since
this simulation of 42 million will take about a month with the
second method, the performance comparison of the two
methods was carried out over the time it took to obtain 3-
dimensional C-Spaces. For that reason, it can be said that the
first way is 8.1 times more efficient. Since C-Spaces do not
change frequently in off-line systems, calculation times are
quite reasonable.

IV. VERIFICATION OF THE RESULTS

After obtaining the configuration space, the rest is related to
path planning algorithms which can be A* [7,22], many
variants of rapidly exploring random tree (RRT) [23],
probabilistic roadmap (PRM) [24] and so forth. In order to
verify obtained 4-D C-Space, 4-D path planning problem was
realized as 2-D + 2-D by choosing two axis sets from four
existing axes. Whichever two axes from four existing axes will
be driven first, motion planning of these two axes is made by
taking the 2-D section of the 4-D C-Space corresponding to the
starting positions of the other two axes. In order to drive the
second axes pair, motion planning is made by taking the 2-D
section of the 4-D C-Space corresponding to the target position
of the first two axes. For this example, first 1st and 2nd, then 3rd
and 4th axes are driven simultaneously.

In order to plan a sample path, the starting and target
positions are selected as in (14) and (15), respectively.

𝜃௦ ൌ ሾ 𝜃௦

ଵ, 𝜃௦
ଶ, 𝜃௦

ଷ, 𝜃௦
ସሿ ൌ ሾ40°, െ10°, 160°, 16°ሿ (14)

𝜃௧ ൌ ሾ 𝜃௧

ଵ, 𝜃௧
ଶ, 𝜃௧

ଷ, 𝜃௧
ସሿ ൌ ሾ264°, 0°, 10°, െ10°ሿ (15)

Fig. 18 2-D C-Space of double-turret system for first driven axis pair
and path planning result

The configuration space of first driven axes pair and second
driven axes pair are given in Figs. 18 and 19. The configuration
space is shown in a circular instead of rectangular since the
second and fourth axes can be rotated full. Each of the circular
C-Spaces has 180×36 grids (axes are divided into 2° steps). A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

97

sample path is planned with the help of A * path planning
algorithm using two circular C-Spaces as shown in Figs. 18 and
19.

Fig. 19 2-D C-Space of double-turret system for second driven axis
pair and path planning result

Fig. 20 The change of position profiles concerning path planning
result space

The shortest path is calculated so that the turrets can rotate to

the goal position. The turrets will reach the goal position
without any collision if the system performs simultaneous
traverse and elevation rotations as shown in Figs. 18 and 19.
The traverse and elevation motion profiles should be created
according to angular speed, acceleration or time requirements.
If the angular velocities of the axes are set to 2 °/s, the time
required to pass one grid is approximately 1 second. In this case,

the system can reach the target position from the specified start
position in 156 seconds. Thus, the traverse and elevation motion
profiles are created as shown in Fig. 20. In order to drive
double-turret system, the absolute changes of positions are
converted into incremental position changes by resetting
starting positions as zero.

Once the motion profiles are obtained, the rotations of the
turret system were simulated on simulation model. As a result
of this simulation, the changes of minimum clearances between
bodies are obtained as shown in Fig. 21.

Fig. 21 The Change of minimum clearances between bodies

Accordingly, as the turrets are rotated to their goal positions,
the minimum clearance is between g1-o3 which is 5.4 mm and
no collision occurs as expected.

V. CONCLUSION

In this research, a method has been developed with two
different ways to obtain a high-dimensional configuration
space. One of the ways is obtaining by using point clouds and
the second one is using only simulation software. In first way,
the bodies in the system are meshed and converted into points
and then the configuration space is obtained by using the
method of intersection of point clouds. In the second way, this
work is carried out using clearance function which measured
minimum distance between the surfaces of defined bodies that
are defined. A double-turret system is held in the scope of this
study. 4-D configuration space of double-turret system is
obtained by these two ways. As a result of this, the difference
between these two ways is about 1% which depends on the
point cloud density. As the point cloud density increases, the
difference between the two ways decreases gradually. By the
way, the first way is 8.1 times more efficient than the second
way which is an advantage of the first way. The need to create
a point cloud for each part is seen as a disadvantage of the first

A
n

g
u

la
r

P
o

si
ti

o
n

s
[d

eg
]

A
n

g
u

la
r

P
o

si
ti

o
n

s
[d

eg
]

0 50 100 150

Time [s]

0

200

400

600

800

C
le

ar
an

ce
s

[m
m

]

g1-g2
g1-h2
g1-o1
g1-o2
g1-o3
g1-o4
g1-o5

0 50 100 150

Time [s]

0

200

400

600

800
C

le
ar

an
ce

s
[m

m
] g2-h1

g2-o1
g2-o2
g2-o3
g2-o4
g2-o5
h2-h1

X: 123.2
Y: 6.122

X: 64.7
Y: 5.396

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:15, No:4, 2021

98

way. However, for the second way, 3-D cad models of parts and
appropriate input profiles are sufficient to carry out the analysis.
At the end of the study, a sample path planning with A*
algorithm was made by using the previously obtained 4-D
configuration space. Then, the accuracy of the configuration
space was proved via using the obtained paths on the simulation
model of the double-turret system. To fully verify the results of
two different methods on the 3 or more dimensions, different
path planning algorithms such as RRT and RRT* can be used
or different approach like potential field methods can be
proposed. Therefore, the focus should be on full verification of
the methods for future work by conducting path planning
studies on more cases.

ACKNOWLEDGMENT

The authors would like to thank FNSS Defense Systems Inc.
and Scientific and Technological Research Council of Turkey
(TÜBİTAK) for their support. They would also like to express
sincere appreciation for the valuable editorial help of Mert Şen.

REFERENCES
[1] M. Bahrin, M. Othman, N. H. N. Azli and M. F. Talib, “Industry 4.0: A

review on industrial automation and robotic,” Jurnal Teknologi (Sciences
and Engineering), pp. 137– 143, 2016.

[2] Günther Schuh et al., “Collaboration Mechanisms to Increase
Productivity in the Context of Industrie 4.0” in Procedia CIRP, 2014.

[3] M. Reuter, H. Oberc, M. Wannöffel, D. Kreimeier, J. Klippert, P. Pawlicki
and B. Kuhlenkötter, “Learning factories’ trainings as an enabler of
proactive workers participation regarding industrie 4.0,” Procedia
Manufacturing, pp. 354– 360, 2017.

[4] F. Padula and V. Perdereau, “An on-line path planner for industrial
manipulators,” International Journal of Advanced Robotic Systems,
January 2013.

[5] J. Zhao, Y. Chao and Y. Yuan, “A cooperative obstacle-avoidance
approach for two-manipulator based on A* algorithm,” International
Conference on Intelligent Robotics and Applications (ICIRA), pp. 16-25,
2019.

[6] H. Choset and J. Latombe, “Principles of robot motion: theory,
algorithms, and implementations [Book Review],” IEEE Robotics &
Automation Magazine, vol. 12, 2005.

[7] K. H. Kim, S. Sin and W. Lee, “Exploring 3D shortest distance using A*
algorithm in unity3d,” TechArt: Journal of Arts and Imaging Science,
vol.2, no. 3, pp. 81-85, August 2015.

[8] J. Pan and D. Manocha, “Efficient configuration space construction and
optimization for motion planning,” Engineering, vol. 1, no 1, pp 46–57,
2015.

[9] “Multiple cradle launcher,” Roketsan Missiles Inc.,
www.roketsan.com.tr/wpcontent/uploads/2013/05/
IDEX-1.pdf (last accessed: April-2021).

[10] Implementing multi-turret and twin-barrel support with a 3rd soviet heavy
line, 2015, Retrieved from http://ritastatusreport.blogspot.com/
2015/12/implementing-multi-turret-and-twin_16.html

[11] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots” in Proceedings - IEEE International Conference on Robotics and
Automation, 1985.

[12] T. Lozano-Pérez, M. A. Wesley, “An algorithm for planning collision-free
paths among polyhedral obstacles,” Commun of the ACM, vol. 22, no. 10,
pp. 560-570, 1979.

[13] T. Lozano-Pérez, “Automatic planning of manipulator transfer
movements,” IEEE Transactions on Systems, Man and Cybernetics, vol.
11, no. 10, pp. 681–98, October 1981.

[14] G. K. Lin and T. Lozano-Perez, “Spatial Planning: A Configuration Space
Approach,” Ieee Transactions On Computers, vol. 32, 1983.

[15] P. Jiménez, F. Thomas, and C. Torras, “3d collision detection: a survey,”
Computers & Graphics, vol. 25, no. 2, pp. 269-285, 2001.

[16] T. Liski, 3-D collision checking for improving machine operator's spatial
awareness (Master Thesis), Aalto University-School of Electrical

Engineering, Finland, 2014.
[17] W. Wu, H. Zhu, X. Zhuang, G. Ma and Y. Cai, “A multi-shell cover

algorithm for contact detection in the three-dimensional discontinuous
deformation analysis,” Theoretical and Applied Fracture Mechanics, vol.
72, no. 1, pp. 136–49, 2014.

[18] J. Klein and G. Zachmann, “Point cloud collision detection,” Computer
Graphics Forum, vol. 23, no. 3, pp. 567-576, 2004.

[19] G. Zachmann, “Minimal Hierarchical Collision Detection,” ACM
Symposium on Virtual Reality Software and Technology, Proceedings,
VRST, 121–28, 2002.

[20] M. Figueiredo, J. Oliveira, B. Araújo, J. Pereira, “An efficient collision
detection algorithm for point cloud models,” 20th International
Conference on Computer Graphics and Vision, GraphiCon'2010 -
Conference Proceedings, 2010.

[21] J. Han, “An efficient approach to 3D path planning,” Information
Sciences, vol. 478, pp. 318–30, April 2019.

[22] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun, “Anytime
Dynamic A*: An Anytime, Replanning Algorithm,” in ICAPS 2005 -
Proceedings of the 15th International Conference on Automated Planning
and Scheduling, 2005.

[23] J. J. Kuffner, S. LaValle, “RRT-connect: An efficient approach to single-
query path planning”, In: Proceedings of IEEE International Conference
on Robotics and Automation, 995–1001, 2000.

[24] L. Kavraki, P. Svestka, J. C. Latombe and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, August 1996.

[25] D. Henrich, C. Wurll, H. Worn, “Online path planning with optimal c-
space discretization,” Proceedings of the 1998 IEEE/RSJ International
Conference on Robots and System, Victoria, BC, Canada, pp. 1479–84,
1998.

