
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

108


Abstract—The low availability of well-trained, unlimited,

dynamic-access models for specific languages makes it hard for
corporate users to adopt quick translation techniques and incorporate
them into product solutions. As translation tasks increasingly require
a dynamic sequence learning curve; stable, cost-free opensource
models are scarce. We survey and compare current translation
techniques and propose a modified sequence to sequence model
repurposed with attention techniques. Sequence learning using an
encoder-decoder model is now paving the path for higher precision
levels in translation. Using a Convolutional Neural Network (CNN)
encoder and a Recurrent Neural Network (RNN) decoder
background, we use Fairseq tools to produce an end-to-end
bilingually trained Spanish-English machine translation model
including source language detection. We acquire competitive results
using a duo-lingo-corpus trained model to provide for prospective,
ready-made plug-in use for compound sentences and document
translations. Our model serves a decent system for large,
organizational data translation needs. While acknowledging its
shortcomings and future scope, it also identifies itself as a well-
optimized deep neural network model and solution.

Keywords—Attention, encoder-decoder, Fairseq, Seq2Seq,

Spanish, translation.

I. INTRODUCTION

OR most of today’s translation tasks, we tend to look to
Google Translate. But when the requirement is much

larger by scale - we will be faced with the absence of a plug-in
option. Though translation seems like an easy task, there is a
surprisingly huge void when it comes to the availability of
functional and easy-to-use opensource translation utilities. The
only reliable one available will not be an option unless you are
willing to shell out a lot of money. Google is the standalone
player, sole provider, and beneficiary at the moment in this
area.

II. AVAILABILITY

The higher the organization’s need for precision, the steeper
the price. All the available (precision) techniques charge on a
per-character basis. Google even charges per-access of the
detect method call, i.e. for identification of each word’s source
language and then separately for each character’s translation.

The only other alternative would be to opt to self-train a
model with a dataset to perform the task. For tailor-fit
translation needs, we would then look to train available
models on domain-specific data of the source language and
target language. But all the current market models are either

Vidhu Mitha Goutham is with the Unisys, India (e-mail:
vidhu.mitha@gmail.com).

amateur or still underdeveloped and filled with bugs and
outliers. Additionally, these tend to be highly conditional and
constrained utilities. Other generic approaches such as using
Application Programming Interfaces (APIs) cannot be
employed for larger sets of data requiring translation, as all of
these APIs are privately monitored and a cap is set on the
number of hits or accesses per IP address call. Beyond a small
number of free accesses, that too turns chargeable. So for
unlimited access, there is currently no open-source
availability.

In most global organizations with international clients, there
are multiple avenues and products requiring translation. And
each product’s components would be built to hold reusable
prototypes. In such scenarios, there is an absolute requirement
for translation operations to be accessed innumerable times,
especially concerning the model’s training. Present utilities are
only suitable for niche requirements and the associated costs
make it infeasible in terms of functionality. Hence there arises
a need for an end to end solution that is openly deployable.

III. ENVIRONMENTS AND PLAUSIBILITY

Deployment concerns usually start and end with security.
Most translation solutions are cloud-based due to the need for
embedded training and testing utilities. But as convenient as
cloud platforms could be, it comes with a huge range of
vulnerabilities and overheads. Without a compromise on that
factor, incorporating these plugin models is a major concern.

Organizations usually value and are bound by high privacy
requirements. These translation tools used in products need to
be exclusive to the client while being internally reusable and
would require utmost confidentiality, copyrights, etc. which
makes it incompatible with most current environments.

Facilitating transfer learning is to be factored in as well to
ensure that model functionality can be used across clients
within the organization. It would, therefore, require a private
cloud or service to be developed or rented specifically for
these needs. Infrastructure expenditure attributes to the highest
weigh-down factor in any company’s spending or budget and
virtual machines in data centers and cloud storage incorporate
heavy infrastructure costs. Hence it increases the overall
infeasibility.

There is also an inherent lack of datasets for many non-
English languages. And domain-specific ones are even scarcer
to find. The option of generating such datasets has its
shortcomings. They tend to be hard to produce and
grammatically incorrect which would then mistrain our model
and accuracy will be stunted very low.

Another major incompatibility issue arises due to the format

End-to-End Spanish-English Sequence Learning
Translation Model
Vidhu Mitha Goutham, Ruma Mukherjee

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

109

and nature of the text. In some cases, it comprises of millions
or billions of rows of data in various formats. This would
require a lot of intermediate coding for access and
conversions, which is a time and resource-consuming task.

IV. LITERATURE SURVEY: TRANSLATION MODULES

A. Usual Shortcut Solutions- APIs

1) Googletrans and Natural Language Tool Kit (NLTK): It is
an unofficial library using the web API of
translate.google.com with a maximum character limit on
texts at 15k. This API does not guarantee, due to
limitations of the web version of Google translate, that the
library would provide correct output translation or predict
concisely in all scenarios. This may be more suitable only
for domestic day-to-day translation- leaving it inadequate
for organizational translation needs.

2) Goslate: It acted as a free python API querying the
Google translate website. Google translation does not
support very long text, and Goslate simply bypasses this
limitation by splitting the long text internally before
querying Google and then joining the results back into
one translation text. Its functionality was hinged on an
intricate loophole and hence was not a stable method.
Additionally, Google updated its translation service in the
recent past with a ticketing mechanism to prevent crawler
programs - rendering Goslate inept for translation in
comparison.

3) Google’s Translation API: It helps make a cloud
translation using a REST method call to the basic translate
method. But this only applies to usage on terms or
phrases. It requires a lot of self-customization before
passing larger input data, or for domain and context-
specific translation. This too is accompanied by a price
tag.

B. Detection Modules

1) Langdetect: This is a direct port of Google's language-
detection library from Java to Python. It serves a very
limited number of languages and simply performs
detection of the source language. The language detection
algorithm is non-deterministic, i.e. if you try to run it on a
text which is either too short or too ambiguous, you might
get different results each time you run it [2].

2) Facebook’s-fastText: It is an efficient pre-trained model
that performs accurate identification of source language.
It supports a whopping 170+ languages but is licensed for
use. Additionally, the model was trained on UTF-8 data,
and therefore strictly needs UTF-8 inputs.

C. Translation Using a Model

1) Neural Machine Translation- Sutskever Model: It is a
proposed Encoder-Decoder model for machine
translation. It uses sequence-to-sequence learning on a
multilayered Long Short-Term Memory (LSTM). This
theory provided a base concept for building a model that,
for the very first time, could map the input sequence to a
vector of fixed dimensionality, and then decode the target

sequence from the vector. It performed better than a
phrase-based SMT (Statistical machine translation)
system on the same datasets. The upcoming-Google’s
successful translation system is also based on this very
modeling prototype [3]-[6].

2) Google’s AutoML Translation: A service available only
upon payment, it creates production-ready models. But it
requires us to upload cleaned, pre-processed, and
translated language pairs, a task that is quite tedious.

V. A SMARTER APPROACH

We finally found that constructing a model and coupling it
with a handpicked dataset for training yields some impressive
results. So we built a system that performs end-to-end:
identification and translation. We used a combination of
Fairseq and the Sutskever technique. Fairseq is a toolkit
written in PyTorch for sequence modeling that allows
developers and researchers to custom-build and train models
for summarization, language modeling, and text generation.

A. The Model

Our base model is a Deep Neural Network Sequence-to-
Sequence model. It maps a fixed-length input with an output
where the length of the input and output may vary or differ
dynamically. We used an LSTM architecture as LSTM models
are fairly easier to train. The model comprises of 3 major
parts: encoder, intermediate vector, and decoder:
 Encoder: holds a stack of recurrent units of LSTM or

GRU cells where they accept each individual element of
the input sequence, collect information for that element,
and then moves it forward.

 Decoder: predicts an output y_t at a time step t. Each
recurring unit accepts a (hidden) state from the previous
one. The output sequence is then collected as a set of all
words from that specific answer. Each word in this case is
represented as y_i where i- represents the order of that
word.

 Formula to compute the hidden states:

 ht = f (W(hh)ht-1 +W(hx)xt) (1)

Since ours is a Seq2Seq model consisting of a CNN encoder
and an RNN decoder, the encoder will extract features from
the written text line and sequentially encouple temporal
context between the input sequence and the integer dictionary.
While using the attention mechanism to focus on the most
relevant encoded features, the decoder outputs a sequence of
characters. It can thus be used end-to-end on complex large
lines as well as files.

We have also used SentencePiece- as an unsupervised text
tokenizer and detokenizer. Apart from performing direct
training from raw sentences, it also allows us to create an end-
to-end system that does not depend on language-specific
preprocessing or postprocessing. It backs two segmentation
algorithms: byte-pair-encoding (BPE) and unigram language
model. It basically treats the input text as a simple sequence of
Unicode characters which would make it easier to train as data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

110

input sentences can be pre-tokenized or raw sentences.

Fig. 1 Hidden state flow impacting translation

B. The Dataset

We used the Tatoeba corpus of bilingual sentence pairs. We
trained our model on a set of 1.56 Lakh sentences which
includes 1.44 Million English words and 1.56 Million Spanish
words. This dataset has also been cleaned to have tab
separation spaces and full stops at the end of every sentence.
Additionally, as typical neural language models rely on a
vector representation for each word, we used a mapped
dictionary for both languages.

C. Pre-Processing and Training

We used Google Collab as the training environment due to
the availability of a combination of GPUs and processing
memory. Fairseq contains utilities such as an output generator-
accessible through a command-line interface. So at the
preprocessing step, we call the wrapper, which internally calls
the python preprocess.py method. In this method of the
defined class for data, we unzip the dataset to Collab, tokenize
each sentence, and proceed to convert word sentences and
map it to their corresponding integer dictionary. We used
tokenizer Space in order to tokenize each string by tabspace.
We then assign designated test, train and validation split sets.
These were derived for Spanish and the mapped English data
while maintaining consecutive row-wise translation mappings.
Then the flow proceeds to write the binarized (& tokenized)
data [7]-[10].

We added a source threshold of 3 to ensure efficient
mapping of words appearing more than three times in the
whole training set- to at least a synonym prediction and words
appearing less than 3 times to an unknown tag to demarcate
unavailability of the unique word’s translation.

We used the Adam optimization algorithm since it
facilitates the network weights to be updated iteratively during
training. Our LSTM architecture also contributed in this aspect
due to its characteristic feedback connections as it can process
entire sequences of data while maintaining dynamic
development. This ensures that the dynamic increase and
progress of model weights are constantly recorded and saved.
It allowed us the liberty of further picking the best checkpoint
weights that could lead to better translation. Our optimizer
also adjusts the model with respect to loss function to get the
most accurate weights. We set it to share embedding weights
within encoder and decoder as its ongoing research that proves
output embedding and sharing – in fact improves language or
text related NLP models.

We trained the model for around 1066 epochs and saved
every 5th checkpoint i.e. at every 5th epoch. The weights at
each epoch are further compared to the current standing
best_checkpoint weights file and replaced with the current
checkpoint’s weights if it is better.

We fixed a learning rate of 0.001(i.e. 1.0E-3). We noticed
that the loss dropped dramatically past the 230th epochs and
was hitting lower than 0.138 and ~0, with more epochs of
training. We used batches set to our max token size: 4096.

We used label_smoothed_cross_entropy as our criterion to
compute loss function constantly while avoiding overfitting of
the model. We set our beam value to 5 to ensure the
translation could be varied by length wherever necessary. At
every step, the network produces a probability distribution
over the next possible tokens.

We used the Attention Mechanism to retain focus only on
the most relevant features encoded at each decoder’s step. Our
attention layer creates a dynamic mapping between each of the
hidden states (at the encoder’s end) and decoder output by
having access to the whole input sequence and picking out
elements of higher relevance. Without the attention
mechanism, the last hidden state value of the encoder is
internally passed as the context vector for the decoder.

VI. RESULT

To perform end-to-end we added a component to input the
data and predict its language using the IsEnglish functionality.
Upon identifying the language, and in our case the model is
heavily trained to perform Spanish translation, the control is
then passed to the translation utility [1]. As monolingual
models have a homogeneous functionality we utilized Fairseq
to train a Bilingual model, so it will translate input Spanish
strings to English as well as predict the Spanish string for
English inputs [11], [12].

Our outputs, though effective, will be a foreigner to new
words and slang. Therefore, words not present in our dataset
will currently display the special <unk> token. This is where
training on domain-specific datasets makes a substantial
difference in the output translation’s precision.
1) Output 1 shows us- Google Translate’s misdetection of a

mixed Spanish sentence as English itself and the
translation as the string remaining as it is, untranslated.
For the same string, our system detected it as a Spanish
string but displays the translation of certain words as
<unknown> while translating the word in the middle to
English.

2) Output 2 shows us- an interpretation of the string done
correctly by both systems but varying in terms of
redundancy as in Google Translate’s output while our
system avoided that problem.

3) Output 3 shows us- a correct translation by both systems -
differing only by a small degree in terms of casual
language interpretation.

And though Google Translate is still learning new words as
well, it remains as a superior competitor. In comparison, our
model performs satisfactorily and is a cost-free opensource
solution.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:4, 2021

111

Fig. 2 Result comparison- Google Translate (column 1) & our system (column 2)

VII. FUTURE SCOPE

Statistically, all current opensource translation methods
continue to contain shortcomings. Glitches become
unavoidable because contextual inconsistencies are tricky in
modern language and scripts.
 By tuning the attention mechanism further with twitter-

like language, it will help identify sarcasm, slang as well
as the deterministic word for such cases and place them in
the right context.

 Mapping such keywords will increase and magnify
grammar detail as well.

 An additional enhancement is coupling our model with
audio inputs to perform speech-to-text translation. Due to
high optimization, our model would be a good fit.

 Using a much larger or varied dataset, inclusive of social
media data or narrowed domain-specific data, would help
improve our decoder’s output.

 Using a dataset of much higher size and training it for
about 1000 more epochs would also benefit as the model
has the capability to improve until its capping precision.

 An alternate approach that could produce an interesting
change is the reversal of the order of the input sequence
(improvement at encoder). Further, adding varied sets of
GRU and LSTM placement in the architecture may
facilitate improvement.

REFERENCES
[1] T. Strauß, “Decoding the output of neural networks - a discriminative

approach,” Ph.D. dissertation, University of Rostock, 2017.
[2] Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, Zhifeng

Chen “Sequence-to-Sequence Models Can Directly Translate Foreign
Speech” arXiv:1703.08581v2 (cs.CL) 12 Jun 2017

[3] J. Poulos and R. Valle, “Attention networks for image-to-text,” CoRR,
vol. abs/1712.04046, 2017

[4] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks

for end-to-end speech recognition,” in Proceedings of ICASSP, 2017.
[5] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

ICLR, 12 2014.
[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing
Systems, 2014, pp. 3104–3112

[7] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion: Training
seq2seq models together with language models,” CoRR, vol.
abs/1708.06426, 2017

[8] Ofir Press and Lior Wolf “Using the Output Embedding to Improve
Language Models” arXiv:1608.05859v3 (cs.CL) 21 Feb 2017

[9] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 05 2010, pp. 249–256

[10] G. Kumar, G. W. Blackwood, J. Trmal, D. Povey, and S. Khudanpur, “A
coarse-grained model for optimal coupling of ASR and SMT systems for
speech translation.” in Proceedings of EMNLP, 2015, pp. 1902–1907.

[11] E. Vidal, “Finite-state speech-to-speech translation,” in Proceedings of
ICASSP, vol. 1. IEEE, 1997.

[12] F. Casacuberta, H. Ney, F. J. Och, E. Vidal, J. M. Vilar, S. Barrachina, I.
Garcıa-Varea, D. Llorens, C. Martınez, S. Molau et al., “Some
approaches to statistical and finite-state speech-to-speech translation,” in
Computer Speech & Language, vol. 18, no. 1, pp. 25–47, 2004.

