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 
Abstract—The low availability of well-trained, unlimited, 

dynamic-access models for specific languages makes it hard for 
corporate users to adopt quick translation techniques and incorporate 
them into product solutions. As translation tasks increasingly require 
a dynamic sequence learning curve; stable, cost-free opensource 
models are scarce. We survey and compare current translation 
techniques and propose a modified sequence to sequence model 
repurposed with attention techniques. Sequence learning using an 
encoder-decoder model is now paving the path for higher precision 
levels in translation. Using a Convolutional Neural Network (CNN) 
encoder and a Recurrent Neural Network (RNN) decoder 
background, we use Fairseq tools to produce an end-to-end 
bilingually trained Spanish-English machine translation model 
including source language detection. We acquire competitive results 
using a duo-lingo-corpus trained model to provide for prospective, 
ready-made plug-in use for compound sentences and document 
translations. Our model serves a decent system for large, 
organizational data translation needs. While acknowledging its 
shortcomings and future scope, it also identifies itself as a well-
optimized deep neural network model and solution. 

 
Keywords—Attention, encoder-decoder, Fairseq, Seq2Seq, 

Spanish, translation. 

I. INTRODUCTION 

OR most of today’s translation tasks, we tend to look to 
Google Translate. But when the requirement is much 

larger by scale - we will be faced with the absence of a plug-in 
option. Though translation seems like an easy task, there is a 
surprisingly huge void when it comes to the availability of 
functional and easy-to-use opensource translation utilities. The 
only reliable one available will not be an option unless you are 
willing to shell out a lot of money. Google is the standalone 
player, sole provider, and beneficiary at the moment in this 
area.  

II. AVAILABILITY 

The higher the organization’s need for precision, the steeper 
the price. All the available (precision) techniques charge on a 
per-character basis. Google even charges per-access of the 
detect method call, i.e. for identification of each word’s source 
language and then separately for each character’s translation.  

The only other alternative would be to opt to self-train a 
model with a dataset to perform the task. For tailor-fit 
translation needs, we would then look to train available 
models on domain-specific data of the source language and 
target language. But all the current market models are either 
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amateur or still underdeveloped and filled with bugs and 
outliers. Additionally, these tend to be highly conditional and 
constrained utilities. Other generic approaches such as using 
Application Programming Interfaces (APIs) cannot be 
employed for larger sets of data requiring translation, as all of 
these APIs are privately monitored and a cap is set on the 
number of hits or accesses per IP address call. Beyond a small 
number of free accesses, that too turns chargeable. So for 
unlimited access, there is currently no open-source 
availability. 

In most global organizations with international clients, there 
are multiple avenues and products requiring translation. And 
each product’s components would be built to hold reusable 
prototypes. In such scenarios, there is an absolute requirement 
for translation operations to be accessed innumerable times, 
especially concerning the model’s training. Present utilities are 
only suitable for niche requirements and the associated costs 
make it infeasible in terms of functionality. Hence there arises 
a need for an end to end solution that is openly deployable. 

III. ENVIRONMENTS AND PLAUSIBILITY 

Deployment concerns usually start and end with security. 
Most translation solutions are cloud-based due to the need for 
embedded training and testing utilities. But as convenient as 
cloud platforms could be, it comes with a huge range of 
vulnerabilities and overheads. Without a compromise on that 
factor, incorporating these plugin models is a major concern. 

Organizations usually value and are bound by high privacy 
requirements. These translation tools used in products need to 
be exclusive to the client while being internally reusable and 
would require utmost confidentiality, copyrights, etc. which 
makes it incompatible with most current environments. 

Facilitating transfer learning is to be factored in as well to 
ensure that model functionality can be used across clients 
within the organization. It would, therefore, require a private 
cloud or service to be developed or rented specifically for 
these needs. Infrastructure expenditure attributes to the highest 
weigh-down factor in any company’s spending or budget and 
virtual machines in data centers and cloud storage incorporate 
heavy infrastructure costs. Hence it increases the overall 
infeasibility. 

There is also an inherent lack of datasets for many non-
English languages. And domain-specific ones are even scarcer 
to find. The option of generating such datasets has its 
shortcomings. They tend to be hard to produce and 
grammatically incorrect which would then mistrain our model 
and accuracy will be stunted very low.  

Another major incompatibility issue arises due to the format 
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and nature of the text. In some cases, it comprises of millions 
or billions of rows of data in various formats. This would 
require a lot of intermediate coding for access and 
conversions, which is a time and resource-consuming task.  

IV. LITERATURE SURVEY: TRANSLATION MODULES 

A. Usual Shortcut Solutions- APIs 

1) Googletrans and Natural Language Tool Kit (NLTK): It is 
an unofficial library using the web API of 
translate.google.com with a maximum character limit on 
texts at 15k. This API does not guarantee, due to 
limitations of the web version of Google translate, that the 
library would provide correct output translation or predict 
concisely in all scenarios. This may be more suitable only 
for domestic day-to-day translation- leaving it inadequate 
for organizational translation needs. 

2) Goslate: It acted as a free python API querying the 
Google translate website. Google translation does not 
support very long text, and Goslate simply bypasses this 
limitation by splitting the long text internally before 
querying Google and then joining the results back into 
one translation text. Its functionality was hinged on an 
intricate loophole and hence was not a stable method. 
Additionally, Google updated its translation service in the 
recent past with a ticketing mechanism to prevent crawler 
programs - rendering Goslate inept for translation in 
comparison. 

3) Google’s Translation API: It helps make a cloud 
translation using a REST method call to the basic translate 
method. But this only applies to usage on terms or 
phrases. It requires a lot of self-customization before 
passing larger input data, or for domain and context-
specific translation. This too is accompanied by a price 
tag.  

B. Detection Modules 

1) Langdetect: This is a direct port of Google's language-
detection library from Java to Python. It serves a very 
limited number of languages and simply performs 
detection of the source language. The language detection 
algorithm is non-deterministic, i.e. if you try to run it on a 
text which is either too short or too ambiguous, you might 
get different results each time you run it [2]. 

2) Facebook’s-fastText: It is an efficient pre-trained model 
that performs accurate identification of source language. 
It supports a whopping 170+ languages but is licensed for 
use. Additionally, the model was trained on UTF-8 data, 
and therefore strictly needs UTF-8 inputs. 

C. Translation Using a Model 

1) Neural Machine Translation- Sutskever Model: It is a 
proposed Encoder-Decoder model for machine 
translation. It uses sequence-to-sequence learning on a 
multilayered Long Short-Term Memory (LSTM). This 
theory provided a base concept for building a model that, 
for the very first time, could map the input sequence to a 
vector of fixed dimensionality, and then decode the target 

sequence from the vector. It performed better than a 
phrase-based SMT (Statistical machine translation) 
system on the same datasets. The upcoming-Google’s 
successful translation system is also based on this very 
modeling prototype [3]-[6]. 

2) Google’s AutoML Translation: A service available only 
upon payment, it creates production-ready models. But it 
requires us to upload cleaned, pre-processed, and 
translated language pairs, a task that is quite tedious. 

V. A SMARTER APPROACH 

We finally found that constructing a model and coupling it 
with a handpicked dataset for training yields some impressive 
results. So we built a system that performs end-to-end: 
identification and translation. We used a combination of 
Fairseq and the Sutskever technique. Fairseq is a toolkit 
written in PyTorch for sequence modeling that allows 
developers and researchers to custom-build and train models 
for summarization, language modeling, and text generation. 

A. The Model 

Our base model is a Deep Neural Network Sequence-to-
Sequence model. It maps a fixed-length input with an output 
where the length of the input and output may vary or differ 
dynamically. We used an LSTM architecture as LSTM models 
are fairly easier to train. The model comprises of 3 major 
parts: encoder, intermediate vector, and decoder: 
 Encoder: holds a stack of recurrent units of LSTM or 

GRU cells where they accept each individual element of 
the input sequence, collect information for that element, 
and then moves it forward. 

 Decoder: predicts an output y_t at a time step t. Each 
recurring unit accepts a (hidden) state from the previous 
one. The output sequence is then collected as a set of all 
words from that specific answer. Each word in this case is 
represented as y_i where i- represents the order of that 
word. 

 Formula to compute the hidden states: 
 

 ht = f (W(hh)ht-1 +W(hx)xt)         (1) 
 

Since ours is a Seq2Seq model consisting of a CNN encoder 
and an RNN decoder, the encoder will extract features from 
the written text line and sequentially encouple temporal 
context between the input sequence and the integer dictionary. 
While using the attention mechanism to focus on the most 
relevant encoded features, the decoder outputs a sequence of 
characters. It can thus be used end-to-end on complex large 
lines as well as files. 

We have also used SentencePiece- as an unsupervised text 
tokenizer and detokenizer. Apart from performing direct 
training from raw sentences, it also allows us to create an end-
to-end system that does not depend on language-specific 
preprocessing or postprocessing. It backs two segmentation 
algorithms: byte-pair-encoding (BPE) and unigram language 
model. It basically treats the input text as a simple sequence of 
Unicode characters which would make it easier to train as data 
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input sentences can be pre-tokenized or raw sentences.  
 

 

Fig. 1 Hidden state flow impacting translation 

B. The Dataset 

We used the Tatoeba corpus of bilingual sentence pairs. We 
trained our model on a set of 1.56 Lakh sentences which 
includes 1.44 Million English words and 1.56 Million Spanish 
words. This dataset has also been cleaned to have tab 
separation spaces and full stops at the end of every sentence. 
Additionally, as typical neural language models rely on a 
vector representation for each word, we used a mapped 
dictionary for both languages. 

C. Pre-Processing and Training 

We used Google Collab as the training environment due to 
the availability of a combination of GPUs and processing 
memory. Fairseq contains utilities such as an output generator-
accessible through a command-line interface. So at the 
preprocessing step, we call the wrapper, which internally calls 
the python preprocess.py method. In this method of the 
defined class for data, we unzip the dataset to Collab, tokenize 
each sentence, and proceed to convert word sentences and 
map it to their corresponding integer dictionary. We used 
tokenizer Space in order to tokenize each string by tabspace. 
We then assign designated test, train and validation split sets. 
These were derived for Spanish and the mapped English data 
while maintaining consecutive row-wise translation mappings. 
Then the flow proceeds to write the binarized (& tokenized) 
data [7]-[10]. 

We added a source threshold of 3 to ensure efficient 
mapping of words appearing more than three times in the 
whole training set- to at least a synonym prediction and words 
appearing less than 3 times to an unknown tag to demarcate 
unavailability of the unique word’s translation.  

We used the Adam optimization algorithm since it 
facilitates the network weights to be updated iteratively during 
training. Our LSTM architecture also contributed in this aspect 
due to its characteristic feedback connections as it can process 
entire sequences of data while maintaining dynamic 
development. This ensures that the dynamic increase and 
progress of model weights are constantly recorded and saved. 
It allowed us the liberty of further picking the best checkpoint 
weights that could lead to better translation. Our optimizer 
also adjusts the model with respect to loss function to get the 
most accurate weights. We set it to share embedding weights 
within encoder and decoder as its ongoing research that proves 
output embedding and sharing – in fact improves language or 
text related NLP models. 

We trained the model for around 1066 epochs and saved 
every 5th checkpoint i.e. at every 5th epoch. The weights at 
each epoch are further compared to the current standing 
best_checkpoint weights file and replaced with the current 
checkpoint’s weights if it is better. 

We fixed a learning rate of 0.001(i.e. 1.0E-3). We noticed 
that the loss dropped dramatically past the 230th epochs and 
was hitting lower than 0.138 and ~0, with more epochs of 
training. We used batches set to our max token size: 4096.  

We used label_smoothed_cross_entropy as our criterion to 
compute loss function constantly while avoiding overfitting of 
the model. We set our beam value to 5 to ensure the 
translation could be varied by length wherever necessary. At 
every step, the network produces a probability distribution 
over the next possible tokens. 

We used the Attention Mechanism to retain focus only on 
the most relevant features encoded at each decoder’s step. Our 
attention layer creates a dynamic mapping between each of the 
hidden states (at the encoder’s end) and decoder output by 
having access to the whole input sequence and picking out 
elements of higher relevance. Without the attention 
mechanism, the last hidden state value of the encoder is 
internally passed as the context vector for the decoder.  

VI. RESULT 

To perform end-to-end we added a component to input the 
data and predict its language using the IsEnglish functionality. 
Upon identifying the language, and in our case the model is 
heavily trained to perform Spanish translation, the control is 
then passed to the translation utility [1]. As monolingual 
models have a homogeneous functionality we utilized Fairseq 
to train a Bilingual model, so it will translate input Spanish 
strings to English as well as predict the Spanish string for 
English inputs [11], [12]. 

Our outputs, though effective, will be a foreigner to new 
words and slang. Therefore, words not present in our dataset 
will currently display the special <unk> token. This is where 
training on domain-specific datasets makes a substantial 
difference in the output translation’s precision.  
1) Output 1 shows us- Google Translate’s misdetection of a 

mixed Spanish sentence as English itself and the 
translation as the string remaining as it is, untranslated. 
For the same string, our system detected it as a Spanish 
string but displays the translation of certain words as 
<unknown> while translating the word in the middle to 
English. 

2) Output 2 shows us- an interpretation of the string done 
correctly by both systems but varying in terms of 
redundancy as in Google Translate’s output while our 
system avoided that problem.  

3) Output 3 shows us- a correct translation by both systems - 
differing only by a small degree in terms of casual 
language interpretation.  

And though Google Translate is still learning new words as 
well, it remains as a superior competitor. In comparison, our 
model performs satisfactorily and is a cost-free opensource 
solution.  
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Fig. 2 Result comparison- Google Translate (column 1) & our system (column 2) 
 

VII. FUTURE SCOPE 

Statistically, all current opensource translation methods 
continue to contain shortcomings. Glitches become 
unavoidable because contextual inconsistencies are tricky in 
modern language and scripts. 
 By tuning the attention mechanism further with twitter-

like language, it will help identify sarcasm, slang as well 
as the deterministic word for such cases and place them in 
the right context.  

 Mapping such keywords will increase and magnify 
grammar detail as well. 

 An additional enhancement is coupling our model with 
audio inputs to perform speech-to-text translation. Due to 
high optimization, our model would be a good fit. 

 Using a much larger or varied dataset, inclusive of social 
media data or narrowed domain-specific data, would help 
improve our decoder’s output.  

 Using a dataset of much higher size and training it for 
about 1000 more epochs would also benefit as the model 
has the capability to improve until its capping precision.  

 An alternate approach that could produce an interesting 
change is the reversal of the order of the input sequence 
(improvement at encoder). Further, adding varied sets of 
GRU and LSTM placement in the architecture may 
facilitate improvement. 

REFERENCES  
[1] T. Strauß, “Decoding the output of neural networks - a discriminative 

approach,” Ph.D. dissertation, University of Rostock, 2017. 
[2] Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, Zhifeng 

Chen “Sequence-to-Sequence Models Can Directly Translate Foreign 
Speech” arXiv:1703.08581v2 (cs.CL) 12 Jun 2017 

[3] J. Poulos and R. Valle, “Attention networks for image-to-text,” CoRR, 
vol. abs/1712.04046, 2017 

[4] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks 

for end-to-end speech recognition,” in Proceedings of ICASSP, 2017. 
[5] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 

ICLR, 12 2014. 
[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning 

with neural networks,” in Advances in Neural Information Processing 
Systems, 2014, pp. 3104–3112 

[7] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion: Training 
seq2seq models together with language models,” CoRR, vol. 
abs/1708.06426, 2017 

[8] Ofir Press and Lior Wolf “Using the Output Embedding to Improve 
Language Models” arXiv:1608.05859v3 (cs.CL) 21 Feb 2017 

[9] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep 
feedforward neural networks,” in International Conference on Artificial 
Intelligence and Statistics, 05 2010, pp. 249–256 

[10] G. Kumar, G. W. Blackwood, J. Trmal, D. Povey, and S. Khudanpur, “A 
coarse-grained model for optimal coupling of ASR and SMT systems for 
speech translation.” in Proceedings of EMNLP, 2015, pp. 1902–1907. 

[11] E. Vidal, “Finite-state speech-to-speech translation,” in Proceedings of 
ICASSP, vol. 1. IEEE, 1997. 

[12] F. Casacuberta, H. Ney, F. J. Och, E. Vidal, J. M. Vilar, S. Barrachina, I. 
Garcıa-Varea, D. Llorens, C. Martınez, S. Molau et al., “Some 
approaches to statistical and finite-state speech-to-speech translation,” in 
Computer Speech & Language, vol. 18, no. 1, pp. 25–47, 2004. 

 


