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 
Abstract—Research in predictive maintenance modeling has 

improved in the recent years to predict failures and needed 
maintenance with high accuracy, saving cost and improving 
manufacturing efficiency. However, classic prediction models 
provide little valuable insight towards the most important features 
contributing to the failure. By analyzing and quantifying feature 
importance in predictive maintenance models, cost saving can be 
optimized based on business goals. First, multiple classifiers are 
evaluated with cross-validation to predict the multi-class of failures. 
Second, predictive performance with features provided by different 
feature selection algorithms are further analyzed. Third, features 
selected by different algorithms are ranked and combined based on 
their predictive power. Finally, linear explainer SHAP (SHapley 
Additive exPlanations) is applied to interpret classifier behavior and 
provide further insight towards the specific roles of features in both 
local predictions and global model behavior. The results of the 
experiments suggest that certain features play dominant roles in 
predictive models while others have significantly less impact on the 
overall performance. Moreover, for multi-class prediction of machine 
failures, the most important features vary with type of machine 
failures. The results may lead to improved productivity and cost 
saving by prioritizing sensor deployment, data collection, and data 
processing of more important features over less importance features.  

  
Keywords—Automated supply chain, intelligent manufacturing, 

predictive maintenance machine learning, feature engineering, model 
interpretation.  

I. INTRODUCTION 

RGANIZATIONS have made major investments in 
recent years to modernize supply chains with forecasting 

models for customer demands, predictive maintenance for 
manufacturing, and inventory management. The COVID-19 
pandemic caused unprecedent disruption of the supply chain. 
Automation of the supply chains and especially automated 
manufacturing has played an increasing role in the post-
pandemic age.  

Robotics incorporated with remote operations and sensor 
technology has an increasingly large role to play in intelligent 
manufacturing. In addition to improving productivity and 
product quality, manufacturing automation plays a crucial role 
in meeting global demands for essential products during 
challenging times such as COVID-19.  

Predictive maintenance is performed based on an estimate 
of the health status of the manufacturing equipment. It allows 
for advance detection of pending failures and enables timely 
intervention before the occurrence of failures. Ran et al. [1] 
provide a comprehensive literature review on predictive 
maintenance with emphasis on system architectures, purposes 
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and approaches. Susto el al. [2] proposed train multiple 
classification modules to provide different performance 
tradeoffs in terms of frequency of unexpected breaks for 
optimal maintenance decision.  

Most machine learning research in predictive maintenance 
focuses on experimenting with various machine learning 
models and evaluating their performance [2]. However, feature 
selection and analysis of feature importance are not well 
researched in the state-of-art literature. More importantly, the 
interpretation of predictive models and the analysis of 
features’ influence on the prediction results deserve more 
attention: the former answers the question about why the 
prediction was made and the latter addresses the question 
about which features have the most influence on such 
decision. This study attempts to shed some light on these two 
questions.  

The remainder of this paper consists of five sections. The 
second section describes the dataset used in the machine 
learning experiments. In the third section, four feature 
selection algorithms from different categories are applied to 
select top features that contribute most to the prediction. In the 
fourth section, the features selected from the four feature 
selection algorithms are aggregated to obtain the most 
important features across the four feature selection algorithms. 
In the fifth section, the most important features are analyzed 
and validated using SHAP [10]. Finally, the conclusions and 
future work are discussed.  

II. DATASET 

The original simulated data come from the three sources: 
timed telemetry data about machine conditions, machine 
technical parameters, and machine maintenance and failure 
records [3]. It has 9 features: time, machine id, machine age, 
error id, maintenance id, and machine parameters including 
voltage, rotation, pressure, and vibration. The data were first 
processed by calculating the median value and standard 
deviation values of machine parameters every three hours and 
every 24 hours. The time of the last maintenance of a machine 
was then obtained through the maintenance records consisting 
of the times and the types of maintenance. At the end, the data 
samples of every three hours and the total number of various 
errors in each time period are merged to form the dataset used 
in the machine learning experiments described in this paper. 
The details of the dataset creation process are described in [4] 
and [5]. The preprocessed dataset consists of 29 features and 
291,668 samples with 4 types of failures. The preprocessed 
dataset is available as described in [6].  

 The class labels of the dataset are highly imbalanced, with 
all failure samples composing only approximately 2.28% of 
the entire dataset. Moreover, some technical information such 
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as the types of the machine and types of machine failures is 
anonymized. Thus, it is difficult to validate some of the 
important features and results of predictive models with actual 
industrial data.  

III. FEATURE SELECTION 

Four classifiers from Scikit package were used in the 
experiments: Support Vector Machine (SVM), Gradient 
Boosting Decision Tree (GBDT), Random Forest (RF), and 
ADABoost. Among these classifiers, ADABoost achieved the 
highest prediction power measured by F1-macro as shown in 
Fig. 1. As the dataset is highly imbalanced the F1 micro-
average is preferable over micro-average strategy.  

 

 

Fig. 1 Comparison of F1 marco scores over 4 classes with 10-fold 
stratified cross validation using SVM, GBDT, RF, and ADABoost 

and all features 
 

There are three categories of feature selection algorithm in 
feature engineering [7], [8]:  
• Filter-based algorithm: Features are selected according to 

some univariate metric. For example, Minimum 
redundancy feature selection (mRmR) tends [8] to select 
features with a high correlation with the class and a low 
correlation between themselves while Chi-Square adopts 
a statistical approach to measuring the difference between 
the expected frequencies and the observed frequencies for 
two events.  

• Embedded algorithms: Feature selection is integrated into 
the prediction algorithm. As an example, GINI index is a 
widely adopted algorithm for tree-based predictions based 
on measurement of the purity of the features with respect 
to the class. The purity represents the discrimination level 
of a feature to distinguish between the possible classes. 
Classification and Regression Trees (CART) is another 
popular algorithm for three-based prediction.  

• Wrapper-based algorithms search heuristically for the 
optimal subset of features using a specific classification 
algorithm. Recursive Feature Elimination (RFE) 
recursively removes features, builds a model using the 
remaining attributes and calculates model accuracy.  

GINI, Chi-Square and RFE algorithms were selected from 
each of the above three categories, respectively. Their 
implementations in Python Scikit package were employed to 

obtain the most important 16 predictive features as listed in 
Table I.  

 
TABLE I 

TOP 16 FEATURES SELECTED USING GINI, CHI-SQUARE AND RFE 

GINI Chi-Square RFE 

sincelastcomp2 rotatemean_24hrs sincelastcomp3 

sincelastcomp4 voltsd sincelastcomp1 

rotatemean_24hrs pressuremean_24hrs voltmean_24hrs 

sincelastcomp3 sincelastcomp1 pressuremean_24hrs 

model vibrationmean_24hrs vibrationmean_24hrs 

pressuremean_24hrs vibrationmean sincelastcomp4 

voltmean_24hrs voltmean_24hrs rotatemean_24hrs 

sincelastcomp1 sincelastcomp2 age 

vibrationmean_24hrs sincelastcomp3 model 

rotatemean voltmean error2count 

age sincelastcomp4 error5count 

pressuremean rotatesd_24hrs error3count 

rotatesd_24hrs pressuremean error1count 

pressuresd_24hrs model error4count 

vibrationsd_24hrs rotatemean sincelastcomp2 

vibrationsd age pressuremean 

 

Each of the three feature sets listed in the columns of Table 
I is provided to ADABoost to predict machine failures using 
10-fold stratified cross validation. The F1 macro scores are 
shown in Fig. 2 as results of cross validation.  

 

 

Fig. 2 Comparison of F1 macro scores over 4 classes with 10-fold 
stratified cross validation using ADA model and the most important 

16 features selected by GINI, Chi-Square and RFE 

IV. COMBINATION OF FEATURES SELECTED FROM MULTIPLE 

ALGORITHMS 

Table I shows the most important features selected by each 
feature selection algorithm and highlights the differences 
particularly between features selected by GINI and RFE. Such 
disparity is not unexpected as each feature selection algorithm 
has its weaknesses and strengths that affect the feature 
selection accuracy. While embedded and wrapper methods are 
biased to the underlying classifier, filter-based methods are 
independent of any learning algorithm. However, a filter 
method may miss a feature that is not important by itself but 
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very important when combined with other features.  
To minimize the bias introduced by a specific feature 

selection algorithm, 16 most important features selected from 
each algorithm are aggregated. The combination is performed 
in two steps. First, each feature in a column in Table I is 
assigned a ranking value from 1 to 16 with the value 16 
assigned to the first feature in the column. Second, for each 
feature in the Table I, its ranking value in the three columns is 
summed to obtain a combined ranking value. If the feature is 
not present in a column, its ranking value is 0. Features are 
sorted according to their combined ranking values and 
normalized, shown in descending order in Table II.  

 
TABLE II 

TOP 10 COMBINED FROM FEATURES SELECTED USING GINI, CHI-SQUARE 

AND RFE 

Combined top 10 features Normalized feature importance weight 

rotatemean_24hrs 0.83 

pressuremean_24hrs 0.79 

sincelastcomp1 0.77 

sincelastcomp3 0.77 

voltmean_24hrs 0.71 

vibrationmean_24hrs 0.67 

sincelastcomp4 0.67 

sincelastcomp2 0.56 

model 0.48 

age 0.33 

 

To validate that the aggregated features are less bias than 
the features selected by each of the three individual 
algorithms, 10 combined features and the top 10 features from 
each algorithm are provided to ADABoost model with 10-fold 
cross validation, respectively. As shown in Fig. 3, the 
combined features achieved the optimal performance 
compared to each individual algorithm.  

 

  

Fig. 3 Comparison of F1 macro average scores over 4 classes with 
10-fold cross validation ADA model using the 10 combined features 
and the 10 most important features selected by GINI, Chi-Square and 

RFE, respectively  
 

The 10 features shown in Table II represent the relative 
importance of each feature in the test dataset as a whole and 
provide a general comparison of the extent to which each 
feature in the dataset impacts prediction. This suggests that the 
mean feature values of rotation speed and pressure in 24 hours 
have the most predictive power in total for four classes in the 
model. However, Table II does not reveal the features that 
contribute the most to predicting a specific type of machine 
failure, as the values are averaged over the four failure classes.  

V. PREDICTION MODEL INTERPRETATION 

SHAP [10] is applied on the ADABoost prediction results 
using the 10 top features listed in Table II for the following 
three purposes:  
• to validate the classifier’s decisions and interpret the 

results of the prediction and provide human-friendly 
feature explanations; and  

• to cross-examine the most important features combined 
from the top features selected from GINI, Chi-Square and 
RFE as shown in Table I; and  

• to identify the unique features for a specific type of 
machine failure.  

The dataset consists of 4 types of machine failures. To 
identify features that are specific to a type of failures, One-vs-
Rest (OVR) strategy is employed to transform a multi-class 
problem into binary one.  

For a given type of machine failure, the dataset is 
transformed into positive samples containing the type of 
failure as the label and all other samples as negatives. The 
ADABoot binary classifier is then applied to the transformed 
dataset for the failure types 1-4, respectively. Next, the SHAP 
values are obtained using SHAP packager [9] based on the 
results of classifications of failure types 1-4.  

The results of SHAP values of each classification are 
illustrated in Figs. 4 (a)-(d). Each subfigure lists the features 
having the most influence on prediction of a specific type 
machine failures with the most important feature listed at the 
top. The red horizontal bar illustrates the relative influence 
level of the corresponding feature in predicting a type of 
machine failures while the blue bars show the influence of the 
same feature in predicting of the rest cases including the non-
failure case.  

The values corresponding to features at the bottom of each 
figure show the SHAP values. Features with larger absolute 
SHAP values correspond to more important features.  

VI. CONCLUSION AND FUTURE WORK 

Our study suggests that features combined from the results 
of multiple feature selection algorithms in three different 
categories provide better view on important features with less 
bias, compared with features selected using a single feature 
selection algorithm.  

The results of the study also indicate the existence of unique 
features that play dominant roles in the prediction of a specific 
type of machine failures. As an example, the average pressure 
in 24 hours is the most important feature in predicting 
machine failures type 2 and type 3 as shown in Figs. 2 (b) and 
(c), respectively. However, mean pressure has much less 
predictive power for failures type 1 and 4. Interestingly, the 
machine model is the second most important feature for both 
failures type 2 and type 3 predictions. It might further suggest 
that failure types 2 and 3 are associated with specific machine 
models. However, such suggestions are inconclusive due to 
lack of machine model description in the dataset.  
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Fig. 4 Feature impact on machine failure prediction: failure type 1 (a), failure type 2 (b), failure type 3 (c), and failure type 4 (d) 
 

The results of the study may help businesses save costs and 
improve productivity by prioritizing monitoring the important 
features over less important features. If the features from 
sensor data play a dominant role in failure prediction, more 
sensors can be deployed to collect data related to more the 
important features. In addition, the data associated with more 
important features can be processed faster and used for 
classifications in order to predict the features earlier.  

A future improvement is to use other data sets, especially 
the data with descriptive information about the machine, 
model, and failures to valid the approach proposed in this 
study. With the availability of such information, the results of 
this study can be further interpreted.  
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