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Abstract—This paper provides a state estimation method for
automatic control systems of nonlinear vehicle dynamics. A nonlinear
tire model is employed to represent the realistic behavior of a vehicle.
In general, all the state variables of control systems are not precisedly
known, because those variables are observed through output sensors
and limited parts of them might be only measurable. Hence, automatic
control systems must incorporate some type of state estimation. It is
needed to establish a state estimation method for nonlinear vehicle
dynamics with restricted measurable state variables. For this purpose,
unscented Kalman filter method is applied in this study for estimating
the state variables of nonlinear vehicle dynamics. The objective of
this paper is to propose a state estimation method using unscented
Kalman filter for nonlinear vehicle dynamics. The effectiveness of
the proposed method is verified by numerical simulations.
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I. INTRODUCTION

N recent years, several control problems of vehicle dynamics

such as collision avoidance [1], rollover prevention [2], wheel
slip control [3], driver assistance control [4] have been investigated.
In particular, model predictive control (MPC) method is applied to
solving the stabilization problem of vehicle nonlinear dynamics to
avoid the second collision accident [5]. MPC is a well-established
control method in which the current control input is obtained by
solving a finite horizon open-loop optimal control problem using the
current state of the system as the initial state [6]-[8]. However, the
control methods proposed in the above papers are inapplicable to
systems whose all state variables are not exactly known.

In general, it is usual that the state variables of systems are
measured through output sensors. Thus, only limited parts of them
can be used for designing control inputs. In other words, it is usual
that all the state variables of control systems are not exactly known,
because those variables are observed through output sensors and
limited parts of them might be only observable. Therefore, automatic
control systems must incorporate some type of state estimation. In
order to apply the MPC method to the automatic control systems for
nonlinear vehicle dynamics, we need to establish a state estimation
method for nonlinear vehicle dynamics with limited measurable state
variables.

The objective of this study is to establish a state estimation method
for nonlinear vehicle dynamics. For this purpose, we introduce an
observer system for estimating the state variables of nonlinear vehicle
dynamics. Kalman filter is a well-known optimal estimation method
which enables us to minimize estimation errors with taking the
process noise and sensor noise into account. The application of the
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Kalman filter to nonlinear systems has been well investigated in
recent decades. The simple approach is to use the Extended Kalman
Filter (EKF) [9] which simply linearizes nonlinear models so that the
traditional linear Kalman filter can be applied. However, the EKF is
only reliable for systems which are almost linear on the time scale
of the update intervals. On the other hand, the different method is
to use the Unscented Kalman Filter (UKF) [10] that uses a set of
appropriately chosen weighted points to parameterize the means and
covariances of probability distributions. The state estimator using
UKEF yields better performance than the one using EKF for control
systems with high nonlinearities. Consequently, the objective of this
study is to propose a state estimation method based on the UKF for
nonlinear vehicle dynamics.

This paper is organized as follows. In Section II, we define the
system model and notations. In Section III, we consider the state
estimation problem of nonlinear vehicle dynamics. In Section IV,
we provide the results of numerical simulations that verify the
effectiveness of the proposed method. Finally, some concluding
remarks are given in Section V.

II. NOTATION AND SYSTEM MODEL

In this section, we introduce a vehicle system model under the
following assumptions. First, we assume that the difference between
the vertical loads of the left and right wheels is negligible. Second, we
assume that rolling and pitching motions are negligible. Finally, we
assume that the rear tires are not steered. Under those assumptions,
the cornering forces of the left and right wheels are equal each other.
Thus, a four-wheeled vehicle model can be regarded as a two-wheeled
vehicle model. In this study, we consider a two-wheeled vehicle
model as shown in Fig. 1, which is equivalent to a four-wheeled
vehicle model. The system parameters used in this model are listed
in Table I.
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Fig. 1 System Model
First, the equation of motion in the longitudinal direction is
described as
MUy — rvy) = 2Fp — 2F, sin(8) — Cp Apov2, 1)
and the equation of motion in the lateral direction is described as
m(vy + rvg) = 2Fy, + 2F, cos(9). 2)
Furthermore, the equation of rotational motion is described as

L.# = 2Fp, 1y cos(8) — 2F 1. 3)
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TABLE 1
SYSTEM PARAMETERS

m vehicle mass
g gravitational acceleration

o frictional coefficient
I.. vehicle moment of inertia around z axis
Ly center of mass distance to the front axle
I center of mass distance to the rear axle
Cp | aerodynamic drag coefficient
Ap | effective aerodynamic drag area
Frq | driving and braking force

d steering angle of front wheel

The angle between the directions of movement and rotation of the
tires is called the slip angle of the tires. The slip angles of the front
and rear tires Jy and (3, are given by

By = tan™" (%l”) -3, @
By = tan™* (vy;ilrr) . ©)

In the range where the slip angle is sufficiently small, the lateral force
increases in portion to the slip angle. However, the lateral force will
saturate and decrease from the maximum value when the slip angle
increases beyond a certain value. In other words, the lateral force
increases approximately linearly for the first few degrees of slip angle,
and then increases non-linearly to a maximum before beginning to
decrease. In order to take more realistic tire model into account,
we introduce a nonlinear tire model called Magic Formula [11] as
follows:

1 _
Fyp = —gpmgsin(H tan™" (8)), ©

Fyr = —%umg sin(H tan™'(3,)). (7

Magic Formula is an empirical formula obtained from experimental
data. It is difficult to interpret the formula physically. However, it is
more accurate than linear tire model. H is a constant determined to
represent the experimental data [11].

Consequently, the equation of motion for nonlinear vehicle
dynamics can be described by

2F,, — 2Fy, sin(8) — CpApx? + mrv,

Uy = ’ (83-)
m
v — 2Fy + 2Fy, cos(0) — mrvz? (8b)
v m
- 2F s, 1y cosI(5) — 2Fyl, . 80)

For notational simplicity, we introduce the state and input vectors as
follows:

z(t)=[va, vy, 7] T 9
w(t)=[Fa, 0] " (10)

Using these notations, the equations of vehicle motion (8) are
described by the state equation as follows:

& (t) = f(z(t),u(?), (11)

2u1 —2Fy, sin(uz)—Cp Asz+mI3z2

2Fry+2Ffy, cgé(ug)fman z3

fla(®), u(t) =

m
2F Ly cos(ug)—2Fpyly
Iz

Hereafter, we consider the discretized model shown below for system
model (11).

a(t+1) = F(x(t),u(t)), (12)
F(z(t), u(t)) = x(t) + Atf(x(t), u(t)),
y(t) = Ca(t).

The objective of this study is to propose a state estimation method
for system model (12).

III.  ESTIMATION BASED ON UNSCENTED KALMAN FILTER

In this section, we propose a state estimation method based on
the UKF for system model (12). First, we introduce the following
observer system:

T(t+1) = F(&(t),u(t)) + 2(t), (13a)
y(t) = Cz(t) + w(t), (13b)

where Z and ¢ denote the estimated state and output of x and vy,
respectively. Moreover, z and w denote the process noise and the
observation noise, respectively, which can be caused by disturbances.

In the minimum mean-squared error sense, the optimal state
estimate is given by the conditional mean. Let Z(4|5) be the mean of
#(7) conditioned on all of the observations up to and including time
jrie, #(ilj) = E [#()] Y], where Y7 := {g(1), 5(2), ()}

It is assumed that the means of z(¢) and w(t) are zero for all
time ¢. Let Q*(¢) and Q" (t) be the covariances of z(t) and w(t),
respectively.

The UKF [10] first predicts the mean and covariance of a future
state using the process model and weighted sigma points as follows:

X (E+ 1)) = F(X'(t),u), (14)
2n

BE+10) =D Wix'(t+1]t), (15)
=0

QT(t+1]t) =Q°(t+1)

oW (xi(t +1)t) — it + 1|t)> (X"’(t F1)E) — it + 1|t))T,
i=0 (16)

where V" and x* denote the weight and sigma point, respectively.
The definitions of W and Xi can be found in [10].

X' (t + 1|t) can be determined from (14). Then, (¢ + 1|t) and
Q* (t 4 1|t) are determined form (15) and (16), respectively.

After we redraw a new set of sigma points Y’ to incorporate
the effect of the additive process noise, the predicted observation
is calculated by

2n
Gt +1]t) =Y WO (t+1]t). a7
i=0

Moreover, the cross covariance P and innovation covariance R are
determined by

P+ 10 = 3w (x(t+ 116 — a(t + 110

x (C(;zi(t+ 16)) — (¢t + 1|t))T, (18)

R(t+1t) = 3 W (O (t+115) - gt + 1))

x (Ot + 1) ot +10n)
+QY(t+1). (19)

Consequently, the state estimate at time ¢ + 1 is obtained by
updating the prediction by the linear update rule:

K(t+1)= Pt +1|t)R™(t + 1]t), (20a)

FE+1t+1) =20+ 1)+ K+ 1) (gt +1) — gt + 1[t)),
(20b)

QPt+1t+1)=Q " (t+1)t) — Kt + DRt + 1) KT (t + 1).
(20¢)
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Note that the state estimator using UKF yields better performance
than the one using EKF for control systems with high nonlinearities.
Fig. 2 shows that the EKF simply linearizes nonlinear models so that
the traditional linear Kalman filter can be applied. On the other hand,
Fig. 3 shows that the UKF uses a set of appropriately chosen weighted
points to parameterize the means and covariances of probability
distributions without linearization.

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical simulation results to verify
the effectiveness of the proposed method. Here, we consider three
cases for numerical simulations as shown in Table II. In case 1, all
the state variables of the system are measurable. In case 2, x2 is not
measurable. In case 3, only x; is measurable.

TABLE I1
SIMULATION CASES
1 0 0
Casel | C=|0 1 O
0 0 1
1 0 0
Case2 | C=|0 0 O
0 0 1
1 0 0
Case3 | C=1| 0 0 O
0 0 O

Then, we set the initial state and the initial estimated state as
follows:

25

2(0)=| 1.5 |, @1
0.1
20

#0)=| 05 |. (22)
0.05

Moreover, the initial covariance matrices are set as

10 0
P=R=|010]. 23)
0 0 1

0L 0 0

Q=] 0 01 0o |, (24)
0 0 001
1 0 0

Q=10 05 0 |. (25)
0 0 017

Other parameters employed in the numerical simulations are as
follows: H =1, At =0.1, u = [O,O]T.

The results of numerical simulations by the proposed method are
shown below. In Figs. 2—4, the solid and dashed lines show the time
histories of the real state x and the estimated state &, respectively.
Fig. 2 shows the time histories of the state in case 1. Fig. 3 shows the
time histories of the state in case 2. Fig. 4 shows the time histories
of the state in case 3. We can see that the estimated state & converges
to the real state x in all the cases. Fig. 5 shows the time histories of
the norm of the estimate error e defined by e = x — & in each case.
These figures reveal the effectiveness of the proposed method.

V. CONCLUSION

The model predictive control method proposed in [5] for nonlinear
vehicle dynamics is inapplicable when all the state variables are not
exactly known. In general, the state variables of systems are measured
through output sensors, hence, only limited parts of them can be
directly known. Thus, it is unrealistic that all the state variables of
nonlinear vehicle system are exactly known for every time. Hence, it
should be assumed that the limited state variables can be only known.

To apply the MPC method proposed in [5] to the nonlinear vehicle
control systems, we need to establish a state estimation method for
nonlinear vehicle dynamics with limited measurable state variables.
In this study, we established a state estimation method for nonlinear
vehicle dynamics. We proposed a state observer system using the
unscented Kalman filter for estimating the state of nonlinear vehicle
system. The effectiveness of the proposed method was verified by
numerical simulations. To incorporate the model predictive control
with the state estimation method proposed here is a possible future
work.
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