
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

437

Personal Information Classification Based on Deep
Learning in Automatic Form Filling System

Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract—Recently, the rapid development of deep learning makes
artificial intelligence (AI) penetrate into many fields, replacing
manual work there. In particular, AI systems also become a research
focus in the field of automatic office. To meet real needs in automatic
officiating, in this paper we develop an automatic form filling system.
Specifically, it uses two classical neural network models and several
word embedding models to classify various relevant information
elicited from the Internet. When training the neural network models,
we use less noisy and balanced data for training. We conduct a series
of experiments to test my systems and the results show that our
system can achieve better classification results.

Keywords—Personal information, deep learning, auto fill, NLP,
document analysis.

I. INTRODUCTION

NOWADAYS, the explosion of network data is dazzling

with all kinds of information. The data on the Internet

can be divided into structured data, semi-structured data,

and unstructured data according to their forms. With the

development of deep learning technology, machines can better

find the regular, valuable and understandable knowledge

contained in the data. Especially, by training neural networks,

one can find the relationship between the data, then make

predictions.

In daily office activities, filling various forms occupy a

lot of office time, and there is a lot of repetitive work in a

filling process, which greatly reduces the efficiencies in work.

Although existing systems of automatic form filling can help

office staff to fill some items automatically, they can do it

only based on the existing knowledge. For example, DingTalk

uses automatic systems of form filling. However, DingTalk can

only obtain data from user input. And in the work of Friends

of Scientific Research, they obtain structured data, and most

of them are user input. To let a form filling system use the

information from the Internet, in this paper, we integrate deep

learning and natural language processing methods to extract

effective information from unstructured data on the Internet.

The rest of this paper is organized as follows. Section

II presents the architecture of our system. Section III uses

an example to explain the operating process of our system.

Section IV experimentally evaluates our system. Section V

discusses related work. Finally, Section VI summarises this

paper with future work.

Shunzuo Wu, Xudong Luo, and Yuanxiu Liao are with Guangxi
Key Lab of Multi-Source Information Mining & Security, College of
Computer Science and Information Engineering, Guangxi Normal University,
Guilin 541004, China (e-mail: luoxd@mailbox.gxnu.edu.cn, liaoyuanxiu@
mailbox.gxnu.edu.cn).

II. SYSTEM ARCHITECTURE

Fig. 1 shows the architecture of our system. First, we use

a crawler to download the data from a target webpage. The

crawled data are unstructured, asymmetric, and noisy. So,

we preprocess the data by using methods such as removing

stop words. We use the original corpus and word2vec to

generate word vectors. Then we train a neural network to

obtain a classification model. Next, we extract entities from

the classified data to obtain more accurate and no redundant

data. Finally, we use the natural language generation model to

fill in a form for users.

A. Crawler

Fig. 2 shows the basic flow of the crawler. A crawler

is a program or script that automatically grabs information

from the World Wide Web in accordance with certain

rules. Compared with the traditional manual collection of

information, it is more efficient in terms of speed, saving,

and reusability. There are the following types of crawlers: (1)

general-type crawlers, also called a full-web crawler, which

is mainly used in search engines, from the initial URL to

the entire web page, but requires large storage capacity, fast

speed requirements, and powerful work performance); (2)

focused crawlers, which only focus on certain aspects of

information (usually pre-defined), (4) incremental crawlers,

which re-crawls to update at regular intervals, and (5) deep

crawlers, which require verification to crawl.

Algorithm 1 is the crawler algorithm. The data collected

in this paper is personal information data about a scholar,

so we use a focused crawler. In the crawler algorithm, the

input is the address of a website concerning a scholar, and the

output is the personal information of the scholar. The process

as follows. First, set an initial URL, then create the file for

saving data. Second, send a request to the target page and

get a response that includes the source code of the target

page. Third, parse the source code and use a selector to select

the document object that contains the document content to be

obtained. Finally, save the information in the file and update

the new URL until all pages are crawled.

The crawled data are in the three categories:

1) structured data,

2) semi-structured data, and

3) unstructured data.

Structured data exist on web pages in the form of key-value,

and these data only need to be entity extracted. Semi-structured

data and unstructured data exist in many forms, and only the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

438

Crawler

Preprocess

DeepLearning

CharVector

Neural Network

Model

Storage

Form

Get data

Clean data

Representation

Train

Predict

Fill

Fig. 1 System architecture

Start

Send Request

Check response state

Get response content

Parse content

Save content

End

No

Yes

Fig. 2 Basic crawler process

Algorithm 1 Crawler algorithm

Input: Target page’s url

Output: personal document

1: url=InitialUrl

2: while url �= null do
3: response = requests.get(url)

4: soup=BeautifulSoup(response.text, hxml)

5: element = soup.select(DOM)

6: for top ∈ element do
7: for info ∈ top.select(label) do
8: f.write(info. text)

9: url = UrlQueue. pop()

text document types need to be crawled because these text

documents are the data that we need to process.

B. Preprocessing

Data preprocessing is a very important step in neural

networks because the data collected by the crawler have

Fig. 3 The statistics of scholars’ profiles

problems such as too much or too little data, too long or

too short data. And the deviation between the amount of

sampled data and the amount of real-world data may lead

to meaningless metrics, so we need to delete some data to

maintain the consistency between the sampled data and the

real data. In particular, to improve the training speed, we delete

the words that have no impact on training (collectively called

stop words) according to Baidu’s stop words table.

Fig. 3 shows the statistical result of scholars’ profiles. The

abscissa indicates the serial number of the sentence, and the

ordinate indicates the length of the corresponding sentence. It

is clear from the statistical graph that some data are longer or

shorter than other data (collectively referred to as noise data),

so deleting these data are beneficial to obtain better training

results. After statistical analysis, choose to process the data

with a larger deviation.

Algorithm 2 shows the denoising algorithm. In this

algorithm, the input is noise data and threshold, and the

output is clean data. First, we set thresholds MaxLength and

MinLength to get valid data, and then open the file that store

noise data and read it by line. Third, we delete data if data

length is not between MaxLength and MinLength; otherwise,

we delete stop word in these data.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

439

CNN

c2

c1

c0

cn

input sentence

e0

e1

e2

en

embedding h0

h1

h2

h3

hn

hide

o0

o1

on

output

f0

f1

fn

full connection

y0

yn

categories

Fig. 4 Network model structure

Algorithm 2 Preprocessing algorithm

Input: Noise data and threshold Output: Clean data

1: MaxLength=m, MinLength = n

2: f= open(’data.txt’, ’r’, ’utf8’):

3: lines = f.readlines()

4: for line ∈ lines do
5: if class1 == line[:4] then
6: if len(line) �∈[MinLength,MaxLength] then
7: del line

8: else
9: re.sub(stopwords, ”, line)

C. Char Vectors

Since computers cannot directly process Chinese characters,

the first step is to convert the Chinese into numbers. In

addition to converting text to dictionary order, one-hot, and

other methods, one can also use pre-trained word/char vectors.

Many research institutions provide word/char vectors that have

been trained. For example, word2vec[1], GloVe[2], elmo[3],

BERT [4] are commonly used and training word/char vectors.

The expression ability of the word vector is strong, and it is

suitable for scenarios where the sample size is large enough. In

contrast, the word vector has a better effect when the sample

size is small [5]. The data size used in this paper is 1.28M,

so we use the char vector.

Algorithm 3 shows how to load the pre-training char vector.

In this algorithm, the pre-trained char vector, train data and

the output are the char vector corresponding to the training

data. First, we download the pre-trained char vector on the

Internet. Second, we find the word vector corresponding to

the training data in the pre-trained word vector, we use the

UNK to represent char if char in train data, not in pre-trained

data.

Algorithm 3 Loading the pre-training characters algorithm

Input: PretrainedCharVector, TraininngData

Output: CharVector

1: Download(PretrainedCharVector)

2: if char ∈ TrainData, �∈ PretrainedCharVector then
3: char=UNK

4: else
5: CharVector = PretrainedCharVector

D. Neural Network

Fig. 4 shows the network model structure. With the initial

application of neural network models in the field of computer

graphics, neural networks have also achieved good application

prospects in the field of natural language processing in

recent years. The two most popular neural network models

are Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN). The data set used in this paper is

labeled by itself and divided into six categories: personal

profile, research area, education history, work experience,

publication, and reward. This paper uses character-level CNN

for text classification composed of inputs sequence, CNN, and

probabilities of the classification result.

Fig. 5 shows the structure of the CNN used. The concept

of CNN was first introduced by [6]. It can maximize the

distinction between the input features. It consists of an input

layer, hides layer, and outputs layer. And the hidden layer

includes the input layer, convolutional layer, pooling layer,

fully connected layer, and output layer. In this paper, we use a

single-layer convolutional network to analyse the semantics of

a text. The first layer is the embedding layer, which converts

characters into char vectors and is the input of the CNN. The

second layer is the convolution layer, input, and convolution

kernel in the convolution layer for convolution operation. The

third layer is the max-pooling layer, taking the maximum value

of the feature vector obtained after each convolution operation.

The fourth layer is the full-connection layer, where each node

is connected to all the nodes in the previous layer and is used

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

440

256

× 64

256×3×64

254×256 256×1

conv

max

Fig. 5 Structure of CNN

Algorithm 4 CNN layer algorithm

Input: input sentence

Output: type

1: embedding=get variable(‘embedding’, [5000,64])

2: embedding inputs=embedding lookup(embedding,

self.input x)

3: conv.embedding inputs=256×64

4: conv.filter = 256

5: conv.kernel size=3

6: mp=max pooling(conv)

7: fc=full connection(mp, 128)

8: fc=dropout(fc, 0. 5)

9: fc=relu(fc)

10: logits = dense(fc, 6)

to synthesise the features extracted before. The fifth layer is

the dropout layer, which is the same as the fully connected

layer, the only difference is that only some nodes participate

in the calculation. The sixth layer is activation layer, adding

nonlinear factors to the network. The seventh layer gets a class

probability.

Algorithm 4 shows the code of the convolution operation.

First, we create a tensor of size 5000×64, and then use the

embeddin lookup function provided by TensorFlow to map

the char vector to the input. The size of the input sentence

matrix is 256×64, and there are 256 filters in total 3×64. The

input matrix and filter are operated as follows:

C = A · B, (1)

where A and B have the same order.

Each input is divided into 256 sub-matrices of size 3×64,

and each sub-matrix and filter performed 256 operations, and

finally 256 matrices of 254×1 are obtained. The max-pooling

operation is as follows:

M = max C. (2)

It gets these matrices that hold input feature information (also

called feature matrices). Next, in order to prevent overfitting,

we perform a fully connected and dropout operation. Finally,

we use Relu as the activation function to add the nonlinear

network to the network, and convert the result after the Relu

operation into the probability of each category.

E. Storage

There are more than a dozen kinds of commonly used

data at present, such as relational databases (relational

database model is to reduce complex data structures to simple

binary relationships), key-value storage databases (key-value

databases store data as keys). A collection of value pairs

with keys as unique identifiers, document-oriented databases

(such databases can store and retrieve documents in the

formats of XML, JSON, and BSON). These documents are

descriptive and present a hierarchical tree structure. They

include mapping tables (collections and scalar values), graph

databases (graph databases are used to store graph relational

data), and other major categories. As a kind of document,

tables are document-oriented databases. Document-oriented

databases include MongoDB, CouchDB, Terrastore, RavenDB,

and OrientDB. In this paper, we choose to use MongoDB

because it can dynamically expand capacity as the load

increases.

Python has a Pymongo driver to connect to MongoDB.

We use the trained model to classify each piece of data and

insert the trained data into the database. An automatically

generated ID after inserting can be used for subsequent data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

441

TABLE I
RESUME

Name Gender Birthday
University Department
Research interest
Position
Education history
Publicication
Activity

Database

Collected data Classify Match Users table

Update

Fig. 6 System data flow diagram

Start

Upload form

Processing form

Semantic analysis

Match from database

Fill form

Confirm or revirse

End

Fig. 7 Process of automatic filling

updates columns that do not currently exist but will exist in

the database in the form of null and will not occupy memory.

This data can be at any time. When auto-filling a form for

a user, the system retrieves relevant data from the database

according to The unique ID of the user.

F. Form Filling

Fig. 6 shows the data flow diagram of our system. Firstly,

it uses the trained model to classify the data collected by the

crawler and store the classified data in the database. When a

user needs to fill a form, our system retrieves the data from the

database. Afterwards, the user can manually change the data

filled. After the change is made, the system will update the

database accordingly. Therefore, the more forms the system

fills for a user, the more data about the users the database

contains.

Fig. 7 shows the process of filling the form. First, the

user uploads the form to be filled into the system. Then the

processing module extracts the entries from the form and

analyse the word meaning of each entry to find the matching

data from the database and fill it in the form. After the system

completes the task of filling a form, the user needs to confirm

the form.

III. AN EXAMPLE

This section shows how our system fills in a form by an

example. The process of automatically filling the form is as

follows:

Step 1: After the user is registered as a user of the system,

after the registration is successful, the system will

query the database for the corresponding data based

on the school name and name filled in by the user.

Whether the user’s data are personal data. If so, bind

the data-id to the user. If not, create a new empty data

in the database.

Step 2: The user uploads the form to the system, the

system analyses the form, extracts the entries, and

then finds the corresponding entry through the

synonyms table and the word similarity algorithm. If

the entry exists, the corresponding content is returned

to the user.

Step 3: After getting the returned result, the user needs to

confirm whether or not it is correct. If not correct, the

user can revise it. Then the revised content is updated

in the database. For the content that does not exist in

the database, users need to fill it in by themselves.

After completing the filling, new data are added to

the database.

Table I shows an example, which is a part of a resume (very

common in daily office work). Specifically, the procedure of

automatic filling the form is as follows:

1) The user uploads the form to the system.

2) Submit the form to the form processing module and

extract the entries, including name, gender, date of birth,

university, department, personal introduction, , education

history.

3) Find synonymous items from the synonym table, such

as ‘personal profile’ and ‘personal information’, ‘self

ntroduction’, and ‘personal introduction’ express the

same meaning.

4) According to the synonym table, find out the information

corresponding to the user from the database. Table II

shows some synonyms.

5) The query data are returned to the user, and then the

user confirms and corrects. If no information is found

in the database, the user is prompted to fill it out.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

442

TABLE II
SYNONYMS

synonymes 1 synonymes 2 synonymes 3 synonymes 4
1 Personal profile Personal information Self introduction Personal introduction
2 Research interest research direction Research areas Research objectives
3 Honor Reward Prize Award
4 Education history Education background Education
5 Published papers Publication Research Papers Academic papers
6 Research achievements Patent achievements Academic achievements Representative achievement

TABLE III
RESULTS FORM OF AUTOMATIC FILLING

Name Gender Birthday
University Guangxi Normal University Department Computer Science
Research interest Fuzzy logic, Game theory, Automated negotiation, Smart software
Position British expert, doctoral supervisor, academic leader of key laboratory.

Education history
1981-1985, undergraduate at Southwest University, China.
1987-1989, master student in Chinese Academy of Sciences, China.
1995-1998, PhD student at the University of New England, Austrailia.

Publicication

1. Wenjun Ma, Yuncheng Jiang, Weiru Liu, Xudong Luo, Kevin McAreavey. Expected Utility
with Relative Loss Reduction: A Unifying Decision Model for Resolving FourWell-Known
Paradoxes. The Thirty-Second AAAI Conference on Artificial Intelligence. (Citations: 0)

2. Jieyu Zhan, Xudong Luo, Yuncheng Jiang. An Atanassov Intuitionistic Fuzzy Constraint
Based Method for Offer Evaluation and Trade-off Making in Automated Negotiation.
Knowledge-Based Systems, 2018, 139:170-188. (Citations: 4)
· · ·

Activity
Participated in holding more than 100 academic conferences, serving as program committee member,
senior member, co-chairman, and giving special invitation reports.

TABLE IV
TEST SET EVALUATION

precision recall f1
TextRNN 0. 85 0. 78 0. 82
TextRCNN 0. 91 0. 80 0. 85
FasText 0. 88 0. 92 0. 85
TextCNN 0. 96 0. 96 0. 96

6) After the user confirms that there are no errors, the

user can download it to the local computer after saving.

At the same time as the user downloads, the modified

data of the user are also updated into the database

accordingly.

Table III shows the results of filling the form. From the

table, we can see that the system can fill the form accurately.

IV. EXPERIMENT

In our experiment, we use 2,100 data sets. We divide all the

data into the training set, the test set, and the validation set

according to the ratio of 6:2:2. In this section, we will carry

out the experimental comparison and experimental evaluation.

A. Comparison

Table IV shows the results of different methods for

classification tasks on this data set. From the table, we can

see that CNN has achieved the best results on the data set in

this paper, so we choose the method in this paper.

B. Evaluation

Figs. 8 and 9 show the accuracy curves of the training and

the validation set as the number of training rounds increases

Fig. 8 Train sets

TABLE V
TEST SET EVALUATION

precision recall f1
information 1.00 1.00 1.00
research interest 1.00 1.00 1.00
education history 0. 97 0. 99 0. 98
work experience 0. 97 0. 98 0. 97
paper 0. 96 0. 87 0. 91
achievement 0. 86 0. 90 0. 88

during the training process. To observe the results more clearly,

the number of training rounds is set to a larger number. The

final accuracy rate on the training set is 99.55%, and the

accuracy rate on the test set is 97.14%. So, we achieve good

results have on both the training set and the test set.

Table V shows the evaluation of the test set. On the test set,

we use precision rate, recall rate, and f1 to test the training

model. The calculation methods of the three criteria are as

follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

443

Fig. 9 Validation sets

Recall =
Related files retrieved by the system

Total number of all related files in the system
,

Precision =
Relevant files retrieved by the system

total number of files retrieved by the system
,

F1 =
2× Precision×Recall

Precision+Recall
.

As we can see from the table, the final model has the best

test results in information and search fields, the worst test

results in achievement, and good results in other categories,

with the lowest f1 value of 0.91. So, it is reasonable to say

that our model has achieved good results.

V. RELATED WORK

This section discusses related work to show how we advance

the state of the art on this topic.

A. Crawler

Network data are abundant, but difficult and time consuming

to download the data manually. Crawlers are undoubtedly

a very good tool for automatically downloading data. Farag

et al. [7] use an event model that can capture key event

information, which crawl smart events and automatically

track event keywords. Bal and Geetha [8] propose the

client server architecture based smart distributed crawler for

crawling web, which can use network bandwidth and storage

capacity effectively. Gunawan et al. [9] use distributed focused

crawler to improve the capabilities of data collection for

article clustering. Deng et al. [10] optimise the web crawler

system based on the scrapy framework,and improved the

crawler speed. However, all of them are irrelevant to personal

information of scholars.

B. Data Proprecessing

Data preprocessing is a very important part of neural

network training, which directly affects the quality of the

final model. Chandrasekar et al. [11] improve the prediction

accuracy by data preprocessing. They use the supervised

filter discretisation to construct a decision tree to get better

classification model. Yang and Wang [12] did preprocessing

and feature selection steps in the abnormal data classification,

and get good results on KDD Cup99 dataset. Jiang and Xu

[13] use the methods of data preprocessing in the intrusion

detection system, improving the performance of the system.

In this work, although we also use data preprocessing, but our

data are about the academic information of scholars, while

theirs are not.

C. Methods of Text Classification

There are a number of deep learning methods for classifying

text. Joulin et al. [14] propose the FastText method. Although

its effect is similar to other methods, its training speed is faster

than other methods. Kim [15] propose the TextCNN method of

using pretrained word vectors. Lai et al. [16] use TextRCNN

method to obtain less noise. Yang et al. [17] use the TextRNN

+ Attention method to pay attention to important contents

when constructing the document representation. Devlin et al.

[4] use the BERT method to enable the static word vector to

solve the problem of polysemy. Conneau et al. [18] use the

VDCNN method to explore the effectiveness of deep models

in text classification tasks. The optimal performance network

in the text reaches 29 layers. Hassan and Mahmood [19]

propose a deep learning model for text classification based on

recurrent and convolutional layers. It uses bidirectional layers

replace pooling layers in CNN in order to reduce the loss

of local information, and to capture long-term dependencies

of input sequences. Guo et al. [20] propose a CRAN model

for text classification. It is a hybrid model that integrates the

CNN and RNN effectively with the attention mechanism. Liu

et al. [21] propose a ACNN model for text representation

and classification. They use multiple attention mechanism to

learn multiple context vectors, and finally use the Softmax

classifier for text classification. Zheng and Zheng [22] propose

a BRCAN model for text classification. The model uses

bi-RNN to capture the long-term dependence among sentences

and contextual information. Wang and Deng [23] propose

the TCNN-SM model for text classification, which memory

functional column retains of different granular memory and

completes the selective storage of historical information.

However, none of them use text classification methods for

classifying scholars’ personal information online.

D. Applications in Text Classification

Text classification has been applied into many ways. Moso

et al. [24] use CNN with residuals to perform text classification

of clinical data, which can help doctors easily browse a

patients medical history. Silva et al. [25] use text classification

methods to filter fake news. Zhong et al. [26] use CNN to

classify and analyse the narrative of an accident in order

to better understand the cause of the accident. Sriram et al.

[27] use text classification to improve information filtering

in order to prevent users from being overwhelmed by the

raw data. Srivastava et al. [28] propose a healthcare text

classification system to provide a better intelligent service for

patients. Chen et al [29] use a Att-BiLSTM model in outpatient

text classification system, which classify outpatient categories

by textual content. Yang and Liu [30] use text classification

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

444

to judgement type of crimes. Sulea et al. [31] use text

classification to predict the ruling of the French Supreme Court

and the law area to which a case belongs to. Nevertheless, all

the above studies do not use text classification for automatic

filling a form for academic staff in their academic lives.

VI. CONCLUSION

To alleviate the workload of filling various forms in their

academic lives so that they can work more efficient on

their essential task, in this paper, we develop a system

for automatically filling forms. Specifically, the system can

automatically collect information of a scholar from the

Internet, then use a trained classification model to classifying

the collected data and save a database, and finally fill a form

automatically.

In the future, our work in this paper could be extended

in many ways. For example, it is impossible for our system

to judge the correctness of the data collected online or to

infer that there is no data in the database based on the

existing data. This issue may be addressed by using personal

Knowledge Graph. By establishing a personal knowledge

graph, the user will eventually obtain more detailed and

accurate information. From this information, user data can be

automatically generated to maintain data consistency and also

facilitate batch processing of various forms.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China (Nos. 61762016 and 61662007) and

Guangxi Key Lab of Multi-Source Information Mining &

Security (No. 19-A-01-01).

REFERENCES

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Efficient estimation of word representations in vector space.
In Proceedings of the 2013 International Conference on Learning
Representations, pages 3111–3119, 2013.

[2] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
GloVe: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1532–1543, 2014.

[3] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep
contextualized word representations. In Proceedings of the 2016
Confrence on North American Chapter of the Association for
Computational Linguistics, pages 2227–2237, 2018.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Confrence on Association
for Computational Linguistics, 2019.

[5] Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong Han, Arianna Yuan,
and Jiwei Li. Is word segmentation necessary for deep learning of
chinese representations? In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 3242–3252, 2019.

[6] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel.
Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

[7] Mohamed MG Farag, Sunshin Lee, and Edward A Fox. Focused crawler
for events. International Journal on Digital Libraries, 19(1):3–19, 2018.

[8] Sawroop Kaur Bal and G Geetha. Smart distributed web crawler.
In Proceeding of the 2016 International Conference on Information
Communication and Embedded Systems, pages 1–5, 2016.

[9] Dani Gunawan, Amalia Amalia, and Atras Najwan. Improving data
collection on article clustering by using distributed focused crawler.
2017.

[10] Deng Kaiying, Chen Senpeng, and Deng Jingwei. On optimisation
of web crawler system on scrapy framework. Proceeding of
the 2020 International Journal of Wireless and Mobile Computing,
18(4):332–338, 2020.

[11] Priyanga Chandrasekar, Kai Qian, Hossain Shahriar, and Prabir
Bhattacharya. Improving the prediction accuracy of decision tree mining
with data preprocessing. In Proceeding of the 41st Annual Computer
Software and Applications Conference, volume 2, pages 481–484, 2017.

[12] Hongyu Yang and Fengyan Wang. Wireless network intrusion detection
based on improved convolutional neural network. Special Section
On Security And Privacy In Emerging Decentralized Communication
Environments, 7:64366–64374, 2019.

[13] Shuai Jiang and Xiaolong Xu. Application and performance analysis
of data preprocessing for intrusion detection system. In Proceeding of
the 2019 International Conference on Science of Cyber Security, pages
163–177, 2019.

[14] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov.
Bag of tricks for efficient text classification. In Proceedings of
the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, pages 427–431,
2017.

[15] Yoon Kim. Convolutional neural networks for sentence classification.
In Processing of the 19th Conference on Empirical Methods in Natural
Language Processing, page 17461751, 2014.

[16] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Proceedings of the 29th AAAI
Conference on Artificial intelligence, pages 2267–2273, 2015.

[17] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola,
and Eduard Hovy. Hierarchical attention networks for document
classification. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1480–1489, 2016.

[18] Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very
deep convolutional networks for text classification. In Proceedings of
the 15th Conference of the European Chapter of the Association for
Computational Linguistics, pages 1107–1116, 2017.

[19] Abdalraouf Hassan and Ausif Mahmood. Efficient deep learning model
for text classification based on recurrent and convolutional layers. In
Proceeding of the 16th IEEE international Conference on Machine
Learning and Applications (ICMLA), pages 1108–1113, 2017.

[20] Long Guo, Dongxiang Zhang, Lei Wang, Han Wang, and Bin Cui.
Cran: a hybrid cnn-rnn attention-based model for text classification.
In Proceeding of the 2018 International Conference on Conceptual
Modeling, pages 571–585, 2018.

[21] Tengfei Liu, Shuangyuan Yu, Baomin Xu, and Hongfeng Yin.
Recurrent networks with attention and convolutional networks for
sentence representation and classification. Applied Intelligence,
48(10):3797–3806, 2018.

[22] Jin Zheng and Limin Zheng. A hybrid bidirectional recurrent
convolutional neural network attention-based model for text
classification. IEEE Access, 7:106673–106685, 2019.

[23] Shiyao Wang and Zhidong Deng. Tightly-coupled convolutional neural
network with spatial-temporal memory for text classification. In
Proceeding of the 2017 International Joint Conference on Neural
Networks, pages 2370–2376, 2017.

[24] Juliet Chebet Moso, Jonah Kenei, Elisha T Opiyo Omullo, Robert
Oboko, et al. Deep cnn with residual connections and range
normalization for clinical text classification. Computer Science and
information Technology, 7(4):111–127, 2019.

[25] Renato M Silva, Roney LS Santos, Tiago A Almeida, and Thiago AS
Pardo. Towards automatically filtering fake news in portuguese. Expert
Systems with Applications, 146:113199, 2020.

[26] Botao Zhong, Xing Pan, Peter ED Love, Lieyun Ding, and Weili Fang.
Deep learning and network analysis: Classifying and visualizing accident
narratives in construction. Automation in Construction, 113:103089,
2020.

[27] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu,
and Murat Demirbas. Short text classification in twitter to improve
information filtering. In Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pages 841–842, 2010.

[28] Saurabh Kumar Srivastava, Sandeep Kumar Singh, and Jasjit S Suri.
A healthcare text classification system and its performance evaluation:
a source of better intelligence by characterizing healthcare text. In

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

445

Cognitive informatics, Computer Modelling, and Cognitive Science,
pages 319–369. 2020.

[29] Che-Wen Chen, Shih-Pang Tseng, Ta-Wen Kuan, and Jhing-Fa Wang.
Outpatient text classification using attention-based bidirectional lstm for
robot-assisted servicing in hospital. Information, 11(2):106, 2020.

[30] Xi Yang and Ying Liu. Automatic extraction of theft judgment
information in natural language. Proceeding of the 18th International
Conference on Electronic Business, 2018.

[31] Octavia-Maria Sulea, Marcos Zampieri, Shervin Malmasi, Mihaela Vela,
Liviu P Dinu, and Josef van Genabith. Exploring the use of text
classification in the legal domain. Analysis of information in Legal
Texts, 2017.

Shunzuo Wu is currently a master student at
Guangxi Normal University, China.

Dr. Xudong Luo is currently a distinguished
professor of Artificial Intelligence at Guangxi
Normal University, China. He published one
book and more than 160 papers including 2 in
top journal Artificial Intelligence, one of which
has been highly cited by, for example, MIT,
Oxford, and CMU research groups. Prof. Luo
has international recognised reputation: co-chair
and (senior) members of PC of more than 100
international conferences or workshops, including
major conferences IJCAI and AAMAS, and referees

for many international journals such as top journal Artificial Intelligence. He
is also invited to make a presentation of his work in more than 10 universities
internationally, including Imperial College. His research focus is on the areas
of agent-based computing, fuzzy sets and systems, decision theory, game
theory, knowledge engineering, and natural language process. Prof. Luo has
supervised or co-supervised more than 40 master students, Ph.D. students,
and research fellows.

Yuanxiu Liao is currently a professor at Guangxi
Normal University, China. Her research interests
are mainly engaged on formal methods, artificial
intelligence, urban computing, and big data analysis
and processing.

