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Abstract—Cold-start is a notoriously difficult problem which
can occur in recommendation systems, and arises when there is
insufficient information to draw inferences for users or items. To
address this challenge, a contextual bandit algorithm – the Fast
Approximate Bayesian Contextual Cold Start Learning algorithm
(FAB-COST) – is proposed, which is designed to provide improved
accuracy compared to the traditionally used Laplace approximation
in the logistic contextual bandit, while controlling both algorithmic
complexity and computational cost. To this end, FAB-COST uses
a combination of two moment projection variational methods:
Expectation Propagation (EP), which performs well at the cold
start, but becomes slow as the amount of data increases; and
Assumed Density Filtering (ADF), which has slower growth of
computational cost with data size but requires more data to obtain an
acceptable level of accuracy. By switching from EP to ADF when
the dataset becomes large, it is able to exploit their complementary
strengths. The empirical justification for FAB-COST is presented, and
systematically compared to other approaches on simulated data. In a
benchmark against the Laplace approximation on real data consisting
of over 670, 000 impressions from autotrader.co.uk, FAB-COST
demonstrates at one point increase of over 16% in user clicks. On
the basis of these results, it is argued that FAB-COST is likely to
be an attractive approach to cold-start recommendation systems in a
variety of contexts.

Keywords—Cold-start, expectation propagation, multi-armed
bandits, Thompson sampling, variational inference.

I. INTRODUCTION

WHEN making recommendations to website users,

it is important to learn as efficiently as possible

which content is most appropriate to display, including the

‘cold-start’ case when there is little or no prior history of the

user and/or the content. Content recommendation systems and

online advertising are examples contexts, in which there is an

intrinsic trade-off between exploiting current knowledge by

e.g. displaying adverts believed most likely to be clicked on,

and exploring other content that might have higher rewards

by e.g. displaying adverts which there is currently little

information about.

Multi-armed bandits (MABs) are a class of algorithm

which aim to balance the exploration-exploitation dilemma

present whenever an intelligent system must make decisions

in an uncertain environment [1]. For a recent and detailed

overview on Multi-armed bandits see [2]. The most effective

and conceptually simple MAB algorithm is known as

Thompson Sampling [3], which uses sampling from a
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posterior distribution obtained through Bayesian inference.

While Thompson’s original (non-contextual) model for such

inference has the benefit of being analytically tractable, it has

the drawback of each action being assumed independent; when

working in a large action space, it will be much more efficient

to share information among similar content, which is the main

motivation behind the contextual bandit. Chapelle et al. [4]

propose such a contextual bandit based on Bayesian logistic

regression, which is not in general analytically tractable,

leading to the authors’ use of the Laplace approximation.

Making use of the Bernstein-von Mises and central limit

theorems [5], the Laplace approximation will have errors that

are asymptotically O(T−1), where T is number of impressions

observed. For extremely large datasets, these errors will

therefore become negligible, however they may be very large

early on in the learning process, and as is shown, these errors

may be large enough to have significant practical consequences

even after many thousands of observations.

The accuracy of the inference procedure is improved

upon by using a combination of Expectation Propagation

(EP), which was contemporaneously devised by [6] and

[7], and Assumed density filtering (ADF) as presented by

[8]. These are both moment projection variational inference

methods, meaning that they work by iteratively projecting the

intractable posterior distribution onto a tractable one (usually

belonging to the exponential family) via minimisation of

the forward Kullback-Leibler divergence. ADF is a one-pass,

online method, and observations are processed one-by-one,

updating the posterior distribution which is then approximated

before processing the next observation. EP – which is an

extension to ADF – iteratively refines the approximation by

making additional passes through the dataset giving much

better accuracy, but at the same time incurring a greater

computational cost.

Another class of methods considered are Markov chain

Monte Carlo (MCMC), which are capable of generating

arbitrarily accurate representations of the Bayesian posterior.

These are useful to provide a ‘ground truth’ for comparison of

approximate methods in a study such as this, however they are

not suitable for online use. This is because MCMC requires

large amounts of computational effort, and also typically

involves algorithmic parameters that currently cannot be tuned

automatically, but rather need to be adjusted until convergence

can be diagnosed [9].

The paper is structured as follows. Section II provides

details of the multi-armed bandit approach to recommender

systems, and Section III provides details of the inferential

systems used in Bayesian online learning. In Section IV the
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FAB-COST algorithm is introduced, which is systematically

compared to Laplace, EP, ADF and MCMC inference

procedures, showing an attractive balance of accuracy and

computational effort. It is then demonstrated that the increased

accuracy of the posterior leads to better performance when

used in the logistic bandit setting and results in more clicks

generated when used in an online advertising scenario on real

data from autotrader.co.uk. Finally the details are concluded

on in Section V.

The code used to generate the results

in this paper are available on GitHub at

https://github.com/JackMack21/FAB-COST.

II. BANDIT ALGORITHMS

A. Notation and General Setup

Here and throughout, the shorthand N (μ,Σ) represents the

Gaussian distribution, where μ ∈ R
D is the mean vector of

first moments and Σ ∈ R
D×D is the covariance matrix of

centred second moments. Ep(x)[·] represents an expectation

over the probability distribution p(x).
Steps in the bandit algorithm are called iterations, and

these are indexed by integers i = 1, . . . , T . T is the total

iterations over the learning process, and τ ≤ T refers to a

current, but not necessarily final, iteration. At each iteration,

the bandit algorithm – also referred to as the learner, and

which is assumed to serve adverts for expositional simplicity

– selects an advert from the set of eligible adverts Ai, with

cardinality |Ai| = K. This set is indexed by j = 1, . . . ,K.

Each advert has D features, examples of which in the context

of automobile sales being the colour, model and age of the car

advertised. As such, the options available can be represented as

a matrix Ai ∈ R
K×D, with the j-th row, a�j , having elements

corresponding to the features of an eligible advert.

The observed reward of the advert selected by the learner

at iteration i is the binary outcome of a non-click/click, yi ∈
{0, 1}. Each y is treated as a random variable, the expected

value for which at the i-th iteration corresponds to the selected

advert’s click-through-rate (CTR).

X = [x1, . . . ,xT]
� is called the design matrix for the entire

learning process. Each row x�
i ∈ R

D represents the features of

the advert displayed at the i-th iteration. For some algorithms

the matrix Xτ = [x1, . . . ,xτ ]
� will be used; this contains

the information about the history of adverts chosen up to the

current iteration τ . The history of observations up to iteration

τ is represented by the vector yτ ∈ R
τ .

θ ∈ Θ is the vector of parameters that is to be learnt. In

the non-contextual case, each advert has a local parameter θj
that is learnt and so Θ = R

K . In the contextual case Θ = R
D

and θ is a global parameter vector which shares information

between adverts.

B. Thompson Sampling

Thompson sampling [3] is a Bayesian approach to MABs.

Its use requires the quantification of belief about the CTR

for each advert via a posterior probability distribution. The

adverts shown and the binary reward of click/no-click observed

up to the current time τ are denoted via the vectors aτ =

[a1, . . . , aτ ]
� and yτ = [y1, . . . , yτ ]

� respectively. As data

arrives, which is comprised of the tuple (ai, yi), the latent

parameter θ can be learnt via Bayes’ rule

p(θ|yτ ,aτ ) ∝
τ∏

i=1

p(yi|ai,θ)p(θ).

Once a posterior distribution has been calculated for each

advert, an advert should be chosen which maximises the

expected CTR, where the expected CTR is calculated as

E[yτ+1|aτ+1,aτ ,yτ ] =∫
E[yτ+1|yτ , aτ+1,aτ ,θ]p(θ|yτ , aτ+1,aτ )dθ.

(1)

In Thompson sampling it is not necessary to evaluate this

integral, but rather a sample is generated from each advert’s

CTR posterior, and the advert which corresponds to the

maximum sample generated is displayed. Although the integral

(1) could be evaluated explicitly, displaying content that

simply maximises it would involve constantly exploiting

existing knowledge and would never explore to learn. The

sampling-based approach, however, allows exploration and

exploitation to be traded off

A well studied example of Thompson Sampling is the

non-contextual Beta-Bernoulli bandit. In this simple case, each

advert is assumed to have an independent Bernoulli likelihood.

This has a conjugate prior, the Beta distribution, meaning that

Bayesian inference can be performed analytically to give a

closed form solution. When working in a very large action

space (i.e. with many adverts) it is, however, much more

efficient to share information among similar adverts rather than

assuming independence, which is the main motivation behind

the contextual bandit.

C. The Contextual Bandit

Instead of learning an independent posterior distribution

for each advert, the contextual bandit instead learns a global
posterior p(θ|X) where θ ∈ R

D, with D representing the

number of covariates.

As discussed above, at the current iteration τ , the learner is

presented with the features of the adverts available, stored in

the matrix Aτ . The learner then chooses an advert from Aτ

which is expected to have the highest CTR when combining

the context received with the sample generated from the

posterior

aτ = argmax(Aiθ), (2)

i.e. if the j-th row of Aiθ as in (2) is the maximum, advert

aj is shown. After observing the reward yi, the context of

the advert chosen aj is then added to the history of chosen

adverts (corresponding to the ith row of X), and the posterior

is updated either in batch using Xτ or online using the chosen

adverts covariates which is now denoted xτ .

The global parameter vector θ therefore acts as a projection

of the features onto the real numbers. Since the outcome is a

binary reward yi ∈ {0, 1}, an approach is needed that relates

a continuous projection to such an outcome. Bayesian logistic

regression fulfils this requirement, which is the next point of

discussion.
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D. Bayesian Logistic Regression

Logistic regression has proven to be a very popular and

effective two class ‘soft’ classification method [10], [11].

The goal of logistic regression is to find the best fitting

model to describe the relationship thus far observed between

the binary response variables y ∈ R
τ , and the design

matrix X ∈ R
τ×D. Although in statistics literature it is

referred to as logistic regression, by virtue of modelling a

binary outcome it is also a method for classification [12].

While there has recently been much interest in learning

techniques based on e.g. neural networks, as [13] points out,

interpretability and reproducibility are two very important

issues that need to be addressed, and are important advantage

of using well-understood statistical techniques.

Logistic regression is a likelihood-based method in which

the parameter vector θ describes the probabilistic relationship

between the input vector xi, and a binary response yi ∈ {0, 1}.

Due to the response being binary, a Bernoulli model is used

for probabilities:

Pr(yi|xi,θ) = π(xi,θ)
yi(1− π(xi,θ))

(1−yi), (3)

where π(xi,θ) = E[yi|xi,θ] = p(yi = 1|xi,θ). As π(xi,θ)
is the probability of observing a positive outcome, the inner

product θ�xi is mapped from the real line to the interval [0, 1]
via the (sigmoidal) logistic function, σ(x) = 1/(1+exp(−x)),

π(xi,θ) = σ(θ�xi) =
1

1 + exp(−θ�xi)
. (4)

Assuming conditional independence at each iteration, the

likelihood function for the current iteration is obtained as

p(yτ |Xτ ,θ) =
τ∏

i=1

Pr(yi|xi,θ), (5)

where the historical observations are represented as yτ =
[y1, . . . , yτ ]

� and Xτ = [x1, . . . ,xτ ]
�. Equations (3), (4) and

(5) between them define logistic regression.

To select adverts via Thompson sampling, θ must

be estimated, including an appropriate quantification of

uncertainty, which motivates the use of a Bayesian treatment

of logistic regression. Here, it is assumed that there is a

distribution over θ that is sequentially learnt as data arrives

via Bayes’ rule:

p(θ|yτ ,X
τ ) ∝ p(yτ |Xτ ,θ)p(θ), (6)

where; p(θ) is a probability density function representing the

prior belief about the parameters, p(θ|yτ ,X
τ ) is a probability

density function representing the posterior beliefs about the

parameters, and all other quantities are as defined above.

Since θ is passed through a non-linear mapping, inference

is not straightforward; more explicitly, the logistic likelihood

function does not permit a conjugate prior. This leads onto

the next section which explains methods for dealing with such

situations.

III. INFERENTIAL METHODOLOGY

Suppose that one is trying to solve (6) for the posterior

distribution – dependence on yτ ,X
τ is suppressed the exact

distribution is denoted p(θ). When there is a conjugate prior,

the constant of proportionality in (6) can be calculated exactly,

but otherwise it must be approximated.

Markov chain Monte Carlo (MCMC) methods are very

popular in Bayesian statistics; and provided there is sufficient

computational resources, they guarantee an arbitrarily accurate

approximation to the posterior distribution. The need for

large computational resources can, however, be problematic,

especially when working at scale. An overview of MCMC is

provided by [9].

Other approaches that will be used and detail below make

a Gaussian approximation, which is justified via the Bernstein

Von Mises Theorem. This states that the posterior converges

to a Gaussian asymptotically [14], however different methods

will achieve different accuracies at a given amount of data.

A. The Laplace Approximation

The Laplace approximation is a very popular inference

method in Bayesian statistics. Its popularity is due to its

simplicity: given a target distribution p(θ) = exp(−ξ(θ)),
which in this case will be the posterior distribution, a tractable

Gaussian approximation q(θ) is made, centred at the mode of

the original target density with variance equal to the curvature

of the negative log-target. Explicitly, let

μ∗ = argmin
θ

ξ(θ), Λ∗ =
∂2ξ(θ)

∂θ2

∣∣∣∣
θ=μ∗

,

and then the two moments of the Gaussian approximation are

matched to the above:

p(θ) ≈ q(θ) = N (μ∗,Λ∗−1).

The Laplace approximation is used as an inference procedure

in the logistic contextual bandit described by [4] and very

commonly when making an approximation in Bayesian GLMs.

Asymptotically, the errors are expected to be O(T−1) [15].

B. Variational Inference

Variational approximations turn what was an inference

problem into one of optimisation. They work by minimising a

distance measure D between the target distribution p(θ) and

an approximation q(θ) ∈ Z , where Z is the family of densities

the approximation is to be restricted to, so that

q∗(θ) = argmin
q∈Z

D(q(θ), p(θ|x)). (7)

The more generality there is in Z , the more complex the

optimisation procedure becomes, and in this application, the

approximating family is restricted to the set of Gaussians.

The distance measure used is typically the Kullback-Leibler

divergence [16], also known as the relative entropy, which is

non-symmetric. Here, the forward KL-divergence, defined as

KL(p(θ|x)||q(θ)) =
∫

p(θ|x) log
{
p(θ|x)
q(θ)

}
dθ (8)

= Ep(θ|x) [log (p(θ|x))− log (q(θ))]

is used as the distance measure, which when used in the

objective in (7), gives a solution known as the moment
projection.
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Note that the reverse KL-divergence is obtained by

swapping p and q in (8) and when used as the objective in (7),

the solution is known as the information projection. This form

is not necessarily convex in θ and can therefore yield different

solutions depending on how the optimisation procedure is

initialised. While the information projection is most commonly

used in variational inference due to its simplicity, there are

problems with reliability and accuracy, and no advantage was

found by using this approach – see [12] and [17] for further

discussion.

Unlike the information projection, the objective (8) is

convex in θ, and will give a unique solution when minimised.

This minimum corresponds to an approximation centred at

the mean of the target which is why it is known as mean
seeking. The moment projection plays an important role in

asymptotic theory and as explained by [18], its minimisation

has the desirable effect of minimising the expected loss.

Although it is the ‘correct’ KL-divergence measure to use,

the forward version has the drawback that it is much harder

to compute; it is intractable as it requires the calculation of

the expectation over the target p(θ|x). EP overcomes the

intractability of the target by forming what is known as a

tilted distribution; this will be discussed in the next section.

C. Exponential Families

A distribution belongs to the set of exponential families if

its density can be written as

q(θ|λ) = exp
(
λTφ(θ)− Φ(λ)

)
, λ ∈ Θ

Φ(λ) = log

∫
exp

(
λTφ(θ)

)
dθ,

where φ(θ) is known as the sufficient statistics, λ the natural

parameters and Φ(λ) is the log-partition function which

ensures normalisation.

Assuming that the representation of the exponential family

is minimal (i.e. there are no dependencies between the

components of φ(θ) and λ), then the following properties

hold:

1) Product of Exponentials: A product of densities

belonging to the set exponential families is also a member

of the exponential families:

T∏
i=1

q(θ|λi) = q

(
θ
∣∣∣ T∑
i=1

λi

)
exp

(
Φ

(
T∑

i=1

λi

)
−

T∑
i=1

Φ(λi)

)
,

given that
∑T

i=1 λi ∈ Θ.

2) Moments: Moments can be found by differentiating the

log-partition function with respect to its natural parameters:

Eq(θ)[φ(θ)] = ∇λΦ(λ), Varq(θ)[φ(θ)] = ∇2
λΦ(λ).

3) Bijective Mapping: There is a bijective mapping from

the natural parameters λ(η) and the moment parameters η(λ).
The log-partition function Φ(λ) is strictly convex and has a

Legendre dual

Ψ(η) = Eη(λ)[log p(λ(η)|θ)]

Conversion between the natural and moments parameters is

done via:

η(λ) = ∇λΦ(λ), θ(η) = ∇ηΨ(η)

These properties are very useful for message passing

algorithms which both EP and ADF are a subset of – see [19].

Seeger [20] gives an in-depth discussion of the properties of

exponential families.

IV. FAB-COST

In this section a description of the FAB-COST algorithm is

given, along with a demonstration of its performance on real

automotive website data (AT) taken from the autotrader.co.uk

website.

A. The Logistic Contextual Bandit

Having introduced multi-armed bandits, Thompson

sampling for these via Bayesian logistic regression, and

multivariate normal approximations to the posterior in

such regressions, the overall structure of the FAB-COST

approach, as in Algorithm 1, can now be provided. It is worth

mentioning that the pseudocode for the logistic regression

bandit provided is the same as the linear bandit introduced by

[21] and [22]; however, the linear case is conjugate and can

be solved exactly, meaning that it does not require the work

to update moments accurately that have been carried out.

Algorithm 1: Logistic Regression Thompson Sampling

1 for i = 1 . . . T do
2 1. Generate a sample from the approximated

posterior:

3 θ̃i ∼ N (μi−1,Σi−1)
4 2. Select an advert:

5 ai = argmax
j∈A

(Aiθ̃i)

6 3. Update moments:

7 μi = E[θ|Xi,yi]
8 Σi = E[(θ − μi)(θ − μi)

�|Xi,yi]
9 end

Describing this algorithm in long form, it is initialised

with a prior belief on θ. At each iteration, the learner is

presented with an available set of adverts and random sample

is generated from the posterior distribution (or prior at the first

iteration), which corresponds to step 1 in Algorithm 1. An

advert is then selected from the set via Thompson Sampling

by choosing aj which maximises the linear combination of

the sample generated θ̃i and the eligible adverts covariates

Ai; this corresponds to step 2 in Algorithm 1 – note that

the monotonicity of the logistic function means that the

sampled CTR is maximised when the linear combination is

maximised. This is followed by observing a binary reward of

a user clicking or not clicking on the chosen advert, at which

point the posterior p(θ) is updated (i.e. within the Gaussian

approximation, the first and second moments are updated).

This corresponds to step 3 in Algorithm 1.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:11, 2020

364

B. Expectation Propagation

Expectation Propagation (EP) is an iterative approach to

minimising the forward KL-divergence between the posterior

that is to be approximated, and the Gaussian approximation.

It was first generalised by [6] and [7], but has roots further

back in Statistical Physics [23]. EP belongs to a group

of message passing algorithms and works by essentially

propagating the moments of an exponential family - which

in the Gaussian case are the mean and variance - between

the factors of the posterior. Finding the moments of the

target is obviously problematic as the target is intractable

- if it weren’t then a closed form solution could be found

analytically. EP’s solution to this is to form what is known as

the tilted distribution ti(θ) (whose moments are much easier

to find) and iteratively project the moments from this, onto the

tractable approximation q(θ).

First, it is assumed that the true posterior factorises into a

product of T factor terms or sites:

p(θ|x) ∝
T∏

i=1

pi(θ).

EP approximates each of these true sites by a Gaussian

distribution qi(θ), which in natural parameters is expressed

as

pi(θ) ≈ qi(θ|λi) ∝ exp

{
hixi −Λi

x2
i

2

}
.

Then due to property 1 in of exponential families in §III-C,

the global approximation is expressed as

q(θ|λ) =
T∏

i=1

qi(θ|λi),

and the natural parameters of our global approximation can be

calculated as the product of the natural parameters of each site

approximation h =
∑T

i=1 hi, Λ =
∑T

i=1 Λi. It is this ability

to simply add and subtract natural parameters of the sites that

motivates the use of an exponential family approximation.

The EP algorithm sweeps through the data set, with steps

described below.

1) The Tilted Distribution: At each iteration of the

algorithm, the current global approximation q(θ|λ) =∏T
i=1 qi(θ|λi) is augmented by replacing one of the sites with

a true site pi(θ). This can be thought of in two steps: firstly

the cavity distribution is defined as

q\i(θ|λ\i) =
∏
j �=i

qj(θ|λj),

which is the global approximation with a site removed, then

the tilted distribution is defined as

ti(θ) ∝ pi(θ)
∏
j �=i

qj(θ|λj),

which is the cavity with its ‘hole’ filled in with a true site.

2) The Moment Projection: EP proceeds to iteratively

project the tilted onto the global approximation

q∗(θ) = argmin
q∈Z

KL(ti(θ)||q(θ|λ)). (9)

Equivalently, the first two moments of the tilted can be

computed Eti [φ(θ)] = [μ,Σ]� and the moments of the global

approximation are equated to these: q∗(θ) ∼ N (μ,Σ).
The moments of the local site approximation qi(θi) must

then be updated which is generally done by division

q∗i (θ|λi) =
q∗(θ|λ)

q\i(θ|λ\i)
.

Using property 1 in of exponential families in §III-C, this

results in a simple subtraction of the natural parameters.

3) Mapping from Natural to Moment Parameters: As

the objective in (9) is found via moment matching, yet

the Gaussian approximation is parameterised by its natural

parameters, the two different parameterisations but be

alternated between at each iteration. Due to property 3 of

exponential families in §III-C, there is a bijective mapping

between the two. In the Gaussian case these mappings are:

Σ = Λ−1, μ = Λ−1h, (10)

where the moment parameters – the mean and the variance –

μ and Σ respectively, and the natural parameters – the shift

and the precision – are given by h and Λ respectively.

4) Overall Structure: As shown in Algorithm 2, EP

makes multiple sweeps through the dataset, iteratively forming

the tilted distribution, matching the moments of the global

approximation, and finally updating the site parameters. This

is done until convergence which has been shown to usually

be after 3-4 sweeps (which coincides with the experiments

carried out in this work) although a stopping rule described

by [24] can also be used.

Algorithm 2: The Expectation Propagation algorithm

1 while not converged do
2 for i = 1 . . . T do
3 1. Form the tilted distribution:

4 ti(θ) =
1
Z̃
pi(θ)q

\i(θ|λ).
5 2. Minimise the forward KL-divergence between

the tilted distribution and the global

approximation:

6 q∗(θ|λ) = argmin
q∈Z

KL(ti(θ)||q(θ|λ)).
7 3. Update the approximating site:

8 q∗i (θ|λi) =
q∗(θ|λ)

q\i(θ|λ\i) .

9 end
10 end

5) Error Analysis: While EP has shown tremendous

empirical success in many applications – particularly Bayesian

General Linear Models and Gaussian Process regression [25]

– the theoretical understanding of it is less comprehensive

than for other approaches. There has, however, been important

progress due to Dehaene and Barthelmé who show that EP
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behaves like iterations of Newtons algorithm for finding the

mode of a function [26]. Under what they describe in later

work as ‘unrealistic assumptions on the model’, Dehaene and

Barthelmé also showed that EP can converge at a rate of

O(T−2) [27]. The experiments carried out in this work suggest

that while such a rate is indeed likely to be optimistic in more

realistic settings, EP is often significantly more accurate than

the Laplace approximation.

C. Assumed Density Filtering

1) Algorithm: EP is a batch method, requiring multiple

sweeps through a complete dataset, potentially limiting

its usefulness online. Assumed Density filtering (ADF)

is a sequential inference method and can be used to

work online. As with EP, ADF iteratively minimises the

forward KL-divergence between the tilted distribution and the

approximation, the difference being how this tilted distribution

is formed.

In the setting of data arriving sequentially, the posterior

distribution at data point τ is given as

p(θ|x) =
∏τ

i=1 p(xi|θ)p(θ)∫ ∏τ
i=1 p(xi|ϑ)p(ϑ)dϑ .

ADF takes q(θ) as the prior on θ and iterates through the

data, incorporating each point into the approximate posterior.

The conditional distribution of θ given the first τ data points

can be expressed as

p(θ|x1:τ ) =
p(xτ |θ)p(θ|x1:τ−1)∫
p(xτ |ϑ)p(ϑ|x1:τ−1)dϑ

. (11)

Then assuming that at the previous iteration the approximation

q(τ−1)(θ) is made to the true posterior p(θ|x1:τ−1), (11) can

be rewritten to give a new tilted distribution

tτ (θ|xτ ) =
p(xτ |θ)q(τ−1)(θ)∫
p(xτ |ϑ)q(τ−1)(ϑ)dϑ

.

Due to there being neither a site update nor a cavity there is no

need to map between the natural and moment parameters and

therefore no need to perform the expensive matrix inversion

seen in (10).
2) Error analysis: Fig. 1 shows that ADF makes a very

poor approximation to the posterior unless it is trained on

sufficient data. EP on the other hand makes an accurate

approximation even on the first 1, 000 data points.

Theoretical results given by [8] calculate the asymptotic

convergence of ADF by showing that the inverse of the

covariance matrix approaches the fisher information matrix as

T → ∞. By assuming that the difference between the change

in the covariance matrix between time points is negligible, he

models its evolution as a matrix differential equation to give

asymptotic accuracy of O(T−1) for the mean, although no

convergence rate is given for the variance.

These empirical and theoretical considerations align with

the intuition that multiple sweeps through a dataset as in EP

are expected to mitigate against inaccuracies from sites that

lead to tilted distributions that are poorly approximated better

than in a one-sweep algorithm such as ADF. Discussion by

[25] is relevant in this context.

Fig. 1 Convergence of both EP and ADF on AT dataset. ADF is slow to
converge, motivating its combination it with EP, which is typically much

more accurate

D. Gaussian Filtering

1) Moment Matching: As mentioned earlier, (9), which

takes the form:

q∗(θ|λ) = argmin
q∈Z

KL(ti(θ)||q(θ|λ)),

can be solved at each iteration via moment matching

Eq [φ(θ)] = Eti [φ(θ)] .

Due to the approximation being restricted to the set of

Gaussian distributions, this requires only the first two moments

of the tilted distribution to be found: the mean μ and the

variance Σ.

Note that if all moments associated with q(θ) existed

and were equal to those associated with t(θ), then the

KL-divergence would be zero and the approximation would

be exact. As the approximation used is Gaussian, it is only

characterised by the first two moments; any difference in

higher moments (e.g. skew, kurtosis) between the two is will

lead to errors since the Gaussian lacks the flexibility to capture

these.

In the logistic regression case, the tilted function is

ti(θ) =
1

Z̃(λ̃i)
pi(θ)

∏
j �=i

qj(θ|λj),

where the true site distribution functions are pi(θ) =
σ(yiθ

�xi) and the approximating site functions are

qi(θ|λi) = N (θ;μi,Σi). The normalisation constant is

Z̃(λ̃i) =

∫
pi(θ)

∏
j �=i

qj(θ|λj)dθ.

Because of product of exponentials property (see §III-C1), the

cavity can be written as
∏

j �=i qj(θ) = N (θ;μ\i,Σ\i) where

the complement notation μ\i := (μj)j �=i has been used.

Using the moments property from §III-C2, the moments of

the tilted can be found via differentiation of the log partition

function as

Eti [φ(θ)] = ∇λ̃i
log Z̃(λ̃i).
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The remaining problem is that the natural parameters λ̃i are

not known; if they were the moments could be found by

a simple bijective mapping. Fortunately there is a recursive

formulation derived by [28], which enables the moments of

the tilted to be calculated as

Eti [φ(θ)] = Eq\i [φ(θ)] +∇λ\i log Z̃(λ̃), (12)

meaning that the cavity natural parameters λ\i are needed

instead of the tilted natural parameters λ̃i.

After some calculations, (12) can be used to give an iterative

update formula for the first and second Gaussian moments of

the global approximation:

μ = μ\i +Σ\iαi, Σ = Σ\i −Σ\i (αiα
�
i − 2Bi

)
Σ\i,

(13)

where

αi = ∇μi
log Z̃(λ̃i) ∈ R

D and Bi = ∇Σi
log Z̃(λ̃i) ∈ R

D×D.
(14)

2) Linear Subspace Property: The normalising constant

to the tilted distribution Z̃(λ̃i) is, in general, intractable –

its moments can be evaluated via numerical quadrature or

MCMC, however in this work an approximation described

by MacKay [29] is used. In MacKay’s estimation framework,

known as the ‘evidence framework’ or ‘moderated output’, the

normalising constant is approximated as

Z̃(λ̃i) =

∫
σ(yiθ

�xi)N (θ;μ\i,Σ\i)dθ ≈ σ(κ(s2i )ai),

(15)

where

κ(s2i ) =
(
1+(πs2i /8)

)−1/2
, s2i = x�

i Σ
\ixi, ai = x�

i μ
\i.

Using the moderated output given in (15), αi and Bi are

expressed as

αi = ∇μ\i log Z̃(λ̃i) = ρi
σ′(ρiμ

\i)
σ(ρiμ\i)

,

Bi = ∇Σ\i log Z̃(λ̃i) = − π

16κ2
xix

T
i μ

\iαT
i ,

(16)

where

ρi = yiκi(s
2)xT

i , σ(z) =
1

1 + exp(−z)
, σ′(z) =

exp(−z)

(1 + exp(−z))2
.

3) Filtering Algorithm: Using the results (16) along with

the iterative update equations (13), Gaussian approximations

to the posterior in Bayesian logistic regession can be computed

for both EP and ADF. These are shown in Algorithms 3 and

4 respectively.

E. Combining Methods in FAB-COST

An outline is now given of how the considerations above

lead us to the FAB-COST approach to recommendation

systems, which will turn out to provide improved performance

on real data for well-controlled computational effort.

Algorithm 3: Gaussian Expectation Propagation

1 Initialise the global approximation q(θ) = N (μ0,Σ0)
2 while not converged do
3 for i = 1 . . . T do
4 1. Form the cavity expected moments:

5 Σ\i =
(
Σ−1 − (Σi)

−1
)−1

6 μ\i = Σ\i (Σ−1μ−Σ−1
i μi

)
7 2. Project the moments of the tilted distribution

onto the global approximation:

8 μ = μ\i +Σ\iαi

9 Σ = Σ\i −Σ\i (αiα
�
i − 2Bi

)
Σ\i

10 3. Update the expected moments of site i:

11 Σi =
(
Σ−1 − (Σ\i)−1

)−1

12 μi = Σi

(
Σ−1μ− (Σ\i)−1μ\i)

13 end
14 end

Algorithm 4: Gaussian Density Filtering

1 Initialise the prior distribution q0(θ) = N (μ0,Σ0)
2 for i = 1 . . . T do
3 1. The cavity distribution is simply the approximation

made at the previous iteration:

4 μ\i = μi−1

5 Σ\i = Σi−1

6 2. Project the moments of the tilted distribution onto

the global approximation:

7 μ = μ\i +Σ\iαi

8 Σ = Σ\i −Σ\i (αiα
�
i − 2Bi

)
Σ\i

9 end

Fig. 2 FAB-COST vs Laplace. The Laplace approximation fails to capture
the true variance, meaning that in the bandit setting a failure to balance the

exploration-exploitation tradeoff is expected

1) Data: Auto Trader PLC is the UK’s largest digital

automotive marketplace, and the ‘AT’ dataset was constructed

from the website autotrader.co.uk. This consists of a day’s

‘featured listing’ user click data, totalling at T = 678, 446
impressions. After a user makes a search for a car they are
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presented with a single ‘featured listing’ which appears at the

top of the search result, meaning that there is no positional

bias. The user then proceeds to either click or not click on the

presented advert. Many dozens of covariates for each advert

are available, which was reduced to the 15 most important

using a random forest algorithm for feature selection, although

other possibilities for feature selection can be used [11].

2) Computational Cost: The structure of Algorithms 3

and 4 makes clear that one iteration ADF is expected to

be computationally cheaper than one iteration of EP. This is

because, at each iteration, EP requires the expensive matrix

inversion required to map between the natural and moment

parameters. Although both matrix multiplication and matrix

inversion come at cubic computational complexity O(D3),
the pre-multiplication constant for ADF is much smaller.

Calculations show that per site, EP’s flop count of 38
3 D3 +

O(D2) is over three times greater than that of ADF’s flop

count of 4D3 + O(D2). Due to matrix multiplication being

easily parallelised (which Python’s Numpy library exploits),

as well as EP requiring multiple sweeps over the data set, we

recorded a 75-fold speed-up when using ADF in batch over

EP.

Now consider the number of iterations involved in an online

learning context. Let τ be the number of data points used to

make the last posterior approximation and m is the number of

data points arriving since the last posterior approximation. EP

requires the entire data set up to the current iteration to make

a posterior approximation leading to a computational cost of

O((τ +m)D3) compared to ADFs O(mD3). For m 
 τ this

is going to result in a dramatic increase in computational cost

choosing EP over ADF.

The computational cost vs accuracy trade-off is shown in

the right column of Figure 3. The requirement for EP to be ran

in batch is what causes the significant increase in the FLOPs

use over the learning process. In these plots, an EP update is

performed every 5, 000 impressions (m = 5, 000) rather than

in a true sequential manner. This batch size was chosen purely

for illustrative purposes; an EP update would have to be done

more frequently early on in a bandit setting. If these batch

sizes decreased then the computational cost would increase as

a result.

3) Accuracy: As discussed above, MCMC can be used to

provide an arbitrarily accurate representation of the posterior,

although the computational effort involved in doing this is

prohibitive in an online context. To assess accuracy for the

purposes of this study, however, the No-U-Turn sampler

(NUTS) was implemented using PyMC3 [30], and takes the

output of this as the ground truth of the posterior distributions

we are trying to approximate. By measuring the absolute

error between the moments of the ground truth and each

inference procedure, an empirical estimate for the asymptotic

convergence rate of each can be computed by measuring the

gradient of a log-log plot (see the left column of Fig. 3).

The results show that EP gives better asymptotic accuracy

to the posterior than other methods, as would be expected from

the theoretical results discussed above, although for the real

dataset considered, a simple power law in T is not observed. In

general it is clear that the main improvements for EP and ADF

Fig. 3 The left column shows log-log plots of the mean and variance error
for the Laplace approximation, ADF, EP and FAB-COST where the No

U-Turn sampler was used to establish the ground truth. The grey lines show
asymptotic error of O(T−1) and O(T−2) for reference. The right column

shows the asymptotic accuracy computational cost trade-off between the
methods as discussed in section IV-E2

over Laplace come from estimation of the variance, as Fig.

2 shows more explicitly. This to be particularly important for

recommendation systems, where balancing the explore-exploit

tradeoff is crucial.

Also as expected, once data availability becomes large, one

can switch to ADF as proposed in the FAB-COST algorithm

without significant loss of accuracy. Although EP can be

used periodically to update the posterior approximation in the

FAB-COST algorithm, only two EP updates were performed in

the simulations above (at 100 and 10, 000 iterations) although

the posterior accuracy would be improved with more frequent

EP updates. Theses updates at 100 and 10, 000 iterations out

of the T = 670, 000 sized data set shows that if given a

reasonable prior, ADF achieves good accuracy.

4) Recommendation System and Performance: Algorithm 5

shows the pseudocode for FAB-COST. This takes the logistic

bandit (shown in Algorithm 1) and adds moment updating

using both EP and ADF. In the experiments, two EP updates

were chosen at E = 100 and E = 10, 000 (although this

can be performed as often as is computationally feasible) with

ADF sequentially updating the posterior approximation at each

iteration for the remainder of the simulation. These EP updates
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Fig. 4 The difference in cumulative clicks received from FAB-COST and
the Laplace bandit. FAB-COST generates over 16.1% more clicks after

around 31, 000 impressions

were chosen to show that even with few updates, FAB-COST

is superior to the Laplace approximation for both posterior

approximation accuracy and reward that is achieved in the

bandit setting.

So that the bandit algorithms could be tested in an offline

setting, the following was decided: It was assumed that the

action space of available adverts at the beginning of the

simulation A0 was the entire set of adverts shown on the day.

After iteratively showing adverts and observing if they did or

did not receive a click, they are removed from A meaning that

at each iteration A reduces by a row in size. Because there are

a finite number of clicks in the day’s worth of data, both bandit

algorithms will finish the simulation with an equal cumulative

reward (see Fig. 4); in a real-time online environment this will

not be the case and the difference in the number clicks will be

expected to increase over time. In the experiments performed it

is assumed that clicks are generated independently with respect

to time meaning that a user would choose to click or not click

on an advert irrespective of when it was shown to them. It

is important to reiterate that decrease in the improvement of

using FAB-COST over the Laplace bandit over the simulation

is due to the finite number of clicks available in the offline

dataset. In a true online setting it is likely that FAB-COST

will continue to outperform.

By measuring the difference in clicks received – as

shown in Fig. 4 – it is clear that FAB-COST is the better

algorithm, generating over 16% more clicks after around

31, 000 impressions, and given reasonable assumptions about

continued new adverts we might expect such an improvement

in performance to persist and yield significantly improved

results over time.

V. DISCUSSION

In this paper the Fast Approximate Bayesian Cold Start

algorithm FAB-COST has been introduced; a fully Bayesian

algorithm which combines both Expectation Propagation and

Assumed Density Filtering to improve on the inference

procedure for the logistic bandit proposed by [4]. Not only

would it be beneficial to use FAB-COST’s inference procedure

in a bandit setting, but any online learning scenario for

Bayesian logistic regression or with data sets prohibitively

large for EP to be used on. This is the first time to the

authors knowledge that either EP or ADF have been used

to improve bandit performance. FAB-COST addresses two

problems with the classic Laplace approximation: firstly it

Algorithm 5: FAB-COST

1 Set E as the iteration(s) at which you want to make an

EP update to the posterior.

2 Initialise the prior distribution q0(θ) = N (μ0,Σ0)
3 for i = 1 . . . T do
4 1. Generate a sample from the approximated

posterior:

5 θ̃i ∼ N (μi−1,Σi−1)
6 2. Select an advert:

7 ai = argmax
j∈A

(Aiθ̃i)

8 3. Update moments via ADF:

9 μi = μi−1 +Σi−1αi

10 Σi = Σi−1 −Σi−1

(
αiα

�
i − 2Bi

)
Σi−1

11 4. IF i = E , perform an EP approximation as shown

in algorithm 3 using the last E data points.
12 end

is an online scheme which can deal with large cumulative

amounts of data and fast throughout; secondly it achieves

better variance accuracy which will result in better balance

between exploration and exploitation and hence improved

website performance, which one would expect to see in a

variety of contexts.
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