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 
Abstract—Nowadays, most universities use the course enrollment 

system considering students’ registration orders. However, the 
students’ preference level to certain courses is also one important 
factor to consider. In this research, the possibility of applying a 
preference-first system has been discussed and analyzed compared to 
the order-first system. A bipartite graph is applied to resemble the 
relationship between students and courses they tend to register. With 
the graph set up, we apply Ford-Fulkerson (F.F.) Algorithm to 
maximize parings between two sets of nodes, in our case, students and 
courses. Two models are proposed in this paper: the one considered 
students’ order first, and the one considered students’ preference first. 
By comparing and contrasting the two models, we highlight the 
usability of models which potentially leads to better designs for school 
course registration systems. 
 

Keywords—Bipartite graph, Ford-Fulkerson Algorithm, graph 
theory, maximum matching. 

I. INTRODUCTION 

OWADAYS, the network is a mathematical structure in 
graph theory that has been widely applied to practical 

problems to represent relations between objects. For instance, 
the main data structure of the GPS navigation system is related 
to graph theory. This structure considers locations as separate 
nodes and the distance as the edges and finds the shortest route 
between two locations [1]. As an example of graph structures, 
the bipartite graph can be utilized to construe the connections 
between two sets of vertices. As an instance, it was used to 
analyze the relations between the job applicants’ group and job 
positions group, maximizing matchings between the two 
parties. It can also present the connection between users and 
content they may take an interest in the online social network 
[2]. Similarly, this model can also apply in dating websites 
(man and woman) and the housing market (the buyers and 
houses resources), ensuring the most effective distribution of 
resources. 

In this paper, we will use the bipartite graph, to discuss 
University of Washington (UW) students’ registration 
preference towards 400-level economic courses. Two types of 
models will be presented: 1. considering the number of students 
as weight, 2. considering the level of preference as weight. We 
also discuss the situation that if students are able to choose all 
of the courses. By making those graphs, we can find how many 
students are able to choose the courses they preferred and the 
optimized situation that can ensure everyone’s registration 
tendency. 
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II. PRELIMINARIES AND BACKGROUND 

To further explain the models, we need to provide some 
essential background and terms. Since our research is based on 
graph theory, we will include content about bipartite graph, 
weighted and directed graph, and matchings in the following 
subsections. 

A. Bipartite Graph 

A bipartite graph G is a graph whose vertices can be divided 
into two disjoint sets. We set the two disjoint sets as U and V. 
Every edge only connects one element in U and one in V. The 
connection between two elements in the U group or V group 
does not exist [3]. Let us see an example in our real life, the 
labors and job resources. The labors want to get the jobs they 
prefer, and the employers need to hire enough employees. 
These two sets can form a bipartite graph since, first, they are 
independent and, second, the connection only exists between 
elements from different groups: apparently, it is impossible for 
labor, in set U, to find a job from other labors in the set U—only 
employers in set V can provide the positions for him. The same 
argument goes for the employers’ side. Therefore,  there are 
only links between U and V. 

An example of bipartite graph G with two disjoint vertex sets 
U and V is shown in Fig. 1. 

 

 

Fig. 1 A bipartitibe graph 

B. Weighted Graphs and Directed Graphs 

A graph G = 𝐸, 𝑉, 𝑊 is a directed graph if the edges set 𝐸 
consists of ordered pair, which means all the edges are directed 
from one vertex to another [4]. 

 

 

Fig. 2 A directed graph 
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Fig. 2 shows a directed graph. Edge X here is directed from B 
to A; Edge Y is directed from B to C, and edge Z is directed 
from C to A. Since all the edges are directed, this graph can be 
called a directed graph. 

If an edge  𝑒 ∈ 𝐸  in the graph is assigned with a 
weight  𝑤ሺ𝑒ሻ ∈ 𝑊 , a numerical value, then it is a weighted 
graph. [5] 

 

 

Fig. 3 A weighted graph 
 

As Fig. 3 shows, this is a directed graph since the edges have 
directions suggested by the ordered pair of vertices. The “23”, 
“10”, “14” are the weights of the edges Z, Y, and X. Thus, the 
graph is also weighted. We call this graph a weighted directed 
graph. In our numerical tests in Section IV, all our graphs are 
weighted directed networks. 

C. Matchings 

In the given graph G, a matching, M is a set of edges that do 
not share any vertex in a graph [6]. Here, we remind the readers 
with three common types of matchings: 

Maximal matching: if we add any edges that are not in the 
matching M and then it appears two edges sharing the same 
vertex, this matching is called a maximal matching [6]. 

 

 

Fig. 4 A maximal matching 
 

We consider the black edge (V2, V3) as M. Adding any 
green edges to the set will force two edges to meet at the same 
vertex. Thus, M = (V2, V3) is a maximal matching and it only 
contains one black edge.  

Notice that the maximal matching is not unique. In Fig. 4, we 
can observe that the edge set contains the green edges and the 
set of black edge both can be considered as maximal matchings.  

Maximum matching: A matching that contains the largest 
possible number of edges. 

Here, we suppose that green edges formed set M’, then M’ is 
a maximum matching of G. If we set the black edge as the set 
M, it is only a maximal matching (|M| = 1) but since |M| = 1 < 2 
=|M’|, it is not a maximum matching.  

As mentioned before, we can find various sets of maximal 
matchings of a graph. However, there exists a maximum 
matching for any given graph, which is unique.  

Perfect matching: a matching is perfect if every vertex in the 
graph is incident on a member of M. In Fig. 6, the green edges 
form a set of perfect matching as it connects all four vertices in 
the graph.  

 

 

Fig. 5 A maximum matching 
 

 

Fig. 6 A perfect matching 
 

As a counterexample, the following set of green edges in Fig. 
7 is not considered as a perfect matching since vertex 5 has no 
incident edge. In fact, it is impossible to find a perfect matching 
for this graph, since vertex 5 is an isolated vertex. This suggests 
that not all graphs can have a perfect matching. According to 
Hall’s Marching theorem, a perfect matching exists if and only 
if every subset S  L while G = (U, V) and U = L  R. 

 

 

Fig. 7 A directed graph 
 

 

Fig. 8 Relationship 
 

In this research, we use maximum matching to maximize the 
pairings between two vertex sets of the bipartite graph. 

III. ALGORITHM 

We use F.F. Algorithm in this research. It is a greedy 
algorithm that computes the maximum flow in a flow network. 
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Let G = (V, E) be the graph and c(u, v) be the capacity and f(u, 
v) be the flow. We also define𝑐௙ሺ𝑢, 𝑣ሻ ൌ  𝑐ሺ𝑢, 𝑣ሻ െ 𝑓 ሺ𝑢, 𝑣ሻ ሾ7ሿ. 
To find the maximum flow from source s and sink t, the 
pseudocode of the algorithm: 
Inputs Given a Network G = (V, E) with flow capacity c, a source 
node s, and a sink node t 
Output Compute a flow f from s to t of maximum value 

1. F (u, v)  0 for all edges (u, v) 
2. While there is a path p from s to t in residual network 

𝐺௙ ൌ ሺ𝑉, 𝐸௙ሻ, with 𝐸௙ ൌ  ሼሺ𝑢, 𝑣ሻ ∈ 𝑉 ൈ 𝑉 ∶  𝑐௙ሺ𝑢, 𝑣ሻ  ൐ 0ሽ 

such that 𝑐௙(u, v) > 0 for all edges (u, v)  p:  

a. Find 𝑐௙(p) = min {𝑐௙(u, v): (u, v)  p} 

b. For each edge (u, v)  p 
I. F (u, v)  f (u, v) + 𝑐௙(p) (send flow along 

the path) 
F (v, u)  f (v, u) - 𝑐௙(p) (The flow might be “returned later” 

 

 

Fig. 9 How F.F. Algorithm works 
 

In Fig. 9, we add a sink, a source and the black directed edges 
to the bipartite graph [blue and green vertices with the grey 
edges in between] and set directions to the grey edges, so that it 
becomes a directed network and the F.F. Algorithm can be 
applied. 

IV. DATA 

The data are collected through a Google survey. The sample 
population is UW students major in Economics or ACMS. The 
survey has been put on several social media websites such as 
WeChat, Facebook, Reddit, etc.  

Students are required to submit their preferences to four 
different 400-level Econ courses (major only): Econ 424- 
Computational Finance and Financial Econometrics; Econ 422- 
Investment, Capital, And Finance; Econ 485-Game Theory 
with Applications to Economics; Econ 483-Econometric 
Applications. The preference is shown by number. 4 means the 
most and 1 means the least. Students are allowed to choose the 
same preference for different courses. Furthermore, their 
decisions are limited by several other conditions: 1) Students 
have to take 400-level courses other than the four listed above. 
2) Students can take up to 18 credits in one quarter. 3) They 
have to satisfy other major requirements and workloads. 
Therefore, students’ preference towards courses is only one of 
the indicators among all other requirements that students have 
to consider when scheduling for classes. As a prototype of the 
model, we mainly consider students’ preferences when 
optimizing the pairings between students and classes, but this 
can be further extended to a fuller model that eventually takes 

other factors into account. Thus, the survey also asks for 
students’ choices in their formal plans, which are the 400-level 
courses they will truly take in the future quarter. There is no 
constraint for the number of courses students can choose, but 
each course can only be chosen by one time and we assume the 
capacity is 20 for each course.  

In summary, the survey includes students’ names, students’ 
preferences toward each course, and students’ formal choice on 
these four courses.  

In this research, we use bipartite graphs to stimulate the 
relationship between students and 400-level courses. The 
students and 400-level Econ courses are considered as the two 
disjoint sets. We assign the weights to the edges between these 
two sets. Just imagine the weights as water, starting from 
students and then flowing to the courses. We construct two 
types of system: 1. the number of registered students is 
considered as the weights; 2. the level of students’ preference is 
considered as the weights.  

In Figs. 10-14, 57 is seen as the source and 58 is the sink. The 
nodes 1-52 represent the student indices. The 53-56 means four 
400-level courses: 53 represents Econ 422. 54 is Econ 424. 55 
is Econ 483; 56 is Econ 485. 

The first type of system (use number of students as weights) 
is shown in Fig. 10. 

The weight of the edges between the source and students is 
set as 4, which is the maximum number of courses students are 
able to choose. The weight of the edges from students to 
different courses is 1 since students are only able to choose one 
time on each course.  

The matchings between nodes 1-52 and nodes 53-56 denote 
students’ choices, which are the Econ courses in each student’s 
formal plan, collected in our data. However, there will be a 
capacity constraint for each course, which is 20. So, students 
cannot always get what they want. In the current design, student 
1 has more priority than student 13. In summary, the principle 
of this system is first come, first served. 

What this system evaluates is the registration system that 
students use to register courses in order. This is the basically 
what UW is using: based on the class standing, students have 
different dates of registration. 

The second system (uses preference level as weights) is 
shown in Fig. 11.  

The edge weight to the source as the maximum preference 
level toward courses that each student is able to choose, which 
is 16, (the maximum number of courses, 4 times the maximum 
preference 4). The edge weight to the sink 58, in this case, is the 
whole preference level of registered students 80 since 20 is the 
maximum capacity and 4 is the maximum level of preference 
each student can achieve. 

The matchings between the 1-52 and 56-53 denote the 
students’ preference toward their choices, which is the Econ 
courses in each student’s formal plan and preference levels, 
collected in our data. However, different from the first system, 
students having a higher preference level are more likely to get 
this course. 
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Fig. 10 Number of students as weights 
 

 

Fig. 11 Preference level as weights (1) 
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This system evaluates the registration system based on the 
students’ preference level. If A and B both want the same 
course, the one with higher preference will be the first one 
considered by the system. 

V. NUMERICAL RESULTS 

Here we demonstrate the registration results of the two 
systems mentioned in Section IV. 

A. Model 1 

Firstly, we consider the number of students as weights and 
use F.F. algorithm in Section III: 57 as source, 58 as sink, and 
try to maximize the flow out from node 58. 

The maximum capacity of every 400 level courses is 20. The 
graph is shown in Fig. 12. 

 

 

Fig. 12 Number of registered as weights 
 

As mentioned before, this system is based on the 
chronological order. There are two courses reached capacity, 
53 and 54, which are Econ 422 and Econ 424. Only a few 
students choose 55 and 56, which are Econ 485 and Econ 483. 
We also calculate the preference level on each course: there is 
33 total preference level toward 485, 71 total preference level 
toward 424, 60 total preference level toward 422, and 45 total 
preference level toward 483. We could find something 
interesting from this data: the average preference level of each 
student in Econ 485 is 3.67; Although 424 and 422 are the most 
popular courses, their average preference level of each student 
in these two is 3.55 and 3, which means students taking 485 are 
happier than those taking 424 and 422.  

11 students are failing to register for any courses under this 
model.  

The average courses students have chosen is 1.57: 26 
students choose 1 course; 22 students choose 2 courses; 4 
students choose 3 courses; 0 students choose 4 courses. 

 

B. Model 2 

The second situation chooses the preference of students as 
weights. F.F. algorithm in Section III is applied here. We set 57 
as source and 58 as the sink, then maximize the flow out from 
node 58. In this case, we only consider that students will only 
choose the courses they’ve submitted in the survey (*the 
question about what they will choose in their formal quarter 
plan). However, we find that there are 23 students paired with 
Econ 422 (53) and 35 students paired with the Econ 424 (54), 
which is larger than the courses’ largest capacity. This is 
because, as mentioned before in Fig. 11, we set 80 (maximum 
capacity * maximum level of preference) as the weights to the 
sink 58. It is unusual for all students to choose the same course 
to have the highest level of preference. Therefore, the F.F. 
Algorithm keeps putting students into those courses until the 
total preference levels reach 80. The reason why this situation 
did not occur to two other courses is that the demand for those 
two is much less than Econ 422 (53) and 424 (54). To solve this 
problem, we adjust the matchings to 422 (53) and 424 (54): we 
only keep the 20 students with the highest preference scores to 
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422 (53) and 424 (54), respectively. According to the feature of 
the F.F. Algorithm, the student-course pairings are selected 

from the highest weight to the lowest weight. Therefore, 
deleting smaller weight edges will not affect the paring results. 

 

 

Fig. 13 Preference as weights (1) 
 
Right now, all four courses have enrollments less than or 

equal to 20. Specifically, both Econ 422 (53) and Econ 424 (54) 
have 20 students. 9 students register into Econ 485 (55) and 15 
students register into Econ 483 (56).  

The total preference level in Model 2 is higher than that in 
Model 1 as calculated in Section V A: here, the preference level 
toward 424 is 75, which is higher than 71 toward 424 in the 
previous model. Also, the preference level toward 422 is 63, 
which is higher than 60 toward 422 in the previous model. By 
calculating the average preference level, we find that the Econ 
485 and Econ 424 are the courses making students most 
satisfied since their average preference level is 3.67 and 3.75. 
Moreover, there are fewer people get registered in Model 2 
compared to Model 1: 11 students cannot get register under 
Model 1 while 13 students left unenrolled in any courses under 
Model 2. In both cases, 38, 43, 46, 48, 49, 50, 52 students 
cannot register any course: this is because they only choose one 
course and the system is designed to maximize the level of the 
preference: for example, knowing that A has a level 3 
preference and B has a level 2 preference toward Econ 424, if B 
also shows a preference of level 4 to Econ 383 and A only 
considers to take 424, the system will let B register for 424 
since total preference is larger in this case (4+2=6 > 3). 

VI. CONCLUSION AND FUTURE WORK 

In summary, we have applied graph theories and algorithms 
in our research: first, we use bipartite graphs and matchings to 
present the relationship of the 400 level courses and students. 
We also illustrate the weights can be added to matching to 
resemble the flow of resources. Based on that, we then use the 
F.F. algorithm to maximize the number of matchings between 
these two, which is exactly what course registration is supposed 
to do.  

We propose two models by setting different values as 
weights to achieve different goals: if we set the number of 
students as weight, the model maximizes the number of 
registered students and the student in front order preempt the 
limited places of the courses; if we set the level of preference as 
weight, the model maximizes the level of preference and 
student with higher preference level has higher priority. 
Furthermore, we compare and contrast the results of two 
models: at least in this case, when a normal registration system, 
which registers students by measuring their order instead of the 
preference, is utilized, more students can get registered. But 
students will be much more satisfied if we use preference as 
weights. It is hard to conclude which model is preferred due to 
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several reasons: 
1. The size of samples is not larger enough so the 

representation of this dataset may not fully characterize the 
whole student body. For example, a large portion of the 
students in this limited dataset has a much higher 
preference for Econ 424, which may exaggerate the 
difference in preference level between two models.  

2. There is no standard metric to quantify the quality of 
paring models when different objectives are applied to the 
problems. On the one side, it is reasonable to maximize the 
number of registered students since they need to graduate 
on time. On the other side, maximizing students’ 
preference is also important for improving students’ study 
efficiency. [8] 

 

 

Fig. 14 Preference as weights (2) 
 
As future work, the above mentioned two points can be 

addressed: if a larger dataset is collected and analyzed, we 
believe that the first point could be resolved since it will reflect 
the overall student body’s distribution more accurately. The 
second point suggests that the flexibility in choosing the 
objective of the model. As of the current models, we only 
consider one feature (number of students in Model 1 and level 
of preference in Model 2) at a time when maximizing the 
student-course parings. However, one can combine multiple 
features at the same time and reflect them as graph weights, 
then the model will depict the real-life situation in a more 
well-rounded manner. 

REFERENCES  
[1] Marwan Abboud, Lina Mariya Abou Jaoude, and Ziad Kerbage.“ Real 

Time GPS Navigation System ”, Available: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.560.3002&rep
=rep1&type=pdf 

[2] Zhu, Zhiguo, et al. “Measuring Influence in Online Social Network Based 
on the User-Content Bipartite Graph.” Computers in Human Behavior, 
vol. 52, 2015, p. 184. 

[3] Asratian, Armen S., et al. Bipartite Graphs and Their Applications. 1998. 
[4] Strang, Gilbert. Linear Algebra and Its Applications. 3rd ed., Harcourt, 

Brace, Jovanovich, Pulishers, 1988. 
[5] Weisstein, Eric W. “Weighted Graph”. From MathWorld—A Wolfram 

Web Resource. https://mathworld.wolfram.com/WeightedGraph.html 
[6] Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 

1985. 
[7] Ford, L. R, and Fulkerson, D. R. “Maximal Flow through a 

Network.” Canadian Journal of Mathematics, vol. 8, 2018, pp. 399–404. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:14, No:9, 2020

100

 

 

[8] Adamidis, Panagiotis, and Kynigopoulos, Georgios. 
“EvoWebReg.” International Journal of Operations Research and 
Information Systems, vol. 5, no. 1, 2014, pp. 1–18. 
 
 
 


