
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

395

Abstract—Many designers are asking for an automated path from

an abstract mathematical MATLAB model to a high-quality Register-
Transfer Level (RTL) hardware description. Manual transformations
of MATLAB or intermediate code are needed, when the design
abstraction is changed. Design conversion is problematic as it is
multidimensional and it requires many different design steps to
translate the mathematical representation of the desired functionality
to an efficient hardware description with the same behavior and
configurability. Yet, a manual model conversion is not an
insurmountable task. Using currently available design tools and an
appropriate design methodology, converting a MATLAB model to
efficient hardware is a reasonable effort. This paper describes a
simple and flexible design methodology that was developed together
with several design teams.

Keywords—Design methodology, high-level synthesis,
MATLAB, verification.

I. INTRODUCTION

ATLAB is the tool of choice in most algorithm
development projects. Its built-in matrix operations,

comprehensive toolboxes and advanced visualization
capabilities provide a superior platform for complex algorithm
development. Yet, the final implementations of the algorithms
often require either a full hardware (HW) or software (SW)
implementation with HW acceleration. The path from a
floating-point MATLAB model to a working silicon is long.

The classical methodology, writing RTL code manually
starting from the abstract floating-point MATLAB model, is
very painstaking and error prone. Not only re-coding the
algorithm from a sequential program to a HW architecture, but
also maintaining the integrity between the very different
models is difficult. The gap between the abstractions is too
large for traditional tool flows. Usually such a project needs
multiple intermediate models and a multi-disciplinary team
with several engineers.

A new, simple design methodology is needed to improve
the productivity and quality of the design. It should tackle both
the design abstraction and validation problems and provide a
flexible framework for different design needs. Also the SW
implementation, HW/SW partitioning and late changes from
HW to SW and vice versa must be taken in account.

The purpose of this study was to find a simple workflow
that minimizes the number of required models, can be
mastered by one or two engineers and maintains the design

P. Solanti is with Mentor Graphics Deutschland, Munich, 80634, Germany

(e-mail: petri_solanti@ mentor.com).
R. Klein is with Mentor Graphics, Wilsonville, OR 97070 USA (e-mail:

russell_klein@mentor.com).

integrity throughout the process.
A major part of the study focused on handling the model

abstraction. Designers with different backgrounds have
different approaches to handle this. HW designers think in
terms of clock cycles, registers and signals, whereas algorithm
developers deal with matrix operations, toolbox functions and
function parameters. SW developers like object orientation
and complex data structures. At least one of these three
abstraction levels must be discarded.

A good common denominator for all appeared to be the
abstraction level of High-Level Synthesis (HLS) C++ that is
syntactically close enough to MATLAB, but has also HW
related features like arbitrary length data types and bit
operations that give HW designers the possibility to influence
the details. Embedded SW is usually written in C/C++, so all
involved designer groups are taken into consideration. RTL
code generated by HLS is supposed to be correct by
construction.

HLS alone does not solve the problem, but it enables a
design methodology with higher abstraction level throughout
the process. This methodology is introduced by using a
Direction of Arrival (DOA) Estimator model as an example
[1].

II. DESIGN METHODOLOGY

The proposed workflow consists of five steps:
A. Model analysis and partitioning to HW and SW
B. Rewriting the HW part functionality in HLS C++
C. Validating C++ model functionality in MATLAB
D. Quantizing and fine tuning HLS C++ model
E. Exploring different HW architectures using HLS

A. Model Analysis

There are many studies describing very comprehensive
methodologies for model analysis and HW/SW partitioning.
Some of them are targeted to reconfigurable systems [2], [3]
and some other are more generic [4], [5]. These methodologies
are usually too complicated for real-life design projects. In
most cases, the model analysis can be reduced to interface
traffic and resource requirement estimations that can be done
in MATLAB.

The main purpose of a HW accelerator is to speed up the
processing and decrease the processor load. Partitioning
analysis should find the optimal interface between HW and
SW and isolate the functionality of the accelerator. Many
times the MATLAB model does not have a clear interface
between the testbench and algorithm itself.

Interface traffic is a critical metric in HW/SW systems.

Petri Solanti, Russell Klein

Seamless MATLAB® to Register-Transfer Level
Design Methodology Using High-Level Synthesis

M

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

396

Massively parallel number crunching HW is idle, if the
interconnect passing the data between the processes is
congested. This is a common mistake that can be avoided by
careful analysis.

In a MATLAB model the data traffic requirements can be
estimated by analyzing the variable sizes and sample rates.
The bigger the array, the more bandwidth and data transfer
time is required. This can influence the efficiency of the
acceleration by leading to unnecessary idle times. The data
transfer time depends also on the interconnect type and
interface architecture, so a rough overview of the desired HW
architecture should be available at this time.

Estimating resource requirements of a MATLAB code
segment or a function has two simple options. One is the
number of operations in the code that can be estimated by
counting all arithmetic and comparison operations multiplied
by the loop iteration count in the MATLAB code. This
becomes problematic when the algorithm uses toolbox
functions with no source code available.

Another simple method is to run MATLAB simulation with
timestamps to see how the execution time is split between the
code segments. This method is not as accurate as the operation
count, but it gives a good estimate and it also includes the
toolbox functions.

The HW partition should be selected so that it can be
parallelized to get higher throughput and the data traffic does
not become a bottleneck. The best accelerator efficiency can
be reached in code segments that have a fixed dataset
processed multiple times in the loop that can be unrolled in
HLS.

In addition to the interface and resource analysis we must
analyze the required data types. A floating-point MATLAB
model does not have any type definitions. All variables are
double by default, whereas in synthesizable HLS C++ the
variables have arbitrary length integer or fixed-point data
types that are optimized for the value range of each variable.

In the model analysis phase, the variable value ranges are
analyzed to assess which variables can be grouped together
with the same datatype to reduce the number of required type
definitions. These are maintained in a separate header file to
enable smooth transition between floating-point and fixed-
point later in the workflow. In this phase all datatypes are set
to floating-point – either in double or ac_ieee_float64, which
is a double equivalent in the open source Algorithmic C (AC)
datatype [6].

B. Rewriting the HW Part Functionality in HLS C++

This part of the flow is the real model conversion. Writing a
C++ model with the same functionality as the original
floating-point MATLAB model can be a simple syntax
conversion, if the original model is using only basic operations
and no matrix arithmetic like the main loop of the polyphase
filter example in Figs. 1 and 2.

MATLAB code with matrix operations or toolbox functions
requires some more background work, because the
functionality is hidden in the MATLAB language or library
model. Open source HLS C++ implementations of matrix

multiplication and several mathematical functions are
available on the internet [7], which reduces the workload with
the first design. Carefully written templated C++ class can be
used as library IP in future projects.

Fig. 1 MATLAB implementation of polyphase filter main loop

Fig. 2 HLS C++ implementation of polyphase filter main loop

Writing a missing function manually is like writing any
helper function in a SW project. Interface, class hierarchy and
datatype definitions are made in a similar way. Using
templates to parameterize the data types, array dimensions and
iteration counts helps in the next design steps and makes the
model reusable.

When the helper functions are available, the main
MATLAB code can be converted to C++. Some MATLAB
constructs like built-in index loops and persistent variable
definitions must be rewritten. Other language structures are
close to C.

C. Validating C++ Functionality in MATLAB

One of the major problems that verification engineers are
facing is the mismatch between the MATLAB reference
model and the RTL implementation. In the traditional design
flow, RTL designers make their own interpretation of the
specification when they implement the RTL. Verification
engineers build their own predictor based on the specification
and end up debugging both RTL and MATLAB models,
because the results do not match. To avoid this problem, the
HLS C++ model must be validated against the MATLAB
model. This can be done by using the MATLAB external C
interface (mex) [8] and instantiating the C++ model as a mex
function into the MATLAB testbench parallel to the original
device under test (DUT). This might require an additional
adaptation layer, if the original model is vector based and the
C++ function has a streaming interface. Functionality is
validated by comparing the outputs of both models.

The mex wrapper can be created manually or automatically
with the wrapper generator of the HLS tool. The wrapper file
must be modified if the signals in the DUT interface are

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

397

changed. Switching the port data types between floating-point
and fixed-point does not require wrapper modification,
because the MATLAB mex API does not support MATLAB
fixed-point data types. Conversion from double to fixed-point
type must be done in the adaptation layer or in the wrapper
itself.

Test coverage is typically analyzed in the RTL verification.
The same methodology can be applied in the C++ level to
ensure that the testbench is testing the full implementation.
High-level verification (HLV) provides the line and decision
coverage data at the C++ level to ensure that the MATLAB
test suite covers all corner cases handled by the C++ code.

D. Quantizing and Fine Tuning the HLS C++ Model

Fixed-point analysis and conversion, aka quantization, is a
critical task in HW design. Every additional bit increases the
design size, propagation delay and power consumption and
missing bits increase noise or may cause an overflow.

Quantization methodologies are well known. There are
many theoretical studies about quantization, but a fairly basic
methodology [9] is suitable for the most designs. Signal-to-
noise-ratio (SNR) based methodologies [10] give much better
accuracy, but usually the effort is far too high compared to the
benefit.

There are two categories of quantization methodologies:
analytic and simulation based. Usually both methodologies are
needed for fixed-point analysis of a system.

Analytic quantization methodology analyzes the number of
required bits based on the input bit width and operation type.
Addition, for example, adds one integer bit to the output word
length to avoid an overflow in any case. More advanced
methodologies also provide quantization noise modeling. The
analytic method is independent of the testbench quality and
gives reliable, but usually very conservative results.

Simulation based quantization analysis extracts the peak
absolute values and non-zero minimum absolute values or
minimum non-zero difference between two consecutive
samples during the simulation. This requires a pre-quantized
input that limits the minimum step size. The fixed-point
integer and fractional bit widths can be analyzed from these
results. This methodology is dependent on the stimulus quality
and often gives too conservative fractional bit widths, but is in
most cases the better starting point.

When the minimum and maximum absolute values are
available, the required fixed-point integer and fractional word
lengths can be calculated with nextpow2 function or with log2
function using Excel or a pocket calculator.

Nintbits = ceil(log2(maxval)) + sign

Nfracbits = floor(log2(minval))

With this information, the fixed-point type definitions can

be made in the type definitions file. The same type names
must be used for both floating-point and fixed-point types and
the type definitions must be separated with #ifdef macro to
fixed-point and floating-point segments.

Depending on the data types used, the fixed-point syntax

can be different. For the ac_fixed<> data type [6] the syntax is

ac_fixed<Totalbits, Integerbits, Signedness>

When the fixed-point type definitions are made, the C++
model can be switched to fixed-point mode, a new mex
wrapper can be generated and compiled and the fixed-point
C++ model can be simulated in MATLAB.

E. Exploring Different HW Architectures with HLS

Once the fixed-point C++ code is validated against the
MATLAB reference model, it can be loaded into the HLS tool
and synthesized with different constraints to explore the
performance, power consumption and area for FPGA or ASIC
technology targets. There is no need to touch the C++ code,
unless some coding style issues prevent reaching the desired
HW architecture. In such cases, the C++ code must be
modified and validated again against the MATLAB model.

III. DESIGN EXAMPLE

A. Model Analysis

The example design, a DOA estimator, is a single file
MATLAB model having no clearly defined DUT. The
comments in the code segment in Fig. 3 indicate that the
covariance matrix calculation could be the first DUT
operation. Yet, matrix x is a 10x200 complex matrix, whereas
the NN is only an 8x10 complex matrix. Furthermore, the for-
loop consumes more than 80% of the simulation time, so
limiting the DUT to the outer for-loop is a good compromise
between data traffic and acceleration efficiency.

Fig. 3 DUT section of the MATLAB model

Closer analysis of the inner for-loop reveals that the SS
vector values are only dependent on the loop counters and
constants d, theta and lambda, thus, the SS values are constant.
In HW they can be mapped to a ROM to make the HW
simpler and smaller. The SS values can be collected in a
matrix during the MATLAB simulation and stored into an
ASCII file for the C++ conversion.

The remaining two functional code lines make up the
accelerator core, which still has several operations. The first
two multiplications are vector by matrix multiplication. The
last multiplication is a dot product of two 10 element vectors.
Opening the statement to three individual lines in Fig. 4 helps
to understand the operations and to convert the statement to
C++.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

398

Fig. 4 Opened matrix multiplication statement

The last remaining MATLAB code line can be rewritten in
the form:

Pmusic(ii) = 1 / abs(PP);

This is a trivial operation that can be implemented with

library elements, so it can be left out of the analysis at the
moment.

Now it is time to extract the required data types. The max/
min value analysis of the variables is shown in Table I.

TABLE I

MAXIMUM AND MINIMUM VALUES OF MATLAB VARIABLES

Variable Maximum value Minimum value

NN 0.5854 0.0034330

SS 1.0000 0.0001196

SSNN 2.1474 n.a.

SSNN_NNtick 1.3352 n.a.

mexPP 9.9315 n.a.

Based on this analysis, only variables SS and
SSNN_NNtick can be grouped to the same datatype. Because
the difference to SSNN is one bit up and to NN one bit down,
we group all four variables together. This enables better reuse
of multipliers in low and medium concurrency
implementations. Data types for output variable mexPP and
the accumulator in the matrix multiplier must be defined
separately. In addition to the base data types, the complex
types must be defined as well. The resulting header file in Fig.
5 also has the fixed-point macro to switch between float and
fixed later.

Fig. 5 Type definition file after initial type analysis

The last part of the analysis phase is to specify the required
helper functions. From the MATLAB model in Fig. 4 we can
extract the required matrix operations. The first multiplication
is a vector by matrix. In the second multiplication, the matrix
NN is transposed. The third multiplication is a dot product,
where the right operand is transposed too. From this
information we can define a class hierarchy needed to
implement all required functions. Fig. 6 illustrates the class
structure.

Complex multiplication for direct form and complex

conjugate has a different operation between the products.
Programming both variants into the multiplier function
enables the matrix transpose to be done on-the-fly. The
multiply-accumulate function should detect automatically if
the data type is scalar or complex and select between the C++
multiply operation and complex multiplier function. Vector
dot product and vector by matrix multiply functions use this
class.

Fig. 6 Class hierarchy of complex matrix multiplier class

B. Model Conversion

After the analysis phase, we have a clear list of functions to
be implemented and the data types needed in the system. The
first step is to convert the matrix operations to C++.

The first class to implement is the complex multiply class.
Principally, this could be done by using the C++ multiply
operator, but the requirement of doing complex conjugation
prevents us from using it. The implementation of the class is
straightforward, defining an if-statement to switch between
normal and conjugate B modes. A template to parameterize
the data types and conjugate mode is needed to enable
instantiation of the block with different data types and
operating modes.

The multiply-accumulate class takes two vectors as input
parameters and calculates their dot product. Principally it is
just doing multiply-accumulate in the for-loop, but the
multiply operation is different for scalar and complex
variables.

Fig. 7 Implementation of type agnostic multiply-accumulate class

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

399

Automatic complex type detection requires a specialized
template that returns true if the template parameter is
ac_complex. This is equivalent to the MATLAB iscomplex()
function. Fig. 7 shows the complete implementation of the
multiply-accumulate class. This level of configurability is not
required in this design, but the same class library can be
reused in other designs too.

Implementation of the dot product function is easy. It is just
passing the template parameters to the instance of multiply-
accumulate class and calling the function. This class could
also be replaced by a direct call to multiply-accumulate.

Vector by matrix multiplication has more complexity. It has
two for-loops that scan through the matrix and pass two
vectors to the multiply-accumulate function. In case of on-the-
fly transpose, this function switches the indices of the matrix.
With this feature we can use one memory for the matrix and
transpose it on-the-fly, when it is necessary

Now the background work is done and the top-level
function can be implemented. Because we decided to leave the
reciprocal operation out of the scope in this phase, only the
matrix operations are implemented. The SS vector is mapped
to an input parameter that is passed from MATLAB model to
the function.

Fig. 8 Top-level matrix test function implementation

Implementation of the matrix test function in Fig. 8 has
only the three matrix multiply function calls. The data types
are ac_ieee_float64 corresponding to the double type in
MATLAB.

C. Validating C++ Functionality in MATLAB

The design can be loaded into the HLS tool for mex
wrapper generation, if it is supported by the tool. Alternatively
the mex wrapper can be created manually.

The generated mex function is instantiated into the
MATLAB model. The modified testbench in Fig. 9 has a
separate vector for the mexPP results that can be easily
compared against the original results. Direct comparison
inside the for-loop would also be possible, but the vector
approach allows graphical analysis of the results later, when
the model is quantized and the fixed-point effects are tested
against the floating-point MATLAB reference model.

Fig. 9 MATLAB testbench with mex function

MATLAB simulation with the floating-point mex function
should generate identical results. The logarithmic scale in Fig.
10 does not show any difference between the signals.

Fig. 10 Comparison of results MATLAB vs. floating-point C++

The difference view in Fig. 10 shows deviation in the level
of 10-15, which is normal for floating-point operations in this
scale. The mantissa of the IEEE double type is only 52 bits
and doing multiply and add operations in a different order can

cause this difference.

D. Quantizing and Fine Tuning the HLS C++ model

Once the floating-point behavior is correct, the design can

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

400

be converted to fixed-point. In this particular case it is useful
to quantize the matrix operations first. Division and square
root operations might cause unpredictable effects, so it is
better to analyze the safe operating conditions for the matrix
arithmetic separately.

Using the maximum and minimum values in Table I we can
calculate the fixed-point parameters for the three data types.
Table II shows the integer and fraction bit requirements for
these values.

TABLE II

FIXED-POINT WORD LENGTHS FOR INTERNAL VARIABLES

Variable Maximum Int bits Minimum Frac bits

NN 0.5854 0 + sign 0.0034330 9

SS 1.0000 1 + sign 0.0001196 14

SSNN 2.1474 2 + sign n.a.

SSNN_NNtick 1.3352 1 + sign n.a.

mexPP 9.9315 4 + sign n.a.

SSNN requires 3 integer bits. Because we have only one
test dataset available, at least one bit of additional headroom
should be given. We have no simulation values for the
accumulator available, so the data type must be analyzed
statically. Both inputs of the multiplier have 4 integer bits, so
with 8 integer bits overflow is excluded. Multiply-accumulate
(MAC) functions have 8 or 10 MAC operations, which need a
fully parallel implementation of an adder tree with 4 stages.
Each stage increases the number of integer bits by one.
Because the multiplication needs with the given maximum
values only 5 integer bits, 8 integer bits should be a safe value
for the accumulator too. Data output needs 5 integer bits, but
we start with 8 bits.

Because we use only one input data type, the number of
fractional bits must be calculated for the smallest minimum
value of all variables. SS requires 14 fractional bits. This is the
number to be used for all variables.

The fixed-point type definitions are

ac_fixed<18,4,true> for the input type
ac_fixed<22,8,true> for accumulator and output

When these type definitions are added into the header file

and the mode is switched to fixed-point by defining the
FIXED_POINT macro, a new mex file must be generated or
the hand coded mex wrapper must be modified to do the right
type conversions and a new mex object must be compiled.

Now we can change the fixed-point word lengths to test
how the design works with different fractional lengths.
Because the ac_fixed type has the number of integer bits
explicitly defined, changing the total word length
automatically changes the number of fractional bits.

By simulating the design with different word lengths and
storing the data into the MATLAB workspace, the influence
of the word length can be easily visualized.

In Fig. 11 the undermost curve is the floating-point
MATLAB result. Other curves represent different fixed-point
word lengths in the order of legend. The knee point of the
word length is 20 bits. With a higher number of bits the results

remain about the same, but below the 20 bits the quality of the
results decreases rapidly. The estimated 18 bits is still
acceptable, but not functionally optimal. A 20 bit input word
length would be optimal for the matrix multiply part of the
design, but this is not the whole truth. The reciprocal of the
magnitude is still missing.

Fig. 11 Fixed-point word length influence to matrix multiply results

The final implementation of the outer for-loop of the
MATLAB model requires the const array for the SS values
and a for-loop with 361 iterations. The SS vector must be
copied from the const array to a local variable that can be
passed as a parameter to two matrix multiply functions.

The abs function caused a surprise. The function call was
different for the ac_ieee_float64 and ac_fixed data types. It
was replaced by separated square and square root operations to
enable data type switching without conditional statements in
the functional C++ code. The synthesis results are the same
for both implementations, so the problem is only cosmetic.
The final top-level implementation is shown in Fig. 12.

Fig. 12 Top-level C++ code

The fixed-point analysis for the reciprocal statement was
made using a static analysis method.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

401

Fig. 13 Reciprocal output with different matrix multiply bit widths

The simulation results in Fig. 13 show that the matrix
multiplication word length has almost no influence on the
results, as long as it is at least 16 bits. The division output data
type determines the height of the peak. With all matrix
multiply word lengths up to 24 bits the notch value is zero,
which causes a divide by zero condition in the reciprocal
function. This is handled inside the function that returns the
maximum possible value of the output data type. With 15
integer bits the peak value is closest to the floating-point value
and works for the other values too.

E. Exploring Different HW Architectures with HLS

When the fixed-point behavior fulfills the requirements,
different HW implementations can be explored with HLS. The
synthesis tool is driven by constraints that control loop
transformations, memory architecture and pipelining. The
same C++ code can result in HW implementations from
minimum resource, long latency to fully parallel, minimum
latency architectures on different target technologies.

If the desired architecture cannot be reached, there might be
coding style issues that prevent synthesis from accessing some
resources in parallel. C-code problems can also be analyzed
with the HLS design checker tool or with conventional SW
analysis tools like lint or Valgrind. Sometimes the design is
simply too large to fit into the target FPGA device or too
complex to reach the latency requirements. In such cases the
algorithm must be revised.

The example design was synthesized with Catapult HLS
using Nangate 45nm CMOS target technology with 3 different
implementations.

Fig. 14 HLS Simulation results of the example design

The results in the Fig. 14 show the latency range from
136075 down to 4331 clock cycles. Because the main for-loop

runs 361 iterations, the latency of one iteration varies between
377 and 12 clock cycles. Each iteration does 170 complex
multiplications. The minimum resource implementation uses 4
multipliers and the minimum latency version uses 390.

An interesting case is the second implementation with
38262 clock cycles latency (102 cycles/iteration). It uses 39
multipliers and fits into a smaller FPGA or FPGA SoC. The
acceleration factor is still reasonable compared to a SW
implementation on an ARM core.

IV. CONCLUSIONS

A seamless, high abstraction level design flow from abstract
floating-point MATLAB model to RTL can be implemented
efficiently by using HLS. Automated RTL code generation
and verification removes the need for maintaining the RTL
model, which raises the overall abstraction level of the design
process.

The model functionality is converted from MATLAB to
C++ using floating-point data types to enable designers to
focus on the functionality without fixed-point effects. Easy
switching between floating-point and fixed-point makes
validation of functional changes easier.

The automated validation link between MATLAB and C++
and HLV enables continuous regression testing between the
two models and early verification of the design at the C++
level.

The proposed methodology has been developed together
with several design teams and tested by using multiple
designs. The whole process can be mastered by one engineer,
who knows both MATLAB and HW design. An ideal design
team has one MATLAB specialist, one RTL designer with
MATLAB knowledge and one verification engineer.

Each design is different and requires a workflow that fits a
particular project. This design methodology is a framework
that can be applied to different needs of the projects.

The example design was converted from the original
MATLAB model to synthesizable C++ code in one day
including the implementation of the matrix multiply class.

V. FUTURE WORK

Even though the presented methodology is proven to work,
there are still many details that need to be improved. Easy
switching between the floating-point and fixed-point modes
requires identical mathematical functions for both data types.
In addition to that, a comprehensive library of open source
HLS C++ classes for vector and matrix operations is needed to
speed up the conversion process.

REFERENCES
[1] H. Tang, “Examensarbete : DOA estimation based on MUSIC

algorithm”, Linnéuniversitätet Kalmar Växjö, 2014
[2] M.Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K. Brayton, A.

Sangiovanni-Vincentelli, “HW/SW Partitioning and Code Generation of
Embedded Control Applications on a Reconfigurable Architecture
Platform”, CODES+ISSS '04, 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2004.

[3] J. Noguera, R.M. Badia, “HW/SW Codesign Techniques for Dynamically
Reconfigurable Architectures“, IEEE Transactions on Very Large Scale

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

402

Integration (VLSI) Systems, vol. 10, no. 4, August 2002.
[4] H. Youness, A. Hussein, A. Mahfoz, “A new hardware/software

partitioning technique”, Tenth International Conference on Computer
Engineering & Systems (ICCES), Dec. 2015

[5] S. Banerjee, N. Dutt, “Efficient Search Space Exploration for HW-SW
Partitioning”, CODES+ISSS '04, 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2004.

[6] Mentor Graphics, “Algorithmic C (AC) Datatypes”, Reference manual,
2020,
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_re
f.pdf

[7] Open source HLS libraries, https://hlslibs.org/
[8] The MathWorks Inc., “C++ MEX Applications”, Matlab reference

manual, https://www.mathworks.com/help/matlab/cpp-mex-file-
applications.html

[9] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde and I. Bolsens, “A
Methodology and Design Environment for DSP ASIC Fixed Point
Refinement”, DATE 1999 Conference

[10] D. Menard, R. Rocher, O. Sentieys, “Analytical Fixed-Point Accuracy
Evaluation in Linear Time-Invariant Systems“, IEEE Transactions on
Circuits and Systems, vol. 55, no. 10, November 2008

