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Abstract—Many designers are asking for an automated path from 

an abstract mathematical MATLAB model to a high-quality Register-
Transfer Level (RTL) hardware description. Manual transformations 
of MATLAB or intermediate code are needed, when the design 
abstraction is changed. Design conversion is problematic as it is 
multidimensional and it requires many different design steps to 
translate the mathematical representation of the desired functionality 
to an efficient hardware description with the same behavior and 
configurability. Yet, a manual model conversion is not an 
insurmountable task. Using currently available design tools and an 
appropriate design methodology, converting a MATLAB model to 
efficient hardware is a reasonable effort. This paper describes a 
simple and flexible design methodology that was developed together 
with several design teams.  
 

Keywords—Design methodology, high-level synthesis, 
MATLAB, verification. 

I. INTRODUCTION 

ATLAB is the tool of choice in most algorithm 
development projects. Its built-in matrix operations, 

comprehensive toolboxes and advanced visualization 
capabilities provide a superior platform for complex algorithm 
development. Yet, the final implementations of the algorithms 
often require either a full hardware (HW) or software (SW) 
implementation with HW acceleration. The path from a 
floating-point MATLAB model to a working silicon is long.  

The classical methodology, writing RTL code manually 
starting from the abstract floating-point MATLAB model, is 
very painstaking and error prone. Not only re-coding the 
algorithm from a sequential program to a HW architecture, but 
also maintaining the integrity between the very different 
models is difficult. The gap between the abstractions is too 
large for traditional tool flows. Usually such a project needs 
multiple intermediate models and a multi-disciplinary team 
with several engineers. 

A new, simple design methodology is needed to improve 
the productivity and quality of the design. It should tackle both 
the design abstraction and validation problems and provide a 
flexible framework for different design needs. Also the SW 
implementation, HW/SW partitioning and late changes from 
HW to SW and vice versa must be taken in account. 

The purpose of this study was to find a simple workflow 
that minimizes the number of required models, can be 
mastered by one or two engineers and maintains the design 
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integrity throughout the process. 
A major part of the study focused on handling the model 

abstraction. Designers with different backgrounds have 
different approaches to handle this. HW designers think in 
terms of clock cycles, registers and signals, whereas algorithm 
developers deal with matrix operations, toolbox functions and 
function parameters. SW developers like object orientation 
and complex data structures. At least one of these three 
abstraction levels must be discarded. 

A good common denominator for all appeared to be the 
abstraction level of High-Level Synthesis (HLS) C++ that is 
syntactically close enough to MATLAB, but has also HW 
related features like arbitrary length data types and bit 
operations that give HW designers the possibility to influence 
the details. Embedded SW is usually written in C/C++, so all 
involved designer groups are taken into consideration. RTL 
code generated by HLS is supposed to be correct by 
construction. 

HLS alone does not solve the problem, but it enables a 
design methodology with higher abstraction level throughout 
the process. This methodology is introduced by using a 
Direction of Arrival (DOA) Estimator model as an example 
[1]. 

II. DESIGN METHODOLOGY 

The proposed workflow consists of five steps: 
A. Model analysis and partitioning to HW and SW 
B. Rewriting the HW part functionality in HLS C++ 
C. Validating C++ model functionality in MATLAB 
D. Quantizing and fine tuning HLS C++ model 
E. Exploring different HW architectures using HLS 

A. Model Analysis 

There are many studies describing very comprehensive 
methodologies for model analysis and HW/SW partitioning. 
Some of them are targeted to reconfigurable systems [2], [3] 
and some other are more generic [4], [5]. These methodologies 
are usually too complicated for real-life design projects. In 
most cases, the model analysis can be reduced to interface 
traffic and resource requirement estimations that can be done 
in MATLAB.  

The main purpose of a HW accelerator is to speed up the 
processing and decrease the processor load. Partitioning 
analysis should find the optimal interface between HW and 
SW and isolate the functionality of the accelerator. Many 
times the MATLAB model does not have a clear interface 
between the testbench and algorithm itself.  

Interface traffic is a critical metric in HW/SW systems. 
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Massively parallel number crunching HW is idle, if the 
interconnect passing the data between the processes is 
congested. This is a common mistake that can be avoided by 
careful analysis. 

In a MATLAB model the data traffic requirements can be 
estimated by analyzing the variable sizes and sample rates. 
The bigger the array, the more bandwidth and data transfer 
time is required. This can influence the efficiency of the 
acceleration by leading to unnecessary idle times. The data 
transfer time depends also on the interconnect type and 
interface architecture, so a rough overview of the desired HW 
architecture should be available at this time.  

Estimating resource requirements of a MATLAB code 
segment or a function has two simple options. One is the 
number of operations in the code that can be estimated by 
counting all arithmetic and comparison operations multiplied 
by the loop iteration count in the MATLAB code. This 
becomes problematic when the algorithm uses toolbox 
functions with no source code available. 

Another simple method is to run MATLAB simulation with 
timestamps to see how the execution time is split between the 
code segments. This method is not as accurate as the operation 
count, but it gives a good estimate and it also includes the 
toolbox functions.  

The HW partition should be selected so that it can be 
parallelized to get higher throughput and the data traffic does 
not become a bottleneck. The best accelerator efficiency can 
be reached in code segments that have a fixed dataset 
processed multiple times in the loop that can be unrolled in 
HLS. 

In addition to the interface and resource analysis we must 
analyze the required data types. A floating-point MATLAB 
model does not have any type definitions. All variables are 
double by default, whereas in synthesizable HLS C++ the 
variables have arbitrary length integer or fixed-point data 
types that are optimized for the value range of each variable. 

In the model analysis phase, the variable value ranges are 
analyzed to assess which variables can be grouped together 
with the same datatype to reduce the number of required type 
definitions. These are maintained in a separate header file to 
enable smooth transition between floating-point and fixed-
point later in the workflow. In this phase all datatypes are set 
to floating-point – either in double or ac_ieee_float64, which 
is a double equivalent in the open source Algorithmic C (AC) 
datatype [6].      

B. Rewriting the HW Part Functionality in HLS C++ 

This part of the flow is the real model conversion. Writing a 
C++ model with the same functionality as the original 
floating-point MATLAB model can be a simple syntax 
conversion, if the original model is using only basic operations 
and no matrix arithmetic like the main loop of the polyphase 
filter example in Figs. 1 and 2. 

MATLAB code with matrix operations or toolbox functions 
requires some more background work, because the 
functionality is hidden in the MATLAB language or library 
model. Open source HLS C++ implementations of matrix 

multiplication and several mathematical functions are 
available on the internet [7], which reduces the workload with 
the first design. Carefully written templated C++ class can be 
used as library IP in future projects. 

 

 

Fig. 1 MATLAB implementation of polyphase filter main loop 
 

 

Fig. 2 HLS C++ implementation of polyphase filter main loop 
 

Writing a missing function manually is like writing any 
helper function in a SW project. Interface, class hierarchy and 
datatype definitions are made in a similar way. Using 
templates to parameterize the data types, array dimensions and 
iteration counts helps in the next design steps and makes the 
model reusable. 

When the helper functions are available, the main 
MATLAB code can be converted to C++. Some MATLAB 
constructs like built-in index loops and persistent variable 
definitions must be rewritten. Other language structures are 
close to C.  

C. Validating C++ Functionality in MATLAB 

One of the major problems that verification engineers are 
facing is the mismatch between the MATLAB reference 
model and the RTL implementation. In the traditional design 
flow, RTL designers make their own interpretation of the 
specification when they implement the RTL. Verification 
engineers build their own predictor based on the specification 
and end up debugging both RTL and MATLAB models, 
because the results do not match. To avoid this problem, the 
HLS C++ model must be validated against the MATLAB 
model. This can be done by using the MATLAB external C 
interface (mex) [8] and instantiating the C++ model as a mex 
function into the MATLAB testbench parallel to the original 
device under test (DUT). This might require an additional 
adaptation layer, if the original model is vector based and the 
C++ function has a streaming interface. Functionality is 
validated by comparing the outputs of both models. 

The mex wrapper can be created manually or automatically 
with the wrapper generator of the HLS tool. The wrapper file 
must be modified if the signals in the DUT interface are 
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changed. Switching the port data types between floating-point 
and fixed-point does not require wrapper modification, 
because the MATLAB mex API does not support MATLAB 
fixed-point data types. Conversion from double to fixed-point 
type must be done in the adaptation layer or in the wrapper 
itself. 

Test coverage is typically analyzed in the RTL verification. 
The same methodology can be applied in the C++ level to 
ensure that the testbench is testing the full implementation. 
High-level verification (HLV) provides the line and decision 
coverage data at the C++ level to ensure that the MATLAB 
test suite covers all corner cases handled by the C++ code. 

D. Quantizing and Fine Tuning the HLS C++ Model 

Fixed-point analysis and conversion, aka quantization, is a 
critical task in HW design. Every additional bit increases the 
design size, propagation delay and power consumption and 
missing bits increase noise or may cause an overflow.  

Quantization methodologies are well known. There are 
many theoretical studies about quantization, but a fairly basic 
methodology [9] is suitable for the most designs. Signal-to-
noise-ratio (SNR) based methodologies [10] give much better 
accuracy, but usually the effort is far too high compared to the 
benefit. 

There are two categories of quantization methodologies: 
analytic and simulation based. Usually both methodologies are 
needed for fixed-point analysis of a system. 

Analytic quantization methodology analyzes the number of 
required bits based on the input bit width and operation type. 
Addition, for example, adds one integer bit to the output word 
length to avoid an overflow in any case. More advanced 
methodologies also provide quantization noise modeling. The 
analytic method is independent of the testbench quality and 
gives reliable, but usually very conservative results. 

Simulation based quantization analysis extracts the peak 
absolute values and non-zero minimum absolute values or 
minimum non-zero difference between two consecutive 
samples during the simulation. This requires a pre-quantized 
input that limits the minimum step size. The fixed-point 
integer and fractional bit widths can be analyzed from these 
results. This methodology is dependent on the stimulus quality 
and often gives too conservative fractional bit widths, but is in 
most cases the better starting point. 

When the minimum and maximum absolute values are 
available, the required fixed-point integer and fractional word 
lengths can be calculated with nextpow2 function or with log2 
function using Excel or a pocket calculator. 

  
Nintbits = ceil(log2(maxval)) + sign 

Nfracbits = floor(log2(minval)) 
 
With this information, the fixed-point type definitions can 

be made in the type definitions file. The same type names 
must be used for both floating-point and fixed-point types and 
the type definitions must be separated with #ifdef macro to 
fixed-point and floating-point segments.  

Depending on the data types used, the fixed-point syntax 

can be different. For the ac_fixed<> data type [6] the syntax is  
 

ac_fixed<Totalbits, Integerbits, Signedness> 
 

When the fixed-point type definitions are made, the C++ 
model can be switched to fixed-point mode, a new mex 
wrapper can be generated and compiled and the fixed-point 
C++ model can be simulated in MATLAB. 

E. Exploring Different HW Architectures with HLS 

Once the fixed-point C++ code is validated against the 
MATLAB reference model, it can be loaded into the HLS tool 
and synthesized with different constraints to explore the 
performance, power consumption and area for FPGA or ASIC 
technology targets. There is no need to touch the C++ code, 
unless some coding style issues prevent reaching the desired 
HW architecture. In such cases, the C++ code must be 
modified and validated again against the MATLAB model. 

III. DESIGN EXAMPLE 

A. Model Analysis 

The example design, a DOA estimator, is a single file 
MATLAB model having no clearly defined DUT. The 
comments in the code segment in Fig. 3 indicate that the 
covariance matrix calculation could be the first DUT 
operation. Yet, matrix x is a 10x200 complex matrix, whereas 
the NN is only an 8x10 complex matrix. Furthermore, the for-
loop consumes more than 80% of the simulation time, so 
limiting the DUT to the outer for-loop is a good compromise 
between data traffic and acceleration efficiency. 

 

 

Fig. 3 DUT section of the MATLAB model 
 

Closer analysis of the inner for-loop reveals that the SS 
vector values are only dependent on the loop counters and 
constants d, theta and lambda, thus, the SS values are constant. 
In HW they can be mapped to a ROM to make the HW 
simpler and smaller. The SS values can be collected in a 
matrix during the MATLAB simulation and stored into an 
ASCII file for the C++ conversion. 

The remaining two functional code lines make up the 
accelerator core, which still has several operations. The first 
two multiplications are vector by matrix multiplication. The 
last multiplication is a dot product of two 10 element vectors. 
Opening the statement to three individual lines in Fig. 4 helps 
to understand the operations and to convert the statement to 
C++. 
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Fig. 4 Opened matrix multiplication statement 
 

The last remaining MATLAB code line can be rewritten in 
the form:  

 
Pmusic(ii) = 1 / abs(PP); 

 
This is a trivial operation that can be implemented with 

library elements, so it can be left out of the analysis at the 
moment.  

Now it is time to extract the required data types. The max/ 
min value analysis of the variables is shown in Table I. 

 
TABLE I 

MAXIMUM AND MINIMUM VALUES OF MATLAB VARIABLES 

Variable Maximum value Minimum value 

NN 0.5854 0.0034330 

SS 1.0000 0.0001196 

SSNN 2.1474 n.a. 

SSNN_NNtick 1.3352 n.a. 

mexPP 9.9315 n.a. 

 

Based on this analysis, only variables SS and 
SSNN_NNtick can be grouped to the same datatype. Because 
the difference to SSNN is one bit up and to NN one bit down, 
we group all four variables together. This enables better reuse 
of multipliers in low and medium concurrency 
implementations. Data types for output variable mexPP and 
the accumulator in the matrix multiplier must be defined 
separately. In addition to the base data types, the complex 
types must be defined as well. The resulting header file in Fig. 
5 also has the fixed-point macro to switch between float and 
fixed later. 

 

 

Fig. 5 Type definition file after initial type analysis 
 

The last part of the analysis phase is to specify the required 
helper functions. From the MATLAB model in Fig. 4 we can 
extract the required matrix operations. The first multiplication 
is a vector by matrix. In the second multiplication, the matrix 
NN is transposed. The third multiplication is a dot product, 
where the right operand is transposed too. From this 
information we can define a class hierarchy needed to 
implement all required functions. Fig. 6 illustrates the class 
structure. 

Complex multiplication for direct form and complex 

conjugate has a different operation between the products. 
Programming both variants into the multiplier function 
enables the matrix transpose to be done on-the-fly. The 
multiply-accumulate function should detect automatically if 
the data type is scalar or complex and select between the C++ 
multiply operation and complex multiplier function. Vector 
dot product and vector by matrix multiply functions use this 
class. 

 

 

Fig. 6 Class hierarchy of complex matrix multiplier class 

B. Model Conversion 

After the analysis phase, we have a clear list of functions to 
be implemented and the data types needed in the system. The 
first step is to convert the matrix operations to C++. 

The first class to implement is the complex multiply class. 
Principally, this could be done by using the C++ multiply 
operator, but the requirement of doing complex conjugation 
prevents us from using it. The implementation of the class is 
straightforward, defining an if-statement to switch between 
normal and conjugate B modes. A template to parameterize 
the data types and conjugate mode is needed to enable 
instantiation of the block with different data types and 
operating modes. 

The multiply-accumulate class takes two vectors as input 
parameters and calculates their dot product. Principally it is 
just doing multiply-accumulate in the for-loop, but the 
multiply operation is different for scalar and complex 
variables.  

 

 

Fig. 7 Implementation of type agnostic multiply-accumulate class 
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Automatic complex type detection requires a specialized 
template that returns true if the template parameter is 
ac_complex. This is equivalent to the MATLAB iscomplex() 
function. Fig. 7 shows the complete implementation of the 
multiply-accumulate class. This level of configurability is not 
required in this design, but the same class library can be 
reused in other designs too. 

Implementation of the dot product function is easy. It is just 
passing the template parameters to the instance of multiply-
accumulate class and calling the function. This class could 
also be replaced by a direct call to multiply-accumulate. 

Vector by matrix multiplication has more complexity. It has 
two for-loops that scan through the matrix and pass two 
vectors to the multiply-accumulate function. In case of on-the-
fly transpose, this function switches the indices of the matrix. 
With this feature we can use one memory for the matrix and 
transpose it on-the-fly, when it is necessary 

Now the background work is done and the top-level 
function can be implemented. Because we decided to leave the 
reciprocal operation out of the scope in this phase, only the 
matrix operations are implemented. The SS vector is mapped 
to an input parameter that is passed from MATLAB model to 
the function. 

 

 

Fig. 8 Top-level matrix test function implementation 

Implementation of the matrix test function in Fig. 8 has 
only the three matrix multiply function calls. The data types 
are ac_ieee_float64 corresponding to the double type in 
MATLAB. 

C. Validating C++ Functionality in MATLAB 

The design can be loaded into the HLS tool for mex 
wrapper generation, if it is supported by the tool. Alternatively 
the mex wrapper can be created manually.  

The generated mex function is instantiated into the 
MATLAB model. The modified testbench in Fig. 9 has a 
separate vector for the mexPP results that can be easily 
compared against the original results. Direct comparison 
inside the for-loop would also be possible, but the vector 
approach allows graphical analysis of the results later, when 
the model is quantized and the fixed-point effects are tested 
against the floating-point MATLAB reference model. 

 

 

Fig. 9 MATLAB testbench with mex function 
 

MATLAB simulation with the floating-point mex function 
should generate identical results. The logarithmic scale in Fig. 
10 does not show any difference between the signals. 

 

 

 

Fig. 10 Comparison of results MATLAB vs. floating-point C++ 
 

The difference view in Fig. 10 shows deviation in the level 
of 10-15, which is normal for floating-point operations in this 
scale. The mantissa of the IEEE double type is only 52 bits 
and doing multiply and add operations in a different order can 

cause this difference. 

D. Quantizing and Fine Tuning the HLS C++ model 

Once the floating-point behavior is correct, the design can 
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be converted to fixed-point. In this particular case it is useful 
to quantize the matrix operations first. Division and square 
root operations might cause unpredictable effects, so it is 
better to analyze the safe operating conditions for the matrix 
arithmetic separately. 

Using the maximum and minimum values in Table I we can 
calculate the fixed-point parameters for the three data types. 
Table II shows the integer and fraction bit requirements for 
these values. 

 
TABLE II 

FIXED-POINT WORD LENGTHS FOR INTERNAL VARIABLES 

Variable Maximum Int bits Minimum Frac bits 

NN 0.5854 0 + sign 0.0034330 9 

SS 1.0000 1 + sign 0.0001196 14 

SSNN 2.1474 2 + sign n.a.  

SSNN_NNtick 1.3352 1 + sign n.a.  

mexPP 9.9315 4 + sign n.a.  

 

SSNN requires 3 integer bits. Because we have only one 
test dataset available, at least one bit of additional headroom 
should be given. We have no simulation values for the 
accumulator available, so the data type must be analyzed 
statically. Both inputs of the multiplier have 4 integer bits, so 
with 8 integer bits overflow is excluded. Multiply-accumulate 
(MAC) functions have 8 or 10 MAC operations, which need a 
fully parallel implementation of an adder tree with 4 stages. 
Each stage increases the number of integer bits by one. 
Because the multiplication needs with the given maximum 
values only 5 integer bits, 8 integer bits should be a safe value 
for the accumulator too. Data output needs 5 integer bits, but 
we start with 8 bits. 

Because we use only one input data type, the number of 
fractional bits must be calculated for the smallest minimum 
value of all variables. SS requires 14 fractional bits. This is the 
number to be used for all variables. 

The fixed-point type definitions are 
 

ac_fixed<18,4,true> for the input type 
ac_fixed<22,8,true> for accumulator and output 

 
When these type definitions are added into the header file 

and the mode is switched to fixed-point by defining the 
FIXED_POINT macro, a new mex file must be generated or 
the hand coded mex wrapper must be modified to do the right 
type conversions and a new mex object must be compiled. 

Now we can change the fixed-point word lengths to test 
how the design works with different fractional lengths. 
Because the ac_fixed type has the number of integer bits 
explicitly defined, changing the total word length 
automatically changes the number of fractional bits. 

By simulating the design with different word lengths and 
storing the data into the MATLAB workspace, the influence 
of the word length can be easily visualized. 

In Fig. 11 the undermost curve is the floating-point 
MATLAB result. Other curves represent different fixed-point 
word lengths in the order of legend. The knee point of the 
word length is 20 bits. With a higher number of bits the results 

remain about the same, but below the 20 bits the quality of the 
results decreases rapidly. The estimated 18 bits is still 
acceptable, but not functionally optimal. A 20 bit input word 
length would be optimal for the matrix multiply part of the 
design, but this is not the whole truth. The reciprocal of the 
magnitude is still missing. 

 

 

Fig. 11 Fixed-point word length influence to matrix multiply results 
 

The final implementation of the outer for-loop of the 
MATLAB model requires the const array for the SS values 
and a for-loop with 361 iterations. The SS vector must be 
copied from the const array to a local variable that can be 
passed as a parameter to two matrix multiply functions. 

The abs function caused a surprise. The function call was 
different for the ac_ieee_float64 and ac_fixed data types. It 
was replaced by separated square and square root operations to 
enable data type switching without conditional statements in 
the functional C++ code. The synthesis results are the same 
for both implementations, so the problem is only cosmetic. 
The final top-level implementation is shown in Fig. 12. 

 

 

Fig. 12 Top-level C++ code 
 

The fixed-point analysis for the reciprocal statement was 
made using a static analysis method. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:9, 2020

401

 

 

 

Fig. 13 Reciprocal output with different matrix multiply bit widths 
 

The simulation results in Fig. 13 show that the matrix 
multiplication word length has almost no influence on the 
results, as long as it is at least 16 bits. The division output data 
type determines the height of the peak. With all matrix 
multiply word lengths up to 24 bits the notch value is zero, 
which causes a divide by zero condition in the reciprocal 
function. This is handled inside the function that returns the 
maximum possible value of the output data type. With 15 
integer bits the peak value is closest to the floating-point value 
and works for the other values too. 

E. Exploring Different HW Architectures with HLS 

When the fixed-point behavior fulfills the requirements, 
different HW implementations can be explored with HLS. The 
synthesis tool is driven by constraints that control loop 
transformations, memory architecture and pipelining. The 
same C++ code can result in HW implementations from 
minimum resource, long latency to fully parallel, minimum 
latency architectures on different target technologies. 

If the desired architecture cannot be reached, there might be 
coding style issues that prevent synthesis from accessing some 
resources in parallel. C-code problems can also be analyzed 
with the HLS design checker tool or with conventional SW 
analysis tools like lint or Valgrind. Sometimes the design is 
simply too large to fit into the target FPGA device or too 
complex to reach the latency requirements. In such cases the 
algorithm must be revised. 

The example design was synthesized with Catapult HLS 
using Nangate 45nm CMOS target technology with 3 different 
implementations.  

 

 

Fig. 14 HLS Simulation results of the example design 
 

The results in the Fig. 14 show the latency range from 
136075 down to 4331 clock cycles. Because the main for-loop 

runs 361 iterations, the latency of one iteration varies between 
377 and 12 clock cycles. Each iteration does 170 complex 
multiplications. The minimum resource implementation uses 4 
multipliers and the minimum latency version uses 390.  

An interesting case is the second implementation with 
38262 clock cycles latency (102 cycles/iteration). It uses 39 
multipliers and fits into a smaller FPGA or FPGA SoC. The 
acceleration factor is still reasonable compared to a SW 
implementation on an ARM core. 

IV. CONCLUSIONS 

A seamless, high abstraction level design flow from abstract 
floating-point MATLAB model to RTL can be implemented 
efficiently by using HLS. Automated RTL code generation 
and verification removes the need for maintaining the RTL 
model, which raises the overall abstraction level of the design 
process. 

The model functionality is converted from MATLAB to 
C++ using floating-point data types to enable designers to 
focus on the functionality without fixed-point effects. Easy 
switching between floating-point and fixed-point makes 
validation of functional changes easier. 

The automated validation link between MATLAB and C++ 
and HLV enables continuous regression testing between the 
two models and early verification of the design at the C++ 
level. 

The proposed methodology has been developed together 
with several design teams and tested by using multiple 
designs. The whole process can be mastered by one engineer, 
who knows both MATLAB and HW design. An ideal design 
team has one MATLAB specialist, one RTL designer with 
MATLAB knowledge and one verification engineer. 

Each design is different and requires a workflow that fits a 
particular project. This design methodology is a framework 
that can be applied to different needs of the projects. 

The example design was converted from the original 
MATLAB model to synthesizable C++ code in one day 
including the implementation of the matrix multiply class. 

V.  FUTURE WORK 

Even though the presented methodology is proven to work, 
there are still many details that need to be improved. Easy 
switching between the floating-point and fixed-point modes 
requires identical mathematical functions for both data types. 
In addition to that, a comprehensive library of open source 
HLS C++ classes for vector and matrix operations is needed to 
speed up the conversion process. 
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