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Abstract—In this study, the calculations of proton emission 

spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in 
the framework of preequilibrium models using the EMPIRE code and 
TALYS code. Exciton Model predidtions combined with the Kalbach 
angular distribution systematics and the Hybrid Monte Carlo 
Simulation (HMS) were used. The effects of levels densities and 
those of a-parameter have been investigated for our calculations. The 
comparison with experimental data shows clear improvement over 
the Exciton Model and HMS calculations. 
 

Keywords—Preequilibrium models, level density, level density 
a-parameter, 63Cu(n,xp) and 65Cu(n,xp) reactions.  

I. INTRODUCTION 

HE calculations of proton emission spectra produced by 
(n, xp) reactions are indispensable for design of nuclear 

devices and the development of high quality nuclear data of 
copper is particularly important due to its role as an important 
structural material in many accelerator-driven system designs. 
Natural copper consists of two isotopes, that is 63Cu (69, 17%) 
and 65Cu (30, 83%). In this work, a consistent selection of 
preequilibrium models, statistical model, optical model and 
level densities represent the physics core in present 
calculation. The cross sections for the emission of proton on 
63Cu and 65Cu are calculated for incident neutron energies of 
9, 11, 14.8, and 15 MeV in the framework of preequilibrium 
and equilibrium models using EMPIRE 3.2 code [1] and 
TALYS 1.8 code [2], where the sensitivity of some parameters 
as the level density, level density a-parameter and optical 
model are considered. Some input parameters as spin cutoff 
parameter, single-particle level density g, mean free path, 
pairing correction, M2constant, M2limit and M2shift from 
squared matrix element have been taken in account in our 
calculations using EMPIRE 3.2 code [1] and TALYS 1.8 code 
[2], but not shown in this work. The detailed description is 
given in [3], [4].  

II. FORMULA OF THEORETICAL MODELS  

The phenomenological pre-equilibrium mechanism as 
defined by [5] is the exciton model. Two versions of the 
exciton model are implemented in TALYS code [2]: the 
default is the two-component model in which the neutron or 
proton particles and holes are followed throughout the 
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reaction. The preequilibrium differential cross section for the  
emission of a particle k with emission energy Ek can be 
expressed in terms of the lifetime of exciton state (pπ, hπ, pν, 
hν) τ, the composite nucleus formation cross section σCF, and  
an emission rate Wk  

 

𝜎 ∑ ∑ 𝑊 𝑝 , ℎ , 𝑝, , ℎ , 𝐸
 

𝜏 𝑝 , ℎ , 𝑝, , ℎ

𝑃 𝑝 , ℎ , 𝑝, , ℎ (1) 
 

where the factor P represents the part of the preequilibrium 
population that has survived emission from the previous states 
and passes through the (pπ, hπ, pν, hν) configurations, averaged 
over time. The lifetime τ of exciton state (pπ, hπ, pν, hν) in (1) is 
defined as the inverse sum of the total emission rate and the 
various internal transition rates 
 

𝜏 𝑝 , ℎ , 𝑝, , ℎ

𝜆 𝑝 , ℎ , 𝑝, ℎ 𝜆 𝑝 , ℎ , 𝑝, ℎ

𝜆 𝑝 , ℎ , 𝑝, ℎ 𝜆 𝑝 , ℎ , 𝑝, ℎ
𝑊 𝑝 , ℎ , 𝑝, ℎ

 (2) 

  
In the one-component exciton model as implemented in 

PCROSS module of EMPIRE [1], the phenomenological pre-
equilibrium mechanism as defined by [5] is based on the 
solution of the master equation [6] proposed by [7] and [8]. 
The pre-equilibrium spectra in this model are given as: 

 
, 𝜖 𝜎 , 𝐸 𝐷 , 𝐸 ∑ 𝑊 𝐸, 𝑛, 𝜖 𝜏 𝑛  (3) 

 
where 𝜖   is the emission energy for the emission of a particle 
b, 𝜎 , 𝐸  the cross section of the reaction (a, b), 
𝑊 𝐸, 𝑛, 𝜖  the  probability of emission of a particle of type b 
(or gamma ray) with energy 𝜖  from a state with n excitons 
and excitation energy 𝐸 of the compound nucleus, and 
𝐷 , 𝐸  the depletion factor which takes into account the 
decrease in the available cross section due to the particle 
emission by direct interaction with low excitation energy 
levels of the target nucleus and given by 
 

𝐷 , 𝐸 1 ,

,
                                  (4) 

 

where 𝜎 , 𝐸  is the direct reaction cross section. 
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Fig. 1 Effect of the level density a-parameter on the proton emission spectrum for 63Cu(n, xp) at 9 MeV incident neutron energy and at different 
emission angles (continuous and dashed lines) compared to the experimental data (solid squares) [13] 
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III. RESULTS AND DISCUSSION 

The calculated double differential cross sections for 63Cu(n, 
xp) nuclear reaction at 9 and 11 MeV neutron incident 
energies and the proton emission spectra at 9 and 14.8 MeV 
have been illustrated in Figs. 1-6. We used the statistical 
model of the Hauser-Feshbach theory [9] to describe the 

equilibrium emission from the compound nucleus. In the 
framework of exciton model [5], we calculated the double 
differential cross sections and the proton emission with 
PCROSS module of the EMPIRE [1] combined with Kalbach 
angular distributions systematics [10]. 
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Fig. 2 (a) Comparison among double-differential cross sections as calculated with HFBM [14] (for 51- and 79-deg emission angles), and the 
Fermi Gas Model nuclear level densities 
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Fig. 2 (b) Comparison among double-differential cross sections as calculated with HFBM [14) (for 109-deg emission angle), the GSM level 
density [15] (for 141-deg emission angle), and the Fermi Gas Model nuclear level densities 

 
At 9 MeV neutron incident energies for different angles 

emission (30°, 60° and 120°), the optical model parameters of 
[11] have been used for neutrons. For protons, the local and 
global nucleon optical models of [12] have been used. The 
Fermi-Gas Model nuclear level densities are very consistent in 
the cross sections calculated where the changes on the level 
density a-parameter affect the fit. This is done with the Atilno 
input parameter and the level density a-parameter has been 
multiplied by 0.50. The calculated cross sections were 
compared to the experimental data of [13] as shown in Fig. 1. 

At the same 9 MeV neutron incident energies but at 
different angles emission (51°, 79°, 109° and 141°), the local 
and global nucleon optical models of [12] have been used for 
neutrons and protons. As shown in Figs. 2 (a) and (b), the 
microscopic level density of Hartree-Fock-Bogoliubov (HFB) 
[14] and the Generalized Superfluid Model (GSM) level 
density [15] affect the shape of the curves. The calculated 
double differential cross sections are in good agreement with 
the experimental data of [16]. 
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Fig. 3 (a) Effect of the level density a-parameter on the proton emission spectrum for 63Cu(n, xp) reaction at 11-MeV incident neutron energy 
and at different emission angles (continuous and dashed lines) compared to the experimental data (solid squares) [13] 
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Fig. 3 (b) Effect of the level density a-parameter on the proton emission spectrum for 63Cu(n, xp) reaction at 11-MeV incident neutron energy 
and at different emission angles (continuous and dashed lines) compared to the experimental data (solid squares) [13] 

 
At 11 MeV neutron incident energies and for different 

angles emission (30°, 60°, 105° and 130°), the local and global 
nucleon optical models of [12] have been used for neutrons 
and protons. The double differential cross sections calculated 
are shown in Figs. 3 (a) and (b). However, the calculated 
results are inconsistent with the experimental data [13] below 
proton emission energy 4 and 6 MeV at 9 and 11 MeV neutron 
incident energies as shown in Figs. 1 and 3, respectively. We 
can say that at low energies, the equilibrium effect is small. 

The number of particle-hole pairs excited is small too and it 
increases with increasing incident energy. So the contribution 
of (n, xp) is more or less negligible below proton emission 
energy 4 and 6 MeV. The level density a-parameter modified 
is the best agreement with the experimental values [13] for the 
proton emission energy region above 4-11 MeV, and the 
contributions are from the (n, p) and (n, np) reactions cross 
sections. 
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Fig. 4 Comparison between calculated angle-integrated proton particle emission spectra with HFBM [14] and Fermi Gas Model nuclear level 
density (continuous and dashed lines) for 63Cu(n, xp) reaction to the experimental data (open squares) [16] from 9-MeV neutron energy 

induced using the Exciton Model [5] 
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Fig. 5 Comparison between calculated angle-integrated proton particle emission spectra with HFBM [14] and Fermi Gas Model nuclear level 
density (continuous and dashed lines) for 63Cu(n, xp) reaction to the experimental data [17] from 14.8-MeV neutron energy induced using the 

Exciton Model [5] 
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Fig. 6 Comparison between calculated total cross section with HFBM [14] and Fermi Gas Model nuclear level density (continuous and dashed 
lines) for 63Cu(n, xp) reaction to the experimental data in neutron energy range from 2.0 to 15.5 MeV using the Exciton Model [5] 

 
Fig. 4 shows the principal input parameters used in the 

Exciton Model (PCROSS) calculations. The local and global 
nucleon optical models of [12] have been used for neutrons 
and protons and the HFBM level density [14] is used. At 
incident neutron energies of 9 MeV, we obtain good 
agreement between our calculation and the experimental data 
of [16] as shown in Fig. 4. 

Fig. 5 shows the proton emission energy spectra for n+ 63Cu 
reaction at 14.8 MeV neutron energy, as measured by [17]. In 
our study, the Coupled Channels Method with the optical 
model parameters of [18] for direct inelastic scattering and the 
microscopic level density in terms of HFB model [14] have 
been used. The shape and magnitude of theoretical calculated 
results with EMPIRE 3.2 [1] are in good agreement with those 
of experimental data [16]. 

The calculated total cross section is in a good agreement 
compared to the experimental data [13], [16], [17], [19], [20] 
in neutron energy range from 2.0 to 15.5 MeV as shown in 
Fig. 6. Here, we used the same optical model and level density 
as used in proton emission energy spectra for n+ 63Cu reaction 
at neutron energy 14.8 MeV. 

For 65Cu(n, xp) reaction, the phenomenological Gilbert-
Cameron Model [21], the basic relations of the Fermi Gas 
Model, the GSM level density [15], the microscopic 
combinatorial level density HFB model of [14] and the Back 
Shifted Fermi Gas Model [22] as included in RIPL-3 [23], are 
used in this work. The calculated double-differential cross 
sections for the 65Cu(n, xp) nuclear reaction at 9-and 11-MeV 
incident neutron energies, the proton emission spectra at 14.8 
MeV and the calculated total cross section in neutron energy 
range from 9.0 to 15.0 MeV are illustrated in Figs. 7-10. We 
used a statistical model that is an advanced implementation of 
the Hauser-Feshbach theory [9] to describe the equilibrium 

emission from the compound nucleus. The local and global 
nucleon optical models of [12] have been used for neutrons 
and protons for all the calculations by using the TALYS code 
[2]. 

At 9-MeV incident neutron energy and for different 
emission angles (30°, 60° and 120°), the double-differential 
cross sections calculated are shown in Fig. 7. In the 
framework of exciton model [5] using PCROSS module of 
EMPIRE [1] combined with Kalbach angular distribution 
systematics [10], the optical model parameters of [11] have 
been used for neutrons and for protons, the optical model 
parameters of [24] have been chosen. The HFBM microscopic 
level density [14] is used. However, choosing the level density 
models and the number of discrete levels may fail; we may be 
forced to adjust the level density parameters themselves. 
These are done with the ROHFBA input parameter (HFB 
pseudo a-parameter to adjust numerical HFB level densities 
for nucleus), and set to -0.920 in 65Cu. In the framework of 
HMS model [25] using DDHMS module of EMPIRE code [1], 
we choose the same microscopic level density HFBM [14], 
and we use the ROHFBP input parameter (HFB pairing-like 
parameter to shift in energy numerical HFB level densities for 
nucleus), that is set to –5.000 in all nuclei. The optical models 
for neutrons [11] and protons [24] are the same as those used 
in PCROSS module of EMPIRE code [1]. In the framework of 
TALYS code [2], the GSM level density [15] is used and the 
level density a-parameter is set to 5.1 in 65Cu. The level 
density parameter for both level densities models (HFBM [14] 
and GSM [15]) affects the shape of the curves. At 9-MeV 
incident neutron energies, the results using the TALYS code 
[2] code for 65Cu(n, xp) reaction are closer to experiment [13] 
than those used with the PCROSS and DDHMS modules of 
the EMPIRE code [1]. 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:14, No:9, 2020

219

 

 

0 1 2 3 4 5 6 7 8 9

1E-10

1E-7

 TALYS 1.8;  

(The level density 

a-parameter for 65Cu 

is calculated by default 

from systematics  

of eq.(4.241) 

of  the TALYS 1.8 code);



 299,27

 TALYS 1.8; 

(The level density a-parameter 

 for 65Cu is set to 5.1); 

 5,98

 Ahmad et al., 1987

 EMPIRE 3.2 

(PCROSS);  the ROHFBA level 

density for 
65

Cu is set to by 

default from RIPL3

 37,00

 EMPIRE 3.2 

(PCROSS); the ROHFBA level 

density for 65Cu is set to -0.920



 11,21

EMPIRE 3.2                

(DDHMS); (the ROHFBP level density        

 is set to -5.000 in all nuclei


 EMPIRE 3.2
DDHMS; the ROHFBP level density 

is set to by default from RIPL3 in all nuclei
  
                                                 
                                                  

65Cu(n, xp); Ei 9.00 MeV ; An 30° 

d2 
d

E
/d

b

/e
V

/s
r

Ep (MeV)

0 1 2 3 4 5 6 7 8 9

1E-11

1E-9

1E-7

 EMPIRE 3.2 

(DDHMS); (the ROHFBP level density        

 is set to -5.000 in all nuclei


 EMPIRE 3.2
DDHMS; the ROHFBP level density 

is set to by default from RIPL3 in all nuclei
  
                                                 
                                                  

 EMPIRE 3.2 (PCROSS);

the ROHFBA level density 

for 65Cu is set to -0.920



 14,54

 EMPIRE 3.2 

(PCROSS); the ROHFBA level 

density for 
65

Cu is set to by 

default from RIPL3

 35,27 

 TALYS 1.8;  

(The level density 

a-parameter for 65Cu 

is calculated by default 

from systematics  of 

eq.(4.241) of  the 

TALYS 1.8 code); 



 306,11

 TALYS 1.8; 

(The level density a-parameter 

 for 65Cu is set to 5.1); 

 5,71

  Ahmad et al., 1987.

65Cu(n, xp); Ei 9.00 MeV ; An 60° 

d2 
d

E
/d

b

/e
V

/s
r

Ep (MeV)

0 1 2 3 4 5 6 7 8 9

1E-11

1E-9

1E-7

 EMPIRE 3.2                

(DDHMS); (the ROHFBP level density        

 is set to -5.000 in all nuclei


 EMPIRE 3.2
DDHMS; (the ROHFBP level density 

is set to by default from RIPL3 in all nuclei); 
  
                                                 
                                                  

 TALYS 1.8;  

(The level density a-

parameter for 65Cu 

is calculated by 

default from 

systematics  

of eq.(4.241) of  the 

TALYS 1.8 code); 



 371,12

 TALYS 1.8; (The level 

density a-parameter for 65Cu is 

set to 5.1); 

 6,32

 EMPIRE 3.2 

(PCROSS); the ROHFBA level 

density for 
65

Cu is set to by 

default from RIPL3

 32,46

 Ahmad et al., 1987

 EMPIRE 3.2 

(PCROSS); the ROHFBA 

level density for 65Cu is set

 to -0.920

 6,61

65Cu(n, xp); Ei 9.00 MeV ; An 120° 

d2 
d

E
/d

b

/e
V

/s
r

Ep (MeV)
 

Fig. 7 Effect of the level density a-parameter on the proton emission spectrum for 65Cu(n, xp) reaction at 9-MeV incident neutron energy and at 
different emission angles (continuous and dashed lines) compared to the experimental data [13] (solid stars) 
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At 11-MeV incident neutron energy and for different 
emission angles (30°, 60°, 105° and 130°), the optical models 
for neutrons and protons are the same as those used at 9-MeV 
incident neutron energies. The ROHFBA input parameter is 
set to -0.61 in 65Cu in both PCROSS and DDHMS modules of 
EMPIRE code [1]. Using TALYS code [2], the level density 
a- parameter is set to 5.2 in 65Cu. As shown in Figs. 8 (a) and 
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the shape of the curves. 

As shown in Fig. 9, the optical model parameters of [26] 
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parameters of [27] have been chosen. The level density 
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parameter of the Fermi gas model modified has the best 
agreement with the experimental values [17] for the proton 
emission at 14.8-mev neutron energy. 
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Fig. 8 (a) Effect of the level density a-parameter on the proton emission spectrum for 65Cu(n, xp) reaction at 11-MeV incident neutron energy 
and at different emission angles (continuous and dashed lines) compared to the experimental data [13] (solid stars) 
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Fig.8 (b) Effect of the level density a-parameter on the proton emission spectrum for 65Cu(n, xp) reaction at 11-MeV incident neutron energy 
and at different emission angles (continuous and dashed lines) compared to the experimental data [13] (solid stars) 

 
The calculated total cross section in the neutron energy 

range from 2.0 to 15.5 MeV is shown in Fig. 10. By using the 
PCROSS module of EMPIRE code [1], the local and global 
nucleon optical models of [12] have been used for neutrons 
and protons. The level density of [21] used in PCROSS 
module of EMPIRE code [1] and the Back Shifted Fermi Gas 
Model [22] used in TALYS code [2] affect strongly the shape 
of the curve. The calculated total cross section is in a good 
agreement compared to the experimental data [13], [17], [20]. 

IV. CONCLUSION 

For 63Cu(n,xp) and 65Cu(n,xp) reactions, we have analyzed 
the calculated double differential cross sections, angle-

integrated calculations and the calculated proton emission 
cross section of (n, x) reactions on 63Cu and 65Cu targets using 
nuclear reaction model in EMPIRE 3.2 [1] and TALYS 1.8 
codes [2]. Our results show that the calculations of the pre- 
equilibrium in terms of exciton model for 63Cu(n, xp) and 
65Cu(n,xp) reactions show the similar behavior with the 
experimental data [13], [16], [17], [19], [20]. The calculated 
double differential cross sections for 65Cu(n, xp)63Ni reaction 
in terms of Hybrid Model Simulation (HMS) with the 
Ignatyuk systematics [25] are in a good agreement with the 
experimental result [13]. Also, the different level density 
models used and the changed on the level density a-parameter 
affect strongly the fit for 63Cu(n, xp) and 65Cu(n,xp) reactions. 
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For all the figures shown in this paper, the EMPIRE [1] and 
TALYS [2] results show that the lower 𝜒  value gives a 

significantly better fit when compared to the experimental 
results [13], [16], [17], [19], [20]. 
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Fig. 9 Effect of the level density a-parameter on the proton emission spectrum for 65Cu(n, xp) reaction at 14.8 MeV incident neutron energy 
(continuous and dashed lines) compared to the experimental data [17] (solid stars) 
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Fig. 10 Comparison between calculated total cross section with Gilbert and Cameron level density [21], Back-Shifted Fermi Gas [22] and 
Fermi Gas Model nuclear level density (continuous and dashed lines) for 65Cu(n, xp) reaction to the experimental data [13], [17] and [20] in 

neutron energy range from 9.0 to 15.0 MeV using the Exciton Model [5] 
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