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Solitons and Universes with Acceleration Driven by
Bulk Particles
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Abstract—Considering a scenario where our universe is taken
as a 3d domain wall embedded in a 5d dimensional Minkowski
space-time, we explore the existence of a richer class of solitonic
solutions and their consequences for accelerating universes driven by
collisions of bulk particle excitations with the walls. In particular it
is shown that some of these solutions should play a fundamental role
at the beginning of the expansion process. We present some of these
solutions in cosmological scenarios that can be applied to models
that describe the inflationary period of the Universe.
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I. INTRODUCTION

THE great majority of problems in physics is described

by nonlinear differential equations. Fortunately it has

been possible to simplify and obtain reliable and measurable

results for some physical systems by means of approximations,

effective theories and phenomenological models. Particularly,

very important systems described by quantum field theories are

intrinsically nonlinear; the Standard Model and the Quantum

Chromodynamics are classical examples. By exploring deeply

such systems or effective non-linear models, even at the

classical level, one has shown the increasing importance of the

soliton solutions (classical solutions with finite and localized

energy) and their broad applications [2]-[5]. Soliton solutions

in quantum field theory describe, for instance, monopoles,

magnetic vortices, instantons in quantum chromodynamics,

cosmic strings and magnetic domain walls. Finding exact

classical solutions, particularly solitons, is one of the problems

on nonlinear models with interacting fields. When one has in

hands a systematic method, as the one offered by Rajaraman

[6], things become much easier, even though one has to

explore the consequences of the classical solutions, as well

as their possible realizations in the nature. As pointed out

by Rajaraman and Weinberg [7], in such nonlinear models

more than one time-independent classical solution can exist

and each one of them corresponds to a different family of

quantum states, which come into play when one performs a

perturbation around those classical solutions. One can raise

several questions about those classical solutions: How to find

different soliton solutions? Are the quantum states stable?

What further consequences do different soliton solutions bring

into play?
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The method in [6], usually called trial orbits method,

is a very powerful one presented for finding exact soliton

solutions for non-linear second-order differential equations

of models with two interacting relativistic scalar fields in

1+1 dimensions, and it is model independent. Bazeia et

al. [8] have applied the trial orbits method to the special

cases whose soliton solutions of the non-linear second-order

differential equations are equivalent to the soliton solutions

of first-order non-linear coupled differential equations, the

so called Bolgomol’nyi-Prasad-Sommerfeld (BPS) topological

soliton solutions [9]. A couple of years ago one us presented

a method for finding additional soliton solutions for those

special cases whose soliton solutions are the BPS ones [10]

and last year that approach was extended, allowing more

general models [11]. Furthermore, that method shows the

general equation of the orbits, explains how the different

solutions connect the different vacua of the model under

analysis and, as a novelty, presents a class of soliton solution

with a kink-like profile for both fields with its minimum energy

(BPS energy) smaller than that of the usual solution which

exhibits a kink-like configuration for one of the fields and

a lump-like configuration for the other one. Moreover, the

stability of the quantum states corresponding to these new

soliton solutions can be shown on the same basis presented

in [12].

The BPS soliton solutions have found applications in a

great variety of natural systems whose dynamics can be

approximately described by non-linear quantum field models

for interacting scalar fields in 1+1 dimensions [13]. Those kind

of models have, for example, been generalized by including

into the Lagrangian density some minimal terms that break

Lorentz and CPT symmetries [14]. Following the important

route in analyzing the consequences of additional soliton

solutions in a given non-linear model, some of us have shown

[15], by using the method developed in [10], that those

nonlinear Lorentz breaking models in 1+1 dimensions exhibits

additional soliton solutions whose BPS energies are smaller

than those found in [14] and that even more general Lorentz

breaking models in 1+1 dimensions, which admits soliton

solutions, can be built.

In this paper we explore more deeply the classical solutions

found in [10] in the nonlinear model of two interacting

scalar fields in 1+1 dimensions [8]. In special, we analyze

the consequences that those additional soliton solutions bring

for the scenario of accelerating universes. This scenario was

recently conceived by Brito et al. [1] and it is within the

context of the extra-dimensions [16]-[22]. Our analysis is done

by following a similar approach to that of [1]. The impact

over the expansion scenario of a class of degenerate soliton
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solutions [23] is here explored. It is shown that, for a critical

value of the degeneracy parameter, the reflection of the bulk

particles over the wall becomes total, and this happens for the

lightest particles which, due to this, should be the first to be

created.

In the second section we present the model we are going

to work with and review the approach introduced in [10] to

find classical soliton solutions. In the third section we discuss

the variety of soliton solutions that have been found up to

now, by using the method described in the second section; we

also present the BPS energy of each set of solutions. In the

fourth section, we discuss the influence of each set of soliton

solutions in the context of accelerating universes driven by

the quantum states (bulk particles) found in the third section.

Finally we address final comments about the impact of some

soliton solutions over the original expanding process in the

last section.

II. A NONLINEAR MODEL FOR TWO INTERACTING

SCALAR FIELDS: FINDING SOLITON SOLUTIONS

The model we consider here was introduced before to study

BPS soliton solutions [8]. It consists of two interacting real

scalar fields in 1+1 dimensions and it is reminiscent of other

models studied previously [7], [24]. It is described by the

Lagrangian density

L =
1

2
(∂μφ)

2 +
1

2
(∂μχ)

2 − V (φ, χ), (1)

where the potential is given by

V (φ, χ) =
1

2
λ2(φ2−a2)2+(2μ2+λ μ)φ2χ2−λ μ a2 χ2+

1

2
μ2χ4.

(2)

The distinctive property of this model is that its potential

can be written in terms of a so called superpotential as

V (φ, χ) =
1

2

(
∂W (φ, χ)

∂φ

)2

+
1

2

(
∂W (φ, χ)

∂χ

)2

, (3)

where the superpotential is:

W (φ, χ) = φ

[
λ

(
φ2

3
− a2

)
+ μχ2

]
. (4)

Hence, finding the classical solutions with minimum energy

for the time-independent equations of motion

d2φ

dx2
=

∂V

∂φ
and

d2χ

dx2
=

∂V

∂χ
, (5)

is equivalent to find the classical solutions with minimum

energy for the time-independent first-order differential

equations

φ′ = Wφ(φ, χ) (6)

and

χ′ = Wχ(φ, χ). (7)

In the above equations the prime means the derivative with

respect to the space coordinate, and Wφ (Wχ) stands for the

partial derivative of W (φ, χ) with respect to the φ (χ) field.

The minimum energy (BPS energy) [9] for non-linear systems

described by the Lagrangian density (1) with potentials written

as (3) are found to be given by

EBPS = |W (φj , χj)−W (φi, χi) | , (8)

where φi and χi mean the i − th vacuum states of the

model. Here, it is important to remark that the BPS solutions

settle into vacuum states asymptotically. In other words, the

vacuum states act as implicit boundary conditions of the BPS

equations. This particular model we are working with has two

degenerate absolute minima at φ = ±a, χ = 0.

From now on, in order to solve the equations, we follow

the method of [10] instead of applying the usual trial orbits

method. We note that it is possible to write the relation

dφ/Wφ = dx = dχ/Wχ, where the differential element dx is

a kind of invariant. Thus, one is led to

dφ

dχ
=

Wφ

Wχ
. (9)

This is in general a nonlinear differential equation relating

the scalar fields of the model. If one is able to solve it

completely for a given model, the function φ (χ) can be

used to eliminate one of the fields, rendering (6) and (7)

uncoupled and equivalent to a single one. Finally, the resulting

uncoupled first-order nonlinear equation can be solved in

general, even if numerically. By substituting the derivatives

of the superpotential (4) with respect to the fields in (9) we

have
dφ

dχ
=

λ(φ2 − a2) + μ χ2

2 μ φ χ
, (10)

which can be rewritten as a linear differential equation,

dρ

dχ
− λ

μ χ
= χ, (11)

by the redefinition of the fields, ρ = φ2−a2. Now, the general

solutions are easily obtained as

ρ(χ) = φ2−a2 = c0 χ
λ/μ− μ

λ− 2μ
χ2, for λ �= 2μ,

(12)

and

ρ(χ) = φ2−a2 = χ2[ln(χ)+c1], for λ = 2μ, (13)

where c0 and c1 are arbitrary integration constants. We

substitute the above solutions in the differential equation (7)

and obtain the following first-order differential equations for

the field χ(x)

dχ

dx
= ± 2μχ

√
a2 + c0 χλ/μ − μ

λ− 2μ
χ2 , λ �= 2μ,

(14)

and

dχ

dx
= ± 2μχ

√
a2 + χ2[ln(χ) + c1] , λ = 2μ. (15)

Despite the fact that in general an explicit solution for

each one of the above equations can not be obtained, one

can verify numerically that the solutions belong to the same

classes, and some of those classes of solutions can be written

in closed explicit forms. In those last cases we are able to

obtain the several types of soliton solutions we discuss in
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the next section. We have found this method simpler than the

trial orbits method, broadly and successfully applied to study

the mapping of the soliton solutions and defect structures in

problems involving the interaction of two scalar fields [13].

Despite of being simpler, the method applied here furnishes

at once all the orbits which, otherwise, should be guessed in

the usual procedure of the trial orbits method.

III. SOLITON SOLUTIONS

In this section we obtain particular solutions for (14),

we present several resulting soliton solutions for the model

under consideration and also obtain their BPS energies. Before

proceeding with the program, we would like to stress that the

model admits a particular set of solutions which can not be

obtained from the method described in the previous section.

A. Isolated Solutions: Type-I Kink

We consider here a set of classical solutions, which we call

isolated solutions because it is characterized by χ̄I(x) = 0,

such that there is no sense in writing the differential equation

(10) for this case. Even though, (6) admits a soliton solution

given by φ̄I(x) = ±a tanh(λax), where the (lower) upper

sign refers to a (anti-)kink solution. The BPS energy can easily

be obtained from (8) and (4) and is given by

EB =
4

3
λa3. (16)

B. Type-II Kinks

The usual set of solutions, called type-II kink, can be

obtained by means of the method described in the previous

section. It is obtained when we take c0 = 0 in (14). In this

case that equation can be solved analytically for any value

of λ and μ, in the range λ > 2μ, and we get the following

solutions for χ(x)

χIIA(x) = a

√
λ− 2μ

μ
sech(2μax), (17)

which is called a lump-like solution. One can observe that this

solution vanishes when x → ±∞. The corresponding kink

solution, which is also called type-II kink, is given by

φIIA(x) = ±a tanh(2μax), (18)

which connect the vacua of the model. In this case the BPS

energy is again given by (16). We call this type of kink

as type-IIA kink to distinguish it from other types of kink

solutions we present for this model.

1) Double Kinks: Others soliton solutions can be found

when one considers the integration constant c0 �= 0 [23]. It

was found in [10] that in three particular cases (14) can be

solved analytically. For c0 < −2 and λ = μ it was found that

the solutions for the χ(x) field are lump-like solutions, which

vanish when x → ±∞. On its turn, the field φ(x) exhibits a

kink-like profile. They also connect the vacua of the model and

also have BPS energy given by (16). These classical solutions

can be written as

χ̃
(1)
IIA(x) =

2a√
c20 − 4 cosh(2μax)− c0

, forλ = μ, c0 < −2,

(19)

and

φ̃
(1)
IIA(x) = a

√
c20 − 4 sinh(2μax)√

c20 − 4 cosh(2μax)− c0
,

forλ = μ, c0 < −2. (20)

An interesting aspect of these solutions is that, for some

values of c0 < −2, φ̃
(1)
IIA(x) exhibits a double kink profile. We

can speak of a formation of a double wall structure, extended

along a third dimension perpendicular to the page. In Fig. 1

we plot some typical profiles of the soliton solutions in the

case where λ = μ, both when c0 is close to its critical value

(c0 = −2 in this case) and far from it. Both fields are there

represented. One can verify that the distance from one wall to

the other one increases as c0 approaches its critical value. For

the critical value of c0 the double wall structure merges into

a single one.

Similar behavior is also noted in the classical solutions for

λ = 4μ and c0 < 1/16. In this case the field χ(x) has a

lump-like profile given by

χ̃
(2)
IIA(x) = − 2a√√

1− 16c0 cosh(4μax) + 1
,

for λ = 4μ, c0 < 1/16, (21)

and the solution for the field φ(x) is

φ̃
(2)
IIA(x) =

√
1− 16c0a

sinh(4μax)√
1− 16c0 cosh(4μax) + 1

,

forλ = 4μ, c0 < 1/16. (22)

In the case of φ̃
(2)
IIA(x) also, the typical behavior is such that

one can see the double kink profile for some values of c0, and

the increasing of the distance from one wall to the another

as c0 approaches its critical value (c0 = 1/16 in this case).

Once again, at the critical value of c0 the double wall structure

coalesces into a single wall. In the Fig. 2 it is shown the

behavior of the energy density, where it becomes quite evident

the appearance of the double walls when one approaches c0 =
1/16.

2) Two Kinks: Finally, very interesting analytical soliton

solutions were shown to exist when one takes λ = μ and the

critical parameter c0 = −2 and for λ = 4μ and the critical

parameter c0 = 1/16, in (14). The novelty in these cases is

the fact that both, the χ(x) field and the φ(x) field present a

kink-like profile and the BPS energy is half of that of type-IIA

kinks. We call this set of solutions as type-IIB kinks. For λ =
μ and c0 = −2 the classical solution for the χ(x) field can be

shown to be given by

χ
(1)
IIB(x) =

a

2
(1± tanh(μax)), (23)

and the solution for the φ(x) field is given by

φ
(1)
IIB(x) =

a

2
(tanh(μax)∓ 1). (24)
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For c0 = 1/16 and λ = 4μ, the following set of type-IIB

kinks is obtained

χ
(2)
IIB(x) = −

√
2a

cosh(μax)± sinh(μax)√
cosh(2μax)

, (25)

and

φ
(2)
IIB(x) =

a

2
(1∓ tanh(2μax)). (26)

For type-IIB kink solutions it was found that the BPS energy

is

E(II−B) =
2

3
λa3, (27)

that is, it is half of that for the type-I and type-IIA kink

solutions. The type-IIB solutions also connect the vacua of

the model, but this time one could interpret these solutions

as representing two kinds of torsion in a chain, represented

through an orthogonal set of coordinates φ and χ. So that,

in the plane (φ,χ), the types I and IIA kinks correspond to a

complete torsion going from (−1, 0) to (0, 0) while the type

IIB corresponds to a half torsion, where the system goes from

(−1, 0) to (0, 1), in the case where (λ = μ) for instance.

In the next section, we analyze the influence of collisions of

quantum particles with 3d double domain walls in the context

of accelerating universes.

IV. DOMAIN WALLS AND ACCELERATING UNIVERSES

A very important and intriguing modern physical problem

is that of finding a way to explain the observed accelerated

expansion of the universe. On the other hand, the recent

cosmological data indicates that a relevant part of the energy

of the universe would be a kind of dark energy [25]. In fact,

that dark energy is supposed to be one the responsible for

that acceleration. As a consequence, many authors look for an

deep understanding of these subjects and, one very interesting

possibility is the one associated to the so called brane worlds

[22]. In a recent work, Brito et al. [1] conceived a scenario

where our universe is taken as a 3d domain wall embedded

in a 5d dimensional Minkowsky space-time, where the bulk

particles elastic collisions with the 3d domain walls would be

the ultimate reason for the universe acceleration.

The model under analysis in this work is precisely the

same one considered in [1], which is the scalar sector of

a five-dimensional supergravity theory obtained by means

of dimensional compactification of a higher dimensional

supergravity. As a matter of fact we are working with

a nonlinear model with interacting scalar fields in 1+1

dimensions whose time-independent equations of motion, (5)

are those one-dimensional static equations for the scalar fields

taken into account in [1]. We follow the same route as in

that reference, but here we consider the more general set of

static solutions presented in the previous section and, then,

compare our results with those obtained in [1] where the

bulk particles, which are the quantum excitations around the

classical solutions, collide with a 3d domain wall given by

the type-IIA kink of (18). The essential idea is to show that

the situation is richer than analyzed in [1], and that from

a complete solution as the one we present here, important

consequences for the expanding scenario shows up.

By proceeding as in [1], we perform a linear perturbation

of the χ(r, t) field around the classical solutions, that is

χ(r, t) = χ̄(r) + ζ(r, t) and φ(r, t) = φ̄(r),
(28)

where χ̄(r) and φ̄(r) are the classical solutions (background

fields) and ζ(r, t) is the quantum field. By expanding the

action up to quadratic terms in the quantum fields we obtain

second-order differential equations for the quantum fields

∂μ∂
μζ + V̄χχ(r)ζ = 0, (29)

that is, the quantum field obeys a Klein-Gordon equation with

an effective potential V̄χχ(r) which is obtained by taking the

second derivative of the potential given in (2) with respect to

χ(r) and evaluated at the classical solutions χ̄(r) and φ̄(r)

V̄χχ(x) = 2(2μ2 + λ μ)φ̄2 + 6μ2χ̄2 − 2λ μ a2. (30)

If we consider our model as five-dimensional one and that

the quantum field can be expanded in terms of plane-waves in

the space-time coordinates, that is

ζ(r, t) = ζ(r) exp[−i(ωt− kxx− kyy − kzz), (31)

with ζ(r) a function of the fifth coordinate, we obtain the

following Schrödinger-like equation(
− d2

dr2
+ V̄χχ(r)

)
ζ(r) = ε ζ(r), (32)

where ε = ω2 + k2x + k2y + k2z and we are considering that

the static solutions described in the previous section are now

functions of the coordinate r. Everything happens as you

had started with the model in five-dimensions and considered

the static solutions in only one-dimension, namely the ADS

dimension r.

Now it is time to compare the effect of all of above

solitonic solutions over the acceleration scenario proposed

in [1]. For this we begin by considering the static solutions

given by (19) and (20) and substituting them in the effective

potential expressed in (30). The Schrödinger-like equation for

the quantum excitations is(
− d2

dr2
+ V

(IIA−1)
eff (r)

)
ζ(r) = ε ζ(r), (33)

where

V
(IIA−1)
eff (r) = 6μ2a2

(c20 − 4) sinh2(2μa r) + 4(√
c20 − 4 cosh(2μa r)− c0

)2−2μ2a2,

(34)

and, when c0 = −2, the effective potential becomes (a = μ =
λ = 1)

V
(IIB−1)
eff (r) = μ2 a2(1 + 3 tanh2(μa r)). (35)

Note that, in the case analyzed in [1], the effective potential

looks like

V
(IIA)
eff (r) = 4μa2 − 4μa2

(
4− λ

μ

)
sech2 (2μa r) . (36)

At this point it is important to remark that, if λ = 4μ, this

effective potential becomes constant, so that there will exist
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no reflection, once the bulk particles becomes free. Then a

natural question arises, is it truly a behavior of the system,

or an artifact of a particular solution? In fact, as we will see

below, the other solutions do not have this behavior and, in

fact the reflection coefficient for this particular choice of the

potential parameters is even bigger. In the Fig. 3 it is shown

the behavior of the effective potential coming from the domain

wall solutions in four situations: the case studied by Brito et al.

and for the case of degenerate solitons when c0 is far from its

critical value, near it and at the critical point (c0 = −2). From

that figure one can perceive that, apart from the appearance of

the two wells potential, for c0 close to the critical value, the

case where the reflection coefficient is bigger is probably the

case studied in [1]. Really, the more remarkable result comes

to life for the next example, where λ = 4μ.

Let us now discuss the case where the potential parameters

are such that λ = 4μ. By substituting (21) and (22) in (30),

one can verify that the quantum excitations of the χ(r, t)
field satisfies the effective Schrödinger equation (32) with an

effective potential given by

V
(IIA−2)
eff (r) = 12μ2a2

(1− 16c0) sinh
2(4μa r) + 2(√

1− 16c0 cosh(4μa r) + 1
)−8μ2a2,

(37)

and, when c0 = 1/16, the effective potential becomes

V
(IIB−2)
eff (r) = μ2 a2 sech2(2μa r)[2 +

5 cosh(4μa r)± 3 sinh(2μa r)].(38)

As observed above, in this case the solution analyzed in

[1] has a constant effective potential V
(IIA)
eff (r) = 4μa2, so

rendering no reflection of the bulk particles. In contrast with

this, the solutions presented here are such that the reflection

coefficient becomes larger and larger, when c0 approaches its

critical value. In fact, for the limit case, the effective potential

acquires a step potential shape, so granting that the bulk

particles with kinetic energy below a certain limit will certainly

be reflected on that infinitely large barrier.

V. FINAL REMARKS

In this work we have analyzed the impact of a general

set of soliton solutions over the reflection coefficient of the

bulk particle collisions with a 3d domain wall, as originally

proposed in [1]. We have shown that when the potential

parameters are such that λ = 4μ, the effective potential

interacting with the bulk particles have its reflection coefficient

arbitrarily larger, depending on the value of the degeneracy

parameter c0. The most remarkable situation is that when c0
reaches its critical value. In that case, the effective potential

becomes a kind of step potential, so that the bulk particles

having energy lesser than that of the step potential will always

be reflected, so producing a maximum effect on the driven

acceleration. Moreover, by remembering that in this precise

situation, the domain wall comes from a type B kink which

have an energy smaller than the type A one, we can conclude

that they can be produced more easily and, as a consequence,

they would be responsible for the most part of the initial

inflationary expansion. Furthermore, from the existence of

the double wall solution, which is degenerate through the

parameter c0, and the fact that the distance between the wall

increases more and more as c0 approaches its critical value,

and thinking that we live between those walls, one could try

to construct a procedure where the value of c0 depends on

some dynamical parameters, such that the universe expansion

could be understood through this hypothetical mechanism.
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