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An Optimal Control Method for Reconstruction of
Topography in Dam-Break Flows
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Abstract—Modeling dam-break flows over non-flat beds requires
an accurate representation of the topography which is the main
source of uncertainty in the model. Therefore, developing robust
and accurate techniques for reconstructing topography in this class
of problems would reduce the uncertainty in the flow system. In
many hydraulic applications, experimental techniques have been
widely used to measure the bed topography. In practice, experimental
work in hydraulics may be very demanding in both time and cost.
Meanwhile, computational hydraulics have served as an alternative
for laboratory and field experiments. Unlike the forward problem,
the inverse problem is used to identify the bed parameters from the
given experimental data. In this case, the shallow water equations
used for modeling the hydraulics need to be rearranged in a way
that the model parameters can be evaluated from measured data.
However, this approach is not always possible and it suffers from
stability restrictions. In the present work, we propose an adaptive
optimal control technique to numerically identify the underlying bed
topography from a given set of free-surface observation data. In this
approach, a minimization function is defined to iteratively determine
the model parameters. The proposed technique can be interpreted
as a fractional-stage scheme. In the first stage, the forward problem
is solved to determine the measurable parameters from known data.
In the second stage, the adaptive control Ensemble Kalman Filter is
implemented to combine the optimality of observation data in order to
obtain the accurate estimation of the topography. The main features
of this method are on one hand, the ability to solve for different
complex geometries with no need for any rearrangements in the
original model to rewrite it in an explicit form. On the other hand, its
achievement of strong stability for simulations of flows in different
regimes containing shocks or discontinuities over any geometry.
Numerical results are presented for a dam-break flow problem over
non-flat bed using different solvers for the shallow water equations.
The robustness of the proposed method is investigated using different
numbers of loops, sensitivity parameters, initial samples and location
of observations. The obtained results demonstrate high reliability and
accuracy of the proposed techniques.

Keywords—Optimal control, ensemble Kalman Filter, topography
reconstruction, data assimilation, shallow water equations.

I. INTRODUCTION

BED topography has a detrimental impact on many

applications in hydraulics widely modeled using the

well-established shallow water equations. These models

require prior information on the bed topography to be solvable

and consequently, resolve the flow features in the problem

under study. Experimental measurements have been used in
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many hydraulic applications to reconstruct bathyemtry in

free-surface flows. However, this may be limited with time,

cost and also geographical restrictions which need to be

replaced with fast, easy to implement and cost effective

computational techniques. In recent years, many research

studies have been carried out to accurately describe and predict

geophysical flows. This includes predicting floods, monitoring

river flows, and predicting Tsunami waves, see for example

[12], [8], [15]. Accurate numerical modeling of this class of

free-surface flows and predicting flood inundation, all depends

on the accurate representation of the bed topography. Authors

in [11] have investigated the quality of the bathymetric airbone

LiDAR survey. Information about the river bed geometry

from top sight has also investigated in [22]. In a slightly

different context, authors in [23] have studied the inverse

problem of reconstructing the substrate topography from

known data at the free surface. On the other hand, there

have been significant developments in experimental techniques

to measure river bathymetry and flow depths. For instance,

the interferometric synthetic aperture radar (SAR) digital

photogrammetry has been described in [29]. However, most

experimental techniques to identify the bed elevation can be

expensive and time consuming, see for example [13], [25].

From a numerical view point, there are mainly two different

approaches for bed reconstruction in hydraulics namely, the

direct approach and the optimization-based approach. The

direct approach of the inverse problem is not a common way

in the literature. In this method, the governing equations of

the forward problem are used in the model rearrangement.

In practice, the process depends on the determination of

observable parameters in the analysis of the forward problem.

However, this approach is not always possible and it is

restricted to some inverse problems. For example, authors in

[10], [1] have implemented this approach to determine the bed

elevation from known data in open channel and Glacier flows.

The optimization-based approach is well known for solving

these types of inverse problems in computational hydraulics.

In this approach, a minimization function is formulated and

used to iteratively determine the model parameters. This

iterative procedure has been implemented in [6], [18], [20], to

determine the topography and the bed roughness for several

hydraulic problems.

In the current study, we aim to tackle problems of bed

reconstruction in shallow water flows using adaptive control

Ensemble Kalman Filter (EnKF). The reconstruction is carried

out based on given observation data at the free surface

for the water depth. The main focus is on dam-break

problems over non-flat beds for which the topography
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required reconstruction. The governing equations consist of

the conservation system of shallow water equations accounting

for bathymetric effects. As direct numerical solvers, we

consider several finite volume schemes widely used in the

literature to solve shallow water equations. The purpose is

to examine the performance of the optimal control method

for different solvers of the direct problem. Computational

results are presented for various tests on a dam-break problem

over non-flat topography. We also examine sensitivity of the

method on different inputs including the initial guess and the

uncertainty of observations. Numerical results presented in the

this study demonstrate high resolution of the proposed method

and confirm its capability to provide highly accurate solutions

for bed reconstruction in shallow water flows.

This paper is structured as follows: Modeling dam-break

problems is discussed in Section II. This section introduces

the shallow water equations used for the modeling and

the finite volume schemes used for the numerical solution.

Section III presents the proposed adaptive control Ensemble

Kalman Filter (EnKF) for bed reconstruction. This section

includes an overview of the EnKF in data assimilation and

the implementation of the method for bed reconstruction

in dam-break problems. Numerical results are discussed in

Section IV. We present numerical results for a wide range

of input parameters. Section V contains concluding remarks.

II. MODELING DAM-BREAK FLOWS OVER NON-FLAT

BEDS

The well-established shallow water equations are considered

in this study to model dam-break flows over non-flat beds.

These equations can be derived by depth-averaging the

incompressible Navier-Stokes equations and neglecting the

vertical acceleration of water particles while the pressure is

assumed hydrostatic, see [27] among others. In one space

dimension, the shallow water equations read:

∂h

∂t
+

∂(hu)

∂x
= 0,

(1)
∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
= −gh

∂B

∂x
− ghτf ,

where t is the time variable, x the space coordinate, h(x, t)
the water depth, u(x, t) the water velocity, g the gravitational

constant and B(x) the bed topography. In (1), τf is the friction

slope term, which models effects of the bottom friction using

the Manning empirical:

τf = M2
b

u |u|
h4/3

, (2)

where is Mb the Manning roughness coefficient on the bed.

To be consistent with a dam-break problem, (1) are equipped

with following initial condition:

h(x, 0) =

⎧⎨
⎩
hl, x ≤ x0,

hr, x > x0

(3)

where x0 is the location of the dam, hl and hr are the water

heights at upstream and downstream of the dam. Equations

(1)-(3) have been widely used in the literature to simulate

dam-break problems, see for example [9], [3].

For simplicity in the representation, we reformulate (1) in

a conservative form as:

∂W

∂t
+

∂F(W)

∂x
= Q(W) + S(W), (4)

where

W =

⎛
⎝ h

hu

⎞
⎠ , F(W) =

⎛
⎝ hu

hu2 + 1
2gh

2

⎞
⎠ ,

Q(W) =

⎛
⎝ 0

−gh
∂B

∂x

⎞
⎠ , S(W) =

⎛
⎜⎝ 0

−gM2
b

u |u|
h

4
3

⎞
⎟⎠ .

It is also well known that system (1) is strictly hyperbolic with

real and distinct eigenvalues given as:

λ1 = u−
√

gh, λ2 = u+
√

gh. (5)

Notice that (1)-(3) have to be solved in a time interval and

spatial domain equipped with given boundary conditions.

Numerical solution of the shallow water equation (1) has

been subject of many research studies, and several numerical

methods have been developed for their accurate and efficient

solutions. In the current work, we consider four finite volume

methods which have well established for many years as

numerical solvers for hyperbolic systems of conservation laws.

To deal with source terms in (1), we propose a splitting

operator for which the differential source terms Q(W) and the

non-differential source term S(W) are solved in two stages.

Hence, we divide the time interval into subintervals [tn, tn+1]
with uniform size Δt and tn = nΔt. We also use the notation

Wn(x) = W(x, tn) to denote the discrete solution at time tn.

Thus, given the solution Wn at time tn, the solution Wn+1 at

next time level, tn+1 is obtained using the following two-stage

splitting procedure:

Step 1: Solve for W̃

W̃ −Wn

Δt
+

∂F(Wn)

∂x
= Q (Wn) . (6)

Step 2: Solve for Wn+1

Wn+1 − W̃

Δt
= S

(
W̃

)
. (7)

For the space discretization, we discretize the domain into

control volumes
[
xi− 1

2
, xi+ 1

2

]
with uniform length Δx for

simplicity only. We use the notation Wn
i to denote the

space-averaged of W = W(t, x) in the cell
[
xi− 1

2
, xi+ 1

2

]
at

time tn, and Wi+ 1
2

is the numerical flux at xi+ 1
2

at time t as:

Wi(t) =
1

Δx

∫ x
i+1

2

x
i− 1

2

W(t, x) dx, Wi+ 1
2
= W

(
t, xi+ 1

2

)
.

Integrating the system (6) over the control domain[
xi− 1

2
, xi+ 1

2

]
, one obtains the following fully discrete system:

Wn+1
i = Wi − Δt

Δx

(
Fn

i+ 1
2
− Fn

i− 1
2

)
+ΔtQn

i , (8)
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where Fn
i± 1

2

= F
(

Wn
i± 1

2

)
are the numerical fluxes at

x = xi± 1
2

and time t = tn; whereas, Qn
i is a consistent

discretization of the source term Q in (6). Note that the

spatial discretization (8) is complete when the numerical fluxes

Fi±1/2 and the source term Qi are reconstructed. Generally,

this step can be carried out using any finite volume method

developed in the literature for solving hyperbolic systems

of conservation laws. In the present study, we consider the

following finite volume reconstructions:

• Lax-Friedrich scheme [28]:

Fn
i+1/2 =

1

2

(
F
(
Wn

i+1

)
+ F (Wn

i )
)
+

Δx

2Δt

(
Wn

i −Wn
i+1

)
. (9)

• Rusanov scheme [5]:

Fn
i+1/2 =

1

2

(
F
(
Wn

i+1

)
+ F (Wn

i )
)
+

1

2
λ
(
Wn

i −Wn
i+1

)
, (10)

where λ = max (λn
1 , λ

n
2 ) is the Rusanov speed with λ1 and

λ2 are the two eigenvalues associated with the system defined

in (5).

• Roe scheme [21]:

Fn
i+ 1

2
=

1

2

(
F(Wn

i+1) + F(Wn
i )
)
+

1

2
A

(
Ŵn

i+ 1
2

) (
Wn

i −Wn
i+1

)
, (11)

where Ŵ
n

i+ 1
2

is the averaged state calculated as:

Ŵ
n

i+ 1
2
=

⎛
⎜⎜⎜⎜⎝

hn
i + hn

i+1

2√
hn
i u

n
i +

√
hn
i+1u

n
i+1√

hn
i + hn

i+1

⎞
⎟⎟⎟⎟⎠ , (12)

and A is the Roe matrix defined as A = RΛR−1 with,

R =

⎛
⎜⎜⎝ 1 1

λ̂1 λ̂2

⎞
⎟⎟⎠ , Λ =

⎛
⎜⎜⎝ λ̂1 0

0 λ̂2

⎞
⎟⎟⎠ ,

where λ̂1 and λ̂2 are the two eigenvalues associated with

the system defined in (5) evaluated at the Roe state (12).

• FVC scheme [4]: To reconstruct the numerical fluxes

using the Finite Volume Characteristics (FVC) method,

the shallow water equations (1) are first reformulated in

an advective form as:

∂h

∂t
+ u

∂h

∂x
= −h

∂u

∂x
,

(13)
∂u

∂t
+ u

∂u

∂x
= −gh

∂

∂x
(h+B) .

Then, we use the method of characteristics to compute

the solutions of (13) at the interfaces xi± 1
2

. Thus, the

associated characteristic curves Xi+ 1
2
(τ) are computed

as solutions of the initial-value problem:

dXi+ 1
2
(τ)

dτ
= u

(
τ,Xi+ 1

2
(τ)

)
, τ ∈ [tn, tn+1] ,

(14)
Xi+ 1

2
(tn+1) = xi+ 1

2
.

To solve the ordinary differential equation (14), we use

a second-order explicit Runge-Kutta method, see [4] for

more details.

The numerical fluxes in the FVC scheme are obtained

by integrating the advective equation (13) along the

characteristics in the time interval [tn, tn + Δt]. Thus,

assume an accurate approximation of the characteristics

curves Xi+ 1
2
(tn) is made, the intermediate solutions are

obtained from (13) as:

hn
i+ 1

2
= h̃n

i+ 1
2
− Δt

Δy
h̃n
i+ 1

2

(
un
i+1 − un

i

)
,

(15)

un
i+ 1

2
= ũn

i+ 1
2
− g

Δt

Δy

(
(hn +B)i+1 − (hn +B)i

)
,

where,

h̃n
i+ 1

2
= h

(
tn, Xi+ 1

2
(tn)

)
, ũn

i+ 1
2
= u

(
tn, Xi+ 1

2
(tn)

)
,

are solutions at the departure points Xi+ 1
2
(tn) computed

by a cubic Lagrange interpolation from the gridpoints of

the control volume where the departure point Xi+ 1
2
(tn)

belongs. Hence, the numerical fluxes for the FVC scheme

are defined by:

Fn
i+1/2 =

⎛
⎜⎜⎜⎜⎝

hn
i+ 1

2

un
i+ 1

2

hn
i+ 1

2

(
un
i+ 1

2

)2

+ 1
2g

(
hn
i+ 1

2

)2

⎞
⎟⎟⎟⎟⎠ , (16)

where hn
i+ 1

2

and un
i+ 1

2

are intermediate solutions

approximated in (15).

For the approximation of the source term in (8), we use the

well-balanced discretization of the source term Qi as:

gh
∂Z

∂x
≈ g

hi+1 + 2hi + hi−1

4

Zi+1 − Zi−1

2�x
. (17)

Note that, using this discretization of the source term, the

scheme (8) satisfies the well-known C-property [4]. It should

be stressed that other numerical solvers for the shallow water

equation (1) can also be used in the present study without

major conceptual modifications.

III. OPTIMAL CONTROL METHOD FOR RECONSTRUCTION

OF TOPOGRAPHY

In this section, we present numerical tools used for the

optimal control reconstruction of topography in dam-break

flows. In general, Data Assimilation (DA) aims at combining

field observations with different model inputs in order to

reduce the uncertainty of a numerical model and improve its

predictability in an optimal manner, see [16] among others.

For hydraulics, a numerical model relies on mathematical

description of the dynamic whereas, observation produces

more accurate description of the actual state of the flow.
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Despite producing different outputs, the resulting uncertainty

produced by the DA is below the uncertainties of both the

numerical model and the observational data. Although the

DA has been initially used for weather forecasting, different

research topics have adopted this tool for operational purposes.

In hydraulics, the DA is still emerging compared to other

geophysical fields, see for example [17], [2] and further

references therein. Technically, the DA aims at controlling

the value of the model parametrization responsible for the

largest amount of uncertainty. The optimality of this control

is achieved due to the information given by the observations.

Here, the cost function can be formulated as:

J(x) =
1

2
‖x− xB‖B +

1

2
‖y −H(xB)‖O , (18)

where xb is a prior knowledge (initial guess) of the parameter,

which is usually referred to as the background, y the

observation, and H the observation operator. Since the DA

takes into account the uncertainties, both norms ‖·‖B and ‖·‖O
are defined within the uncertainty region of the background

and the observation, respectively. It should also be noted

that the observation is not necessarily of the same nature

as the parameter x, and for example, we may correct the

bathymetry using observations of the water level. In this

case, the observation operator reduces to a linear interpolation

operator. However, in most cases of hydraulic applications,

this operator highly nonlinear.

The main objective of the DA is to minimize the cost

function J(x) under the constraints given by the uncertainties

on the observation and the background. In general, (18) does

not have an exact solution. However, a statistical estimation of

the optimal parameter that minimizes the function J(x) can

be achieved using some inference methods such as filtering.

When the uncertainties expressed around the parameter and

the observation are supposed to follow a Gaussian probability

distribution, the filtering could be carried out using the Kalman

filter, compare [24].

A. Ensemble Kalman Filter

For the assumption of Gaussian uncertainties, estimating

the probability distribution reduces to evaluating the mean

and the covariance matrices. Thus, optimizing the functional

(18) yields to find the main parameter x and its covariance

matrix. In this framework, the background and the observation

are fully defined by their covariance matrices B and O,

respectively. The Kalman Filter (KF) is a sequential DA

algorithm which is able to reproduce these solutions under

the assumption given above. This means that the KF provides

a new optimal solution for (18) whenever an observation is

available. For this reason, this algorithm is classically divided

into two steps: (i) the forecast stage and (ii) the analysis stage.

During the first one, the model is dynamically moving forward

in time with the background information until an observation

is available. The analysis stage is then achieved by correcting

the value of the background such that,

xa = xb +K (y −Hx) , (19)

where xa is the analyzed value (the corrected value) of the

parameter and K is the so-called Kalamn gain matrix and is

defined by:

K = BH�
(
HBH� +O

)−1

. (20)

As mentioned before, the KF is not only able to give the mean

value but also the uncertainties modeled here in its covariance

matrix:

A = (I−KH)B, (21)

where I is the identity matrix. Note that, in most hydraulic

applications, the governing equations describing the physics

are highly nonlinear such as the shallow water equation (1).

Consequently, the KF is of no use because the operator H is

not linear. One interesting way to overcome this drawback is

to use the Ensemble Kalman Filter (EnKF).

In practice, the EnKF relies on the stochastic approach

in order to overcome the problem of nonlinearity in the

classical KF, see for instance [7]. Here, instead of considering

the whole distribution for modeling the uncertainty of

the parameter under study, one uses a set of sample

xB =
(
x
(1)
b , . . . , x

(N)
b

)
based on the distribution (Ensemble).

Indeed, using Monte-Carlo simulations of the model, it

is possible to stochastically estimate the different matrices

forming the Kalman gain matrix such that,

B =
1

N − 1
(xb − x̄b) (xb − x̄b)

�
, (22)

where x̄b denotes the mean value of xb. Therefore, the

covariance functions can be approximated using statistical

averages of the solution ensemble.

B. Twin Experiment

In the present study, we use a twin experiment to assess

the quality of the DA algorithm. This is a well-known

methodology used when access to real data is not possible,

see [26] among others. The experiment consists of using a

simulation with a supposed true value of the bathyemtry.

The hydraulic state resulting from this simulation will be

used as the observation. Then, using another value of the

bathymetry (refered to by the background), the EnKF will

be applied. The analysis obtained by the proposed algorithm

will be compared to the bathymetry which allows to obtain

the hydraulic state of the observation. The EnKF is based on

a stochastic approach such that the background value of the

bathymetry will be perturbed. Hence, using an ensemble of

bathymetric fields, a set of hydraulic state can be obtained. It

is worth mentioning that the perturbation in this case follows

a normal law with a mean value set to the background value

and a fixed coefficient of variation. In order to have a good

estimation of the reconstruction, the algorithm is performed

several times. The iteration procedure is used here and for

each test example we will mention the number of loops used.

In summary, the proposed algorithm can be carried out using

the following steps:

1) Perform a first simulation in order to generate the

observation data.
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2) Generate a set of bathymetric fields around the

background value.

3) Run the ensemble of simulation.

4) Compute the Kalman Filter gain using a stochastic step

as:

BH� =
1

N

(
B −B

) (
h− h

)�
,

HBH� =
1

N

(
h− h

) (
h− h

)�
.

5) Compute the analysis state.

6) If the number of iterations is not achieved redo steps 2),

3) and 4).

In all our simulations, the coefficient of variation is set to 20%
unless stated otherwise. Furthermore, the Root Mean Square

(RMS) error is used to quantify the accuracy and performance

of the proposed algorithm.

IV. NUMERICAL RESULTS

In this section, we present numerical results for a dam-break

problem over a non-flat bed. The main goals of this test

example are to illustrate the numerical performance of the

techniques described above and to verify numerically their

capability to reconstruct the correct topography using different

initial guesses. Here, we solve the system (1)-(3) in a 30 m
long channel with the upstream and downstream water heights

hl = 1 m and hr = 0.5 m, respectively. The dam

is located at x0 = 15 m, the gravitational acceleration

g = 9.81m/s2, the Manning coefficient Mb = 0.03 s/m1/3

and the computational domain is discretized into 100 control

volumes with Δx = 0.3 m. In all the computations reported

herein, the Courant number is set to Cr = 0.75 and the time

stepsize Δt is adjusted at each time step according to the

Courant-Friedrichs-Lewy condition:

Δt = Cr
Δx

max
(|λn

1 | , |λn
2 |
) , (23)

where λ1 and λ2 are the eigenvalues given by (5). We first

solve the forward problem for a total time of t = 2 s over a

known bed defined by a hump as:

B(x) =
1

5
exp

(
− (x− 14)2

20

)
,

and store the water height as given locations to be used later

as observational data in the Twin experiment. We examine

the performance of the proposed method by changing (i)

initial bed guesses, (ii) number and locations of observations,

and (iii) finite volume schemes solving the shallow water

equations.

A. Sensitivity on Background Values

We first examine the effects of the initial guess used

for the bed function (background) on the accuracy of the

reconstructed bed (analysis). The purpose here is to identify

the ability of the EnKF to reconstruct the barthymetric field

using different values for the background. In this example,

TABLE I
RMS ERRORS FOR THE BED RECONSTRUCTION USING DIFFERENT

INITIAL BED FUNCTIONS

Bed function RMS error

B1(x) 0.008075

B2(x) 0.009475

B3(x) 0.03158

B4(x) 0.07210

the following functions are implemented for the background

bathymetry:

B1(x) = 0,

B2(x) =
1

10
exp

(
− (x− 10)2

20

)
,

(24)

B3(x) =
1

5
,

B4(x) =
1

5
exp

(
− (x− 5)2

10

)
+

1

5
exp

(
− (x− 25)2

10

)
.

The EnKF algorithm is run for each of background value

defined in (24) using an Ensemble size of 200 simulations.

Here, as numerical solver for the direct problem, we use the

Roe scheme. The obtained numerical results for the expected

bed are shown in Fig. 1. We also include in this figure the

observational data, the initial guess and the target bed for each

run. As expected for a dam-break problem, at time t = 0,

the dam collapses and the flow problem consists of a shock

wave traveling downstream and a rarefaction wave traveling

upstream. These features are well captured by our method in

the results shown in Fig. 1. In order to assess the quality of

the DA algorithm for each of background used, the RMS error

is computed for each experiment. Table I represents the value

of the RMS error for the four bed functions in (24).

It is clear from the results shown in Fig. 1 and Table I

that the bed reconstruction is impacted by the value of the

background used in the simulations. Indeed, using B1(x) and

B2(x) as background values in the optimal control method

produces better results than those obtained using B3(x) and

B4(x). This is mainly due to the fact that the selected

background values B1(x) and B2(x) are close to the target

bed. As suggested by the value of RMS error, the correction

gained one order of magnitude just by getting as close as

possible to the target solution. It should be pointed out that

this is one of the major difficulties when dealing with DA

to reconstruct the bathymetry in hydraulics. This problem

has also been reported in other studies, see for example

[19]. This confirms that numerical tools can not replace

in-situ experiments, and field works carried out by hydraulic

engineers remains an essential stage for bed reconstructions.

In fact, using field measurements, the background value used

for the bathymetry can be very close to the target bed which

would help DA algorithms to gain accuracy. The proposed

method performs well for this test example and the target bed

can be accurately reconstructed without requiring complicated
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Fig. 1 Results for the bed reconstruction using different initial bed functions.

tools.

B. Sensitivity on Finite Volume Schemes
In addition to the background value used in the method,

selection of the numerical scheme for shallow water equations

constitutes an important key in DA algorithms. It is therefore

important to assess the ability of such tools to correctly

reconstruct the bathymetric field. Generally, there are two

main key parameters that should be kept in mind when

using a model with a stochastic-based algorithm like the

EnKF namely, the choice of the numerical model and the

uncertainty propagation in this model. In this section, we

evaluate the impact of these two proprieties on the bathymetry

reconstruction. We asses the impact of the four finite volume

schemes considered in this study on the reconstruction

of topography in dam-break flows. We consider the same

parameters as in the previous run and solve the forward

problem Lax-Friedrichs, Rusanov, Roe, and FVC scheme at

final time of t = 2 s. A set of 100 observations of the water

height uniformly distributed in the computational domain is

used for the bed reconstruction. As an initial guess for the

bed, we use the background value B2(x) defined in (24). In

our simulations for this run, 100 samples and 20 iterations are

used in the EnKF algorithm.

In Fig. 2, we present the obtained results for bed

reconstruction using the four considered finite volume

schemes. The evolution of RMS errors for these schemes at

each iteration is illustrated in Fig. 3. The results reveal that the

EnKF does not show the same trends for these finite volume

schemes. Indeed, the EnKF is based on a stochastic method

such that the uncertainty is propagated into the model and

the matrix which constitutes the Kalman Gain Matrix will be

different depending on the numerical method used. The results

shown in Fig. 3 for the RMS errors confirm that the Roe

and FVC schemes are more consistent than the Lax-Friedrich

and Rusanov schemes. The numerical diffusion generated
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Fig. 2 Results for the bed reconstruction using different fine volume schemes

by Lax-Friedrich and Rusanov schemes could explain these

differences whereas, the Roe and FVC schemes have proven to

be very flexible to catch strong nonlinearity and discontinuities

in the shallow water equations. Note that the main advantage

of high accurate volume schemes lies in the fact that they can

converge easily when used in algorithms like EnKF. However,

the associated uncertainties may increase in the simulations

which leads to poor reconstruction in the DA algorithm. On

the other hand, using low accurate schemes, the numerical

dissipation makes the DA algorithm very hard to converge,

but they could easily lead to satisfying corrections.

C. Sensitivity on Uncertainty in the Background Value

Next, we check the impact of the uncertainty on the

background and its effect on the bed reconstruction. In

this test, we run the EnKF algorithm using three different

uncertainty assumption on the bed. It should be stressed

that the well-established numerical methods for shallow water

flows have been considered only the deterministic problems.

The solutions are then admitted without paying attention to the

uncertainty that are ubiquitous to any numerical model. Note

that the classical way to assess the uncertainty of a numerical

model is to reconsider it as a stochastic input. This means that

the model parameters, boundary and initial conditions have to

be seen as random parameters and/or processes. In this run,

we consider the same parameters and flow conditions as in

the previous case but we introduce an uncertainty in the bed.

Three different levels of uncertainty are applied in this test

with the coefficient of variation in the bed CVb = 7%, 11%
and 16%.

In Fig. 4, we present the results obtained using the

considered levels of uncertainty and Fig. 5 depicts the RMS

errors associated with these levels. As it can be seen in these

figures, increasing the value of the background uncertainty

may help to achieve a good level of correction. In fact, when
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Fig. 3 RMS errors for the bed reconstruction using different fine volume schemes

using a Bayes theorem-based algorithm, one should keep in

mind that the distribution of the parameters to be inferred has

to be large enough in order to contain the uncertainty of the

observation. This problem has been discussed in the literature,

see [14] among others.

The correction obtained using the EnKF correction could

highly be improved by applying the algorithm iteratively

several times. As consequence, the quality of the reconstructed

bed is impacted by the number of iterations used. In Table II,

we demonstrate the effect of changing the number of iterations

at two different times t = 1 s and t = 2 s. Clearly, the DA

is impacted by the assimilation window that the quality of the

correction with the DA dependents on the physical time used

in the simulations. Results included in Table II give a clear

idea on the impact of these two parameters on the correction

of the bathyemtry in dam-break flows.

As observed in the obtained results, the quality of the

reconstruction does not improve with iterations when using an

assimilation window at time t = 1 s. This is due to the fact

that the hydraulic has not been developed enough and all the

information is still locked. Note that, this an expected result

if the well-known Best Linear Unbiased Estimator (BLUE)

is employed. However, for the assimilation window at time

t = 2 s, the quality of the bed reconstruction improves

considerably with the number of iterations. Moreover, the

quality of the bed reconstruction is improved in this case

compared to the the first case at t = 1 s. Thus, these

results emphasize the importance of considering a time-based

algorithm such as the EnKF rather than a time-independent

one such as the BLUE.

TABLE II
EVOLUTION OF RMS ERRORS FOR THE BED RECONSTRUCTION USING

DIFFERENT UNCERTAINTIES IN THE BACKGROUND VALUE FOR

DIFFERENT NUMBER OF LOOPS AT TIME t = 1 s AND t = 2 s.

RMS error

Number of iteration t = 1 s t = 2 s

5 0.0382 0.01274

10 0.03391 0.01014

15 0.03601 0.009825

20 0.03666 0.009815

25 0.03754 0.009737

30 0.03733 0.009459

35 0.03764 0.009001

40 0.03724 0.009263

45 0.03693 0.008525

50 0.03654 0.009812

It is also evident from the presented results that the

assimilation is closely linked to the hydrodynamic. Hence,

using the stochastic approach, one should make sure that

the hydrodynamic has been developed enough to ensure a

better correction. However, it is important to point out that the

simulation time will also impact the uncertainty propagation

in the numerical model used in the simulations. Therefore,

there is a clear trade-off related to simulation time versus

the uncertainty that should be kept under consideration when
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Fig. 4 Results for the bed reconstruction using different uncertainties in the background value

using the DA for hydrodynamic models. The best use of such

algorithms dictates that the one should have a good length of

assimilation window while paying attention to the uncertainty.

D. Sensitivity on Observed Data at the Free Surface
Observed data is considered to be one of the most important

keys in DA algorithms. Using the Twin experiment, it allows

to assess the impact of the key factor on the quality of bed

corrections. The level of discrepancy in these data will have

a direct effect on the quality of the algorithms. Thus, in order

to accurately predict the bathymetry in dam-break flows, DA

algorithms should be precise and accurate with respect to the

observation setting. For this purpose, a dam-break problem

with the same flow conditions as in the previous test is used in

this run. In this section, three main parameters are investigated

with regards to the observation data: (i) the number of the

observation data, (ii) the location of the observation data and

(iii) the uncertainty in the observation data.

First, we assess effects of the number of observation data

used in the EnKF. This is especially important in the case

where one needs to correct a space-based parameter such as the

bathymetry. In this test case, different numbers of observations

are used for the bed reconstruction and the obtained RMS

errors for each number are presented in Table III. It is clear

that, as the number of iterations increases the accuracy of

the reconstructed bed increases and the root mean square

error decreases accordingly. However, given the hydrodynamic

of the dam-break under study, location of the observation

data is important. This is, for example, what explains the

difference between the run using 50 observations and the run

using 25 observations. Note that the effects of the number of

observation data is clearly seen on the correction in a way that

as more sets of observation data are available, the better the

correction is. From a practical point of view, this would mean

that one needs to install gauges along the whole flow channel
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Fig. 5 RMS errors for the bed reconstruction using different uncertainties in the background value

to collect measurements, which is less likely to be feasible

from an economic perspective. An alternative way would be

through the use of remote sensing data. However, the limitation

in these techniques is associated with the uncertainty in the

recorded measurements. Next, we examine the effects of the

location of observation data and the uncertainty on these data.

TABLE III
RMS RRRORS FOR THE BED RECONSTRUCTION USING DIFFERENT

NUMBER OF THE OBSERVATION DATA

Observations RMS error

5 0.06957

10 0.01604

20 0.009025

25 0.00739

50 0.031127

100 0.009344

To examine the effect of the spatial distribution of the

observed data on the bed reconstruction, we run the same

example as before but change the location of these data.

Here, three different locations of the observation are tested

along the flow channel in both downstream and upstream.

More precisely, we select observation data in the upstream

region between 1 m and 10 m, in the middle region between

11 m and 20 m, and in the downstream region between

21 m and 30 m. The obtained results are illustrated in Fig.

TABLE IV
RMS ERRORS FOR THE BED RECONSTRUCTION USING DIFFERENT

LOCATIONS OF THE OBSERVATION DATA

Location range RMS error

1 m - 10 m 0.1038

10 m - 20 m 0.0062

20 m - 30 m 0.0814

6 and the associated RMS errors are summarized in Table

IV. Under the considered flow conditions, these results clearly

highlight the importance of the location in observations for

the correction. Again, the correction is highly dependent on

the hydrodynamic, as previously mentioned. It is also evident

that, when the dam break occurs, the dynamics are mostly

concentrated around the dam location. This is mainly the

reason why the best bed reconstruction is obtained when

the observation are around the dam location. Furthermore,

when the observation data are located downstream, the EnKF

produces a better correction. Needless to say that, dealing

with shallow water equations, the waves that propagates

downstream and upstream do not have the same velocity. It is

expected that the waves propagating downstream have more

speed than the upstream ones. This explains the reason why the

correction happening downstream is better than the upstream

correction.

Finally, we assess the sensitivity of the EnKF on the

inherited uncertainty in the observation data. This is an

important feature that should be taken under consideration
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Fig. 6 Results for the bed reconstruction using different locations of the observation data

TABLE V
RMS ERRORS FOR THE BED RECONSTRUCTION USING DIFFERENT

UNCERTAINTY IN THE OBSERVED DATA

Coefficient of variation RMS error

0.05 0.07234

0.10 0.06092

0.15 0.04825

0.20 0.06646

0.25 0.03605

0.30 0.009845

when dealing with reconstruction of a hydraulic field using the

DA. In practice, different kind of observation would produce

different measurements and each measurement is always

accompanied with a range of uncertainty. In our computations

reported here, we consider six different uncertainty values with

coefficient of variations CVb = 5%, CVb = 10%, CVb = 15%,

CVb = 20%, CVb = 25% and CVb = 30%. We also use the

same flow condition as those used in the previous test cases.

In Fig. 7, we present the obtained results for this run

and the associated RMS errors are included in Table V for

the considered coefficient of variations. As can be seen,

the uncertainty on the observation data greatly impacts the

correction and it can lead to big discrepancies in the required

results. It is also clear from the RMS errors in Table V that,

increasing the uncertainty in the observation data results in

an increase in the RMS error. It is worth to mention that

the DA is a trade off between the background values and the

observation data used for the bed reconstruction. The quantity

and quality of the background values and the observation

data highly influence the algorithm outcome. Consequently,

if the uncertainty of the observation data increases, one

would expect more confidence on the background values. This
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Fig. 7 Results for the bed reconstruction using different uncertainty in the observed data.
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fact is supported by the results presented in Fig. 7, as the

reconstruction hardly moves from the background value.

V. CONCLUSION

We have proposed a robust optimal control method for the

bed reconstruction in dam-break flow problems. The governing

equations consist of the nonlinear system of shallow water

equations with bathymetric effects. As numerical solvers for

the direct simulations, we have considered a class of four finite

volume schemes. The optimal control methodology is based

on the Ensemble Kalman Filter for the bed reconstruction.

The performance of the proposed method is examined using

different numbers and locations of the observed data, different

number of loops, and different initial guesses for the bed

topography. We have also added stochasticity to the initial

guess for the bed as well as the observed data. In all cases,

the method accurately captures the expected bed confirming

its ability to reconstruct the bed topography from noisy

observational data. In addition, the computational results

obtained for the considered test cases demonstrate the accuracy

and efficiency of the proposed method. The presented results

also reveal good shock resolution with high accuracy in

smooth regions and without any spurious oscillations near

the shock areas. Although we have restricted our simulations

to one-dimensional problems, the optimal control method

investigated in the current work can be extended to free-surface

flows in two space dimensions with viscous terms, Coriolis

forces and over complex topography. These and further issues

are the subject of future investigations.
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