
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

230

GRCNN: Graph Recognition Convolutional Neural
Network for Synthesizing Programs from Flow

Charts
Lin Cheng, Zijiang Yang

Abstract—Program synthesis is the task to automatically generate
programs based on user specification. In this paper, we present a
framework that synthesizes programs from flow charts that serve as
accurate and intuitive specification. In order doing so, we propose a
deep neural network called GRCNN that recognizes graph structure
from its image. GRCNN is trained end-to-end, which can predict edge
and node information of the flow chart simultaneously. Experiments
show that the accuracy rate to synthesize a program is 66.4%, and
the accuracy rates to recognize edge and node are 94.1% and 67.9%,
respectively. On average, it takes about 60 milliseconds to synthesize
a program.

Keywords—program synthesis, flow chart, specification, graph
recognition, CNN.

I. INTRODUCTION

PROGRAM synthesis enables people to program

computers without training in coding. It has been used

in many domains such as data wrangling, graphs, and code

repair [1]. A good example is FlashFill [2], which allows

spreadsheet users to provide a few examples and generates a

program that conforms to the examples.

To synthesize a program, specification must be provided.

Specification in formal language can accurately represent the

user intent and is used in deductive program synthesis [3].

However, very few have the knowledge of formal language,

so it cannot benefit most end users. Under-specification is

used in programming by example [2], [4], and programming

by demonstration [5]. Under-specification does not require

language knowledge and is accessible by most end users.

However, because there may be more than one program that

satisfies the specification, how to choose the correct program

that captures the user intent is still an open problem.

In this paper, we propose a new technique called GRCNN

(Graph Recognition Convolutional Neural Network) that takes

as input a flow chart as accurate specification, and uses deep

convolutional neural network (CNN) to analyze the given

image, and compiles the obtained information into program

code. GRCNN is an end-to-end network that shares the

computation of a rich convolutional feature vector and predicts

edge and node information simultaneously. A flow chart is a

diagram that represents the workflow of a program. It is used

widely in textbooks to teach coding and illustrate programs.

Moreover, flow charts are intuitive, which allows users to focus

on programming logic instead of language details. Thus they

L. Cheng and Z. Yang are with the Department of Computer Science,
Western Michigan University, Michigan, USA (e-mail: lin.cheng@wmich.edu
and zijiang.yang@wmich.edu).

0 1 2 0

0 0 0 1

0 0 0 1

0 0 0 0

“x >0”

“a = x”

“a = -x”

“return a”

if (x >0)

a = x

else

a = -x

return a

Fig. 1 Overview of GRCNN. The input is the flow chart of abs function.
The middle is the adjacent matrix and text of each node generated by

GRCNN. The output is the synthesized source code

are also frequently used in program designing stage. Fig. 1

shows a flow chart representing the workflow of a function

that computes the absolute value of an input. Because flow

charts can accurately describe programs, synthesizing program

by flow chart may precisely capture users’ intent.

Due to recent progress in deep learning, CNN is powerful

enough to detect and recognize complicated information from

image. Therefore, we can obtain a graph data structure from

a flow chart with the help of deep CNN. Because neural

networks are differentiable functions, our method does not

suffer from the combinatorial explosion problem that plagues

traditional program synthesis methods.

Fig. 1 givens an overview of our approach. First, an image

of flow chart is resized to a fixed size and fed to GRCNN.

Then, GRCNN generates the graph information including an

adjacent matrix for the edges and a list of strings for the nodes.

Finally, we compile the graph information to source code.

Our evaluation showed that it is feasible to share the

convolutional vector between edge and node networks.

Experiments on our synthetic test dataset show that the

accuracy rate to synthesize a program is 66.4%, and the

accuracy rates to predict edges and nodes are 94.1% and

67.9%, respectively. Experiments on another dataset, which

is manually converted from a textbook, show that that the

accuracy rates to synthesize a program is 63.6%, and the

accuracy rates to predict edge and nodes are 72.7% and 81.8%,

respectively. The average time to synthesize a program is about

60 milliseconds.

In summary, the main contributions include:

• We propose a deep neural network that parses graph edge

and node information from flow chart.

• We propose to use flow chart as accurate and intuitive

specification for program synthesis.

• We have implemented a prototype and conducted

empirical study.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

231

co
nv

co
nv

co
nv + · · ·

co
nv

co
nv +

Backbone Net

co
nv fc fc

0 1 2 0
0 0 0 1
0 0 0 1
0 0 0 0

Edge Net

co
nv

co
nv

co
nv

k scores

k boxes

Detection Net

co
nv

co
nv

co
nv+· · ·

co
nv

co
nv+

Recognition Net

“x>=0”

Fig. 2 Architecture of GRCNN

II. RELATED WORK

Traditional methodology of program synthesis is to

construct a program space and design search algorithms

to find a solution that satisfies the specification. The

program space usually grows exponentially with the size

of the target program. Different methods are proposed to

speedup the search. For example, Flashfill, [2], synthesizes

string-transforming programs given input-output examples. It

uses dynamic programming to speedup the search. Morpheus,

[6], enumerates nested queries and prunes by grouping

programs with same input-output pairs. Sketch, [7], and Sqlsol,

[8], encode the synthesis problem into logic constraints and

delegate the searching algorithm to modern SMT solvers.

This approach can boost the performance because modern

SMT solvers are implemented for efficiency. Though different

methods are proposed to speedup the synthesis process, the

underlying complexity is unchanged and scalability is still an

issue when it comes to large programs. Another issue is how to

capture users’ intent. Typically, synthesis algorithms terminate

when the first solution is found or the best-ranking solution

is found. They may ask a user to provide more examples.

However, there is no guarantee that the solution precisely

captures the users’ intent.

Recently researchers propose to use machine learning to

speed up the search for synthesized program. Morpheus [4]

uses statistics to rank R program sketches, and uses the rank

to guide the search. DeepCoder [9] augments beam search with

deep learning recommendation, and the speedup is significant.

However, the underlying complexity is still unchanged.

Researchers proposed natural language based program

synthesis techniques. SQLizer, [10], synthesizes SQL queries

from natural language. Locascio et al, [11], synthesizes regular

expressions from natural language. GRCNN differs from these

approaches in that our input is different. Flow charts can

accurately specify the users’ intent, while natural language

is ambiguous.

Faster RCNN, [12], and LPRNet, [13], are closely related

to our work. Two subnets of GRCNN are built following

their ideas. Faster RCNN is a deep neural network for object

detection. It slides a small window on a convolutional feature

vector and generates box proposals relative to anchors at each

position. The box proposal is used to crop the image for

a classifier to detect the class of the object in it. Because

of the shape and positioning of nodes in a flow chart are

different from those in general object-detection jobs, GRCNN

chooses different anchors and methods to select the proposals.

LPRNet is a license plate recognizing deep convolutional

neural network. It reads an image of a license plate and

generates a sequence that preserves the spatial order of the

characters. A feature of LPRNet is that it has only one deep

convolutional network, while other work has both a CNN

for feature extraction and a recurrent neural network for

prediction. This feature helps to limit the number of subnets in

GRCNN, since it already has four subnets. Instead of taking a

license plate as input, GRCNN takes as input a crop of image

whose boundary is predicted by another network.

III. NETWORK

In this section, we describe the network and its subnet.

Then, we describe the loss function and training details.

The input of GRCNN is an image of a flow chart. A

flow chart is a graph diagram that represents the work

flow of program [14]. Standard flow charts have several

shapes for nodes. In this work, we consider all shapes of

nodes as rectangles, because we use heuristic algorithms to

generate ground truth data for bounding boxes, designing and

implementing algorithms for every shape requires considerable

engineering effort. However, given ground truth data for

bounding boxes, our algorithm can be trained the same way

to handle other shapes.

The input flow chart is resized to a fixed size (400 pixels

for height and 200 pixels for width) before being fed to the

neural network. If both height and width are less then the fixed

size, we pad the image by zeroes. Otherwise, we interpolate

the image to the fixed size. The output of GRCNN is a graph

representation of the flow chart, including an adjacent matrix

for the edge representation and a list of text for content in

nodes. In addition to the original text, we insert an id to

the text to match the text with the id-th row of adjacent

matrix. In this project, we use an alphabet of 50 characters

including English characters in lower case, digit characters,

arithmetic operators and other symbols. The source code

that our algorithm produces supports sequential statements

and control structure including IF-ELSE, WHILE loop, and

DO-WHILE loop.

Fig. 2 is the overview of GRCNN. GRCNN has four parts:

backbone network, edge network, node detection network, and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

232

TABLE I
BASIC BLOCK ARCHITECTURE

Layer Type Parameters
Input Cin ×H ×W
Conv2D Cout/4, 3× 3
Conv2D Cout/4, 3× 3
Conv2D Cout/4, 3× 3
Conv2D Cout, 3× 3

TABLE II
BACKBONE NETWORK ARCHITECTURE

Layer Type Parameters
Input C × H × W
Basic Block 15, 3 × 3
Max Pool 2 × 2
Basic Block 50, 3 × 3
Max Pool 2 × 2
Basic Block 200, 3 × 3
Basic Block 400, 3 × 3
Max Pool 2 × 2

node recognition network. The backbone network takes as

input the raw image of the flow chart and outputs a feature

vector. The feature vector is fed to both the edge network to

produce the adjacent matrix of the flow chart, and the node

detection network to generate the bounding boxes of each

node, which is used to crop the node from the original image.

Then, the crop of each node is fed to the node recognition

network to generate the text in the node.

A. Backbone Network

The backbone network is a deep CNN that takes as input

an image of size Cin ×H ×W . The output is a rich feature

vector, which is later used as input to the edge network and the

node detection network. The backbone network is a sequence

of four basic blocks. Table I shows the architecture of a basic

block, which takes as input a feature vector of Cin channels

and outputs a feature vector of Cout channels and the same

height and width. Each convolutional layer in the basic block is

followed by a batch normalization layer and a ReLU activation

layer. Each basic block is followed by a max-pooling layer,

except the third one. During training, a dropout layer (p=0.1)

is added after each pooling layer.

Optionally, the backbone network can be made a residual

learning network (ResNet), [15], by modifying the basic block

as follows. We perform a down-sampling on the input vector

with 1× 1 convolutional layer to Cout channels, and add the

result to the original output as new output.

B. Edge Network

The edge network takes as input the feature vector generated

by the backbone network and outputs an adjacent matrix,

which is the edge representation of the flow chart. The element

of the adjacent matrix at row i and column j has three possible

values: 0, 1, 2, which encode no edge, normal edge or YES

branch of a decision node, NO branch of a decision node

from node i to node j, respectively. Because the number

of nodes in the flow chart may vary, we pad the adjacent

matrix to a fixed size PAD by zeroes. We set PAD = 6 in

TABLE III
EDGE NETWORK ARCHITECTURE

Layer Type Parameters
Conv2D 400, 3× 3
ReLu
Max Pool 3× 3
Linear 400 ∗ 16 ∗ 7× 400
Tanh
Linear 400× 6 ∗ 6 ∗ 3
Tanh

this work. We encode the three values in the adjacent matrix

with one-hot-vectors of length 3. Therefore, the edge network

outputs a vector of PAD × PAD × 3 scores.

Table III shows the architecture of the edge network. It

first performs a convolutional layer activated by a ReLU

function. Then, a max pooling layer is performed followed

by two linear layers actived by Tanh function. We observed

the training converges significantly faster when using Tanh

activation function in the linear layers than using other

activation functions.

The loss function to train the edge network is the multi-class

multi-classification hinge loss . Equation 1 is the formula of

the loss function, where x is the input vector and y is the target

class indices.

le(x, y) =
∑

i,j

max(0, 1− (x[y[j]]− x[i]))

x.size(0)
(1)

C. Node Detection Network

The node detection network takes as input the convolutional

feature vector from the backbone network and outputs a set

of rectangular node proposals, each with an objectness score.

The network slides a small network over the input

convolutional layer. The output of the window is fed into two

sibling layers: a box-regression layer and a box-classification

layer. Because the small networks work in the sliding window

fashion, they are naturally implemented with convolutional

networks.

At each sliding window, we predict one region proposal

which encodes the four coordinates of a box and one score

which estimates the probability of whether the proposal is a

node or not. Each region proposal is parameterized relative to a

reference box, called anchor. We parameterize the coordinates

of the bounding boxes following [16]:

tx = (x− xa)/wa, ty = (y − ya)ha,

tw = log(w/wa), th = log(h/ha)

t∗x = (x∗ − xa)/wa, t
∗
y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha),

where x, y, w, and h is the box’s center point and width and

height. Variables x, xa and x∗ are for the predicted box, anchor

box, and ground-truth box respectively (likewise for y, w, h).

This parameterization converts large integers of bounding box

coordinates to variables close to interval [−1, 1], and therefore

improves the numerical performance of the algorithm.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

233

To train the node detection network, we assign a binary

class label of being a node or not to each anchor. We assign a

positive number to two kinds of anchors: (1) The anchor with

the highest Intersection-over-Union (IoU) with a ground-truth

box, or (2) an anchor that has an IoU higher than 0.9 with

any ground-truth box. We assign a negative number to an

anchor if its IoU is less than 0.3 for all ground-truth boxes. An

anchor that is neither positive nor negative does not contribute

to the train objective. Because the number of positive labels

and negative anchors may be different and therefore the train

may be biased toward one direction, we sample from the more

to ensure the same size of positive and negative labels during

training.
We apply binary cross entropy loss to the objectness, and

smooth-l1 loss to the region proposal. The final loss is the

sum of the objectness loss and region proposal loss over all

anchors.
For prediction, we choose top 50 anchors with the highest

scores, and group them by the condition that anchors with IoU

greater than 0.2 are in the same group. Then, we choose from

each group the highest score as the final prediction.
Nevertheless, our network differs from the faster RCNN in

two ways. (1) Because the nodes in flow charts have similar

size and shape, we use one anchor, instead many anchors with

different size and ratio, to save computing power. (2) Because

the nodes in flow charts do not overlap, we consider proposals

in the same group if one has IoU over a threshold with any

other one in the group. Meanwhile, fast RCNN considers

proposals in the same group if one has IoU over a threshold

with the one of highest score.
The architecture of the node detection network is as follows.

The intermediate layer is a Conv2D layer with 3 X 3 kernel

and 400 output channels. The classifier is a Conv2D layer with

3 X 3 kernel and 1 output channel. The regressor is a Conv2D

layer with 3 X 3 kernel and 4 output channels. Each Conv2D

layer is activated by ReLU function.

D. Node Recognition Network
The node recognition network takes as input the crop of

each node and outputs a vector of size LENV OC × 1×W ,

where LENV OC is the vocabulary size.
Table IV is the architecture of node recognition network,

where the base block shares the same architecture as the basic

block in the backbone network, Table I,
The output of the node recognition network can be

interpreted as probability distribution over the vocabulary

at each position along the width direction. CTC loss is a

function for training sequential problems such as handwriting

recognition or speech recognition. CTC loss does not attempt

to learn the character boundaries, and can be applied if the

input is a sequence with some order. By adoption CTC loss,

we do not need to use another recurrent neural network to

predict the text. Instead, we directly predict from the output

of the node recognition network.
When predicting, we use greedy search to decode text from

the output vector.
Optionally, a spatial transformer network (STN), [17], can

be inserted before the node recognition network to further

TABLE IV
NODE RECOGNITION NETWORK ARCHITECTURE

Layer Type Parameters
Input C × H × W
Basic Block 64, 3 × 3
Max Pool 3 × 3
Basic Block 128, 3 × 3
Max Pool 3 × 3
Basic Block 256, 3 × 3
Max Pool 3 × 3
Basic Block LENVOC, 3 × 3

adjust the the boundary of the crop. STN is the network that

can be inserted into existing convolutional architectures, giving

neural networks the ability to actively spatially transform

feature maps.

E. Train and Implementation

The whole network is trained end-to-end. The lost function

is the sum of loss of all sub-networks:

loss = lossedge + lossndc + lossndr +
∑

node

lossnr, (2)

where lossedge, lossndc, lossndr and lossnr are the loss

of edge network, classifier and regressor of node detection

network and node recognition network, respectively.

We use SGD method to train the network. Learning rate is

0.02, and halved when the error plateaus. The total epoch is

200.

IV. EXPERIMENT

We designed experiments to answer the following research

questions: (1) what is the accuracy of GRCNN ? (2) what is

the inference performance of GRCNN? (3) Is GRCNN able

to synthesize real-world program?

The experiments are conducted on a desktop with Geforce

1070 GPU, Intel i7 CPU, and 16GB memory. GRCNN is

implemented with PyTorch.

We tested the following networks.

• GRCNN: which is our basic network

• Separated GRCNN: not sharing the backbone network.

See Section IV-D.

• GRCNN with ResNet: add optional residual learning. See

Section III-A.

• GRCNN with STN: add option STN network. See Section

III-D.

• GRCNN with ResNet and STN.

A. Dataset Generation

We created a synthetic dataset to train and test GRCNN,

since there are no existing datasets we can use.

A data sample includes a flow chart image in PNG format

and a text file containing the ground truth which is used to train

the network. The ground truth includes the adjacent matrix

which represents the edge information, and the bounding box

and text content for each node.

The dataset contains flow charts with 3 to 6 nodes, and

0 to 2 decisions. The text in each node contains 3 to



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

234

TABLE V
ACCURACY IN PERCENTAGE OF GRCNN

Edge Squence Nodes Graph

GRCNN 94.1 90.6 67.9 66.4

+STN 90.0 93.8 71.3 64.4
+ResNet 91.9 91.3 64.8 60.3
+STN+ResNet 90.9 93.2 70.0 63.2

Separated 93.7 91.1 68.2 65.8

The columns are Edge, Sequence, Nodes and Graph accuracy, respectively.

TABLE VI
TIME COST IN MILLISECONDS OF GRCNN .

BB Edge ND NR GRCNN

GRCNN 3.5 0.4 42.4 14.2 60.5

+STN 3.5 0.4 43.3 16.6 63.8
+ResNet 3.5 0.4 44.8 14.0 79.1
+STN+ResNet 3.6 0.5 47.0 16.7 84.3

Separated 3.5 0.4 42.8 15.1 61.8

The columns are the time cost of the backbone, edge, node detection, node
recognition network and GRCNN, respectively

9 random characters from an alphabet of 50 characters,

including the lower case English characters, digit characters,

arithmetic operators, parenthesis et al. Note that the alphabet

can be chosen freely without changing the essential network

architecture. The train and test dataset contain 9960 and 2490

data samples, respectively.

We draw the flow chart using Graphviz, a popular

graph-drawing tool. We set the maximal width to be 200 pixels

and maximal height to be 400 pixels.

When drawing the flow chart, we randomize to cover wide

range of data samples. The width of lines, including nodes

boundaries and edges, is randomly chosen between 1 to 5

pixels. The font size of characters is randomly chosen between

20 to 30. The font color of characters is random RGB color.

We draw nodes in rectangles and design a heuristical algorithm

to effectively compute high accuracy coordinates of bounding

boxes.

B. Accuracy

We measure the Edge Accuracy, Sequence Accuracy, Nodes

accuracy and Graph Accuracy of GRCNN prediction. Edge

accuracy is the percentage of images whose edge is correctly

predicted. We say the edge is correctly predicted if the

predicted adjacent matrix is exactly the same as the ground

truth. Sequence accuracy is the percentage of nodes whose text

content is correctly predicted among all nodes in all images.

This item shows how well the node recognition network works

for individual nodes. Nodes accuracy is the percentage of

images whose nodes are all correctly predicted. This item

shows how well the tool predicts the nodes as a whole. Graph

accuracy is the percentage of images whose edge and nodes

are all correctly predicted.

The accuracy of GRCNN and its subnets are described in the

first row of Table V. The Edge, Sequence, Nodes and Graph

accuracy are 94.1%, 90.6%, 67.9% and 66.4%, respectively.

Note that the Graph accuracy is the result of joint probability

TABLE VII
RESULT OF REAL-WORLD PROGRAM SYNTHESIS.

program Graph Edge Nodes #Nodes Nodes

abs 1 1 1 4 4
swap 1 1 1 3 3
max 0 1 0 4 3
sum 0 0 1 6 6
max3 1 1 1 6 6
log 1 1 1 4 4
radius 1 1 1 3 3
poly 1 1 1 6 6
factorial 1 1 1 6 6
quadrant 0 0 1 5 5
cntpos 0 0 0 6 3

sum 7 8 9 53 49
percentage 63.6 72.7 81.8 - 92.5

The columns are program name, Graph accuracy, Edge accuracy, Nodes
accuracy, number of nodes, correctly predicted nodes.

of all edges and all nodes, so it is lower than Edge and

Sequence accuracy.

We conducted ablation study to identify how well the

optional enhancements are. In Table V, rows 2-4 show the

accuracy of GRCNN with different enhancements. We find

that the edge accuracy and graph accuracy decreased with

those enhancements. Our explanation is that the extra trainable

weights in the enhancements caused the network biased toward

the nodes detection and recognition networks, but caused the

decrease in edge accuracy, and therefore caused decrease in the

graph accuracy. We also find all STN enhancements improved

the accuracy of node detection and recognition networks.

C. Performance

Table VI shows the performance of GRCNN and its subnets.

The overall time cost of GRCNN is about 60 milliseconds,

and the performance of other networks are close to the

performance of GRCNN. Among the subnets, the time cost of

node detection network is the major part, 70.1%, of the overall

cost. The rest are the node recognition network (23.5%),

backbone network (5.8%), and edge network (1%).

D. End-to-End vs Separated Network

Because edge and node information do not depend on each

other, it is natural to consider to use two separate networks to

predict edges and nodes. We designed experiments to see how

well both ideas work.

We made two clones of GRCNN and modified as follows.

For one clone, we disable the node detection network and node

recognition network. For the other clone, we disable the edge

detection network. We trained the two networks separately

with the same dataset and hyper parameters.

The row Separated in Table V and VI show the accuracy

and performance of the separated networks. The performance

is close to GRCNN, therefore it is feasible to share the

computation of the backbone network. The sharing saves 3.5

milliseconds, which is 5.8% of the time cost.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:6, 2020

235

[[0 1 2 0 0 0]
[0 0 0 1 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 2]
[0 0 0 0 0 1]
[0 0 0 0 0 0]]

if x<y
a=y

else
a=x

if a<z
a=z

return a

[[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 2 0 0 1]
[0 0 0 0 0 0]]

f=1
i=n
do

f=f*i
i--

while i>0
return f

Fig. 3 Samples of GRCNN prediction. The predicted bounding boxes are drawn in red lines. The predicted text is drawn above the bounding box in blue
characters. On the right is the predicted adjacent matrix and synthesized source code

E. Real-world Program Synthesis

In order to see how well GRCNN synthesizes real-world

programs, we created a test dataset of 11 programs, which are

selected from the problems in a programming textbook [18].

Table VII is the testing result. It shows that 63.6% of

programs are correctly predicted, 72.7% edges are correctly

predicted, 81.8% nodes are correctly predicted.

In Fig. 3, we draw two samples to visually demonstrate the

input and output of GRCNN. The first one is the function

that finds the max of three numbers. The second one is the

factorial function.

V. CONCLUSION

We presented GRCNN, a deep convolutional neural network

that parses graph data structure from a flow chart, and we

automatically generate source code that matches the flow chart.

GRCNN predicts the edge information and nodes information

simultaneously. Experiments show that we can share the

computation of the feature vector. GRCNN achieves 66.4%

accuracy on our test dataset and close accuracy on a real-world

dataset. GRCNN takes about 60 milliseconds to synthesize a

program from an image of flow chart.

REFERENCES

[1] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of
the 12th international ACM SIGPLAN symposium on Principles and
practice of declarative programming. ACM, 2010, pp. 13–24.

[2] ——, “Automating string processing in spreadsheets using input-output
examples,” ACM Sigplan Notices, vol. 46, no. 1, pp. 317–330, 2011.

[3] Z. Manna and R. Waldinger, “A deductive approach to program
synthesis,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 2, no. 1, pp. 90–121, 1980.

[4] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri,
“Component-based synthesis of table consolidation and transformation
tasks from examples,” in ACM SIGPLAN Notices, vol. 52, no. 6. ACM,
2017, pp. 422–436.

[5] T. A. Lau and D. S. Weld, “Programming by demonstration:
An inductive learning formulation,” in International Conference on
Intelligent User Interfaces: Proceedings of the 4 th international
conference on Intelligent user interfaces, vol. 5, no. 08. Citeseer, 1998,
pp. 145–152.

[6] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
sql queries from input-output examples,” in ACM SIGPLAN Notices,
vol. 52, no. 6. ACM, 2017, pp. 452–466.

[7] A. Solar-Lezama and R. Bodik, Program synthesis by sketching.
Citeseer, 2008.

[8] L. Cheng, “Sqlsol: An accurate sql query synthesizer,” in International
Conference on Formal Engineering Methods. Springer, 2019, pp.
104–120.

[9] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and
D. Tarlow, “Deepcoder: Learning to write programs,” arXiv preprint
arXiv:1611.01989, 2016.

[10] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: query
synthesis from natural language,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, p. 63, 2017.

[11] N. Locascio, K. Narasimhan, E. DeLeon, N. Kushman, and R. Barzilay,
“Neural generation of regular expressions from natural language with
minimal domain knowledge,” arXiv preprint arXiv:1608.03000, 2016.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[13] S. Zherzdev and A. Gruzdev, “Lprnet: License plate recognition via deep
neural networks,” arXiv preprint arXiv:1806.10447, 2018.

[14] G. B. Shelly and M. E. Vermaat, Discovering Computers, Complete:
Your Interactive Guide to the Digital World. Cengage Learning, 2011.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[17] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in neural information processing systems, 2015,
pp. 2017–2025.

[18] D. M. Etter, Introduction to C. Prentice Hall, 1998.


