
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

16


Abstract—The diversity and complexity of modern IT systems

make it almost impossible for internal teams to find vulnerabilities in
all software before the software is officially released. The emergence
of threat intelligence and vulnerability reporting policy has greatly
reduced the burden on software vendors and organizations to find
vulnerabilities. However, to prove the existence of the reported
vulnerability, it is necessary but difficult for security incident response
team to build a deliberated vulnerable environment from the
vulnerability report with limited and incomplete information. This
paper presents a structured, standardized, machine-oriented
vulnerability intelligence format, that can be used to automate the
orchestration of Deliberated Vulnerable Environment (DVE). This
paper highlights the important role of software configuration and proof
of vulnerable specifications in vulnerability intelligence, and proposes
a triad model, which is called DIR (Dependency Configuration,
Installation Configuration, Runtime Configuration), to define software
configuration. Finally, this paper has also implemented a prototype
system to demonstrate that the orchestration of DVE can be automated
with the intelligence.

Keywords—DIR Triad Model, DVE, vulnerability intelligence,

vulnerability recurrence.

I. INTRODUCTION

N the past few years, the number and complexity of IT
systems has led to a steady increase in the number of

vulnerabilities in these systems. According to National
Vulnerability Database (NVD) official statistics, the number of
vulnerabilities received by NVD in 2016, 2017, and 2018 were
6447, 14645, and 16516, respectively [1]. These vulnerabilities
that continue to occur every year have had a serious impact on
individuals, companies, and organizations. In September 2018,
a Facebook vulnerability allowed hackers to take over user
accounts directly, and the vulnerability caused at least 50
million user account information to be leaked [2]. In 2017,
WannaCry ransomware used unrepaired vulnerabilities in less
than 24 hours, causing more than 300,000 computers in more
than 150 countries around the world to stop working [3].

The ubiquity of vulnerabilities has led more and more
software vendors and organizations use crowdsourcing to
exploit vulnerabilities. Anyone on the Internet can find a
vulnerability and report this issue. The US Department of
Defense launched the first federal vulnerability award program
"Hack the Pentagon" in 2016. The project has received nearly
3,000 vulnerability reports from more than 600 security
researchers worldwide, of which more than 100 are considered

Yixuan Cheng, Wei Huang, and Wenqing Fan are with the School of

Computer Science and Cybersecurity, Communication University of China.
(e-mail: cucfitz@gmail.com, huangwei.me@cuc.edu.cn,
fanwenqing@cuc.edu.cn).

high-risk vulnerabilities, including remote code execution and
methods to bypass the DoD website authentication [4].
Companies such as Google and Microsoft are spending
millions of dollars on their "bug bounty" projects to reward
vulnerability reporters [5], [6]. Some submitted vulnerability
reporters can obtain a Common Vulnerabilities and Exposures
(CVE) number after the vulnerability is approved. As of March
2019, there have been more than 110,000 vulnerabilities on the
CVE website [24]. So, vulnerability information can effectively
help software vendors and organizations reduce the burden of
find a vulnerability.

Although there are so many vulnerabilities reported, both
software vendors and third-party vulnerability platforms need
to spend a lot of manpower and resources to verify the accuracy
of these vulnerability reports, and then to fix these
vulnerabilities. According to researchers' tests, it takes 5 hours
to verify the existence of a vulnerability on average based on
vulnerability reports for vulnerabilities on CVE. According to
vulnerability reports for vulnerabilities on non-CVE, it takes 3
hours to verify the existence of a vulnerability on average, and
personal vulnerability reports from popular security forums
have a minimum of 4.5% success rate [7]. Such a low success
rate will have some serious consequences. For example, a
Facebook user once found a vulnerability that allowed an
attacker to post a message to anyone's timeline. However, due
to “lack of sufficient detail to reproduce the vulnerability”,
Facebook engineers ignored the initial report until the
Facebook CEO’s schedule was hacked [8]. If a security
researcher can automatically construct a DVE with a target
vulnerability based on vulnerability information, then it can
effectively increase the success rate of vulnerability recurrence,
greatly reduce resources such as manpower and material
resources, and reduce the risk of vulnerability report review and
reduce the further harm from reported vulnerabilities. DVE is a
standard proposed to facilitate the "security emergency
response team" to build a vulnerability recurring environment,
because for the author of the software, the task of setting up a
recurring environment is a breeze: there are ready-made
development and testing environments in the local area. The
code repository can be built back to the historical version to
build the specified version of the software at any time. Only for
third-party teams, setting up a vulnerability recurring
environment is indeed a dirty work that cannot be ignored and
cannot be avoided.

Vulnerability intelligence, as a more targeted category of
threat intelligence, is closely related to the research of threat
intelligence. In the past 10 years, researchers have spent a lot of
time working on threat intelligence. Some researchers are

Wenqing Fan, Yixuan Cheng, Wei Huang

SVID: Structured Vulnerability Intelligence for
Building Deliberated Vulnerable Environment

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

17

working on the format of threat intelligence and the process of
incident reporting. Menges et al. [9] and Asgarli et al. [10]
conducted a comparative analysis of some of the most
important event reporting formats, including STIX and IODEF,
and designed the process of incident reporting. Their works
have a good reference in the field of data exchange, but do not
have a clearer description of the important factors in the
security incident - the vulnerability and its recurring process.

Other researchers focus on comparing the differences
between different vulnerability reports. Dong et al. [11]
compared the quality and consistency of information between
CVE and NVD vulnerability reports and conducted large-scale
measurements. Their results indicate that inconsistencies
between the two are common. The community needs to
systematically correct inaccurate claims in the vulnerability
report. Their research confirms that not only third-party
vulnerability reports, but also some official vulnerability
reports have information inaccuracies, such as there are many
errors in the affected software version information; this
inaccurate information also has an impact on the recurrence of
vulnerabilities. So, if we can automate the generation of a
vulnerability recurring environment based on the vulnerability
report, and then determine whether the environment has the
vulnerability, then we can efficiently and conveniently verify
the authenticity and accuracy of the vulnerability report.

Based on the above background, the two problems to be
solved in this paper are: 1. What information is used to
construct the DVE environment in vulnerability information is
critical and mandatory information; 2. How to design a new
standardized, structured, machine-oriented vulnerability
intelligence standard make it easier to build DVEs.

The rest of this article is organized as follows. Section II
describes the work parallel to our vulnerability intelligence
standard SVID. Section III explains the design of our
vulnerability intelligence. Section IV describes the design of
the prototype system. Section V describes the implementation
of prototype system. Section VI uses a representative
vulnerability as an example to prove the validity of SVID.
Section VII concludes the paper and proposes future research
directions.

II. RELATED WORK

Some researchers focus on classifying and comparing threat
intelligence. Tounsi and Rais [12] differentiated and classified
existing threat intelligence types and provided an intelligence-
sharing strategy based on trust and anonymity to help
organizations eliminate the risk of business disclosure in the
process of sharing threat intelligence. According to the traffic
light agreement [13], threat intelligence should be shared when
sharing. Therefore, our vulnerability information allows
detailed vulnerability reconstruction environment construction
information and PoC; the premise should be "trust-based"
intelligence sharing strategy. That is, when a vulnerability
reporter reports a vulnerability to a vendor affected by a
vulnerability, the trusted vulnerability researchers share the
vulnerability research results with each other. The reason for
this is to avoid the misuse of information in DVE and

vulnerability intelligence to reduce the time it takes to expose
vulnerabilities in cyber-attacks. The existing threat intelligence,
vulnerability announcement information, and third-party
vulnerability research reports have excessive disclosure of
details of the vulnerability, but the more common situation is
the lack of key information for the recurrence of the
vulnerability. The reasonable reason for missing this part of the
information is to avoid the details of the abuse of the
vulnerability.

Steinberger et al. [14] analyzed different exchange standards
and introduced several comparison criteria. Their work
provides valuable advice for comparing reporting formats,
although most of these standards are now almost non-relevant
and work does not specifically focus on reporting formats.
Mavroeidis and Bromander [15] introduced the CTI model to
enable cyber defenders to explore their threat intelligence
capabilities. They also used their models to analyze and
evaluate several existing threat intelligence classification
methods, intelligence sharing standards, and ontology related to
threat intelligence. They also suggested that knowledge from
domain expertise should be collected in a structured way and
presented in the ontology of threat intelligence.

Some researchers explore some of the basic elements of
threat intelligence. Cichonski et al. [16] have done a great deal
of work in describing events and their components, and have
greatly assisted in the description of events in threat
intelligence. However, the acquisition of new vulnerability
information depends on the briefings of some third-party
organizations, website publishing content, mailing lists, etc.,
and the information about the vulnerability information
obtained is less related to the recurrence of the vulnerability.
Therefore, organizational security researchers who obtain
threat intelligence cannot quickly reproduce vulnerabilities
based on threat intelligence, thereby patching vulnerabilities
and preventing further losses.

Other researchers jumped out of the vulnerability
intelligence itself and innovated from the perspective of
vulnerability recurrence. Mu Mu et al. [8] focused on the
recurrence of vulnerabilities and tried to select vulnerability
reports from the perspective of loophole recurrence. For the
first time, they manually reproduced a large number of real
vulnerabilities to further analyze the actual problems
encountered in the process of recurring vulnerabilities. Based
on their research results, they suggest that if the software name
and affected version are already defined, the software
installation part can be automated; if the Proof of Vulnerable
(PoV) script, the vulnerability trigger method, and the
vulnerability verification method are given out, the
vulnerability reproducer can automate the recurrence of the
vulnerability, in which the PoV script can reuse the existing
Proof of Concept (PoC) script. The work of Mu et al. provided
invaluable advice for the study of vulnerability recurrence, but
did not provide a concrete and feasible solution to achieve
automation.

III. VULNERABILITY INTELLIGENCE

In this section, we will introduce an overview of the SVID

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

18

methodology. We will then understand the overall intelligence
structure of SVID and detail the design of each field and the
basis for our selection of these fields.

A. Methodology Overview

Our goal is to design a standardized, structured, machine-
oriented vulnerability intelligence standard that makes it
possible to automate the development of a DVE. But there are
many challenges in this process.

The first challenge is how to determine which fields are
necessary to automate the building of DVE intelligence.
Vulnerabilities based on existing vulnerability intelligence are
almost entirely manual, and in order to reproduce vulnerability,
it may be necessary to integrate information from multiple
vulnerability reporting sources and some are not valid. It is very
cumbersome and complicated to determine the information
necessary to reproduce the vulnerability in this complicated
vulnerability information.

The second challenge is that successful vulnerability
recurrence may also depend on the knowledge and skills of
security analysts [7]. The variety of vulnerabilities has led to a
diversity of vulnerabilities in recurring environments, and the
types of vulnerabilities required for vulnerabilities to replicate
are also different. So, for different types of vulnerabilities,
many domain experts may be needed to analyze them together.

Based on the above challenges, it is difficult for our work to
achieve depth and breadth at the same time. So, we decided to
prioritize the depth issue while maintaining a reasonable scale
to achieve scalable results. More specifically, we have chosen
the vulnerability in the software that satisfies the twelve-factor
application [17] as our research object (the application software
mentioned in the subsequent chapters of this article refers to the
software that satisfies the application of the twelve-factor). So,
we can prepare a special expert group for components in this
field to conduct our research. We combine the information
needed in the process of manually recreating the vulnerability,
the existing information in the existing vulnerability report, and
the configuration software used to define the network node in
some professional software that sets up the network
environment (such as the applications in GNS3 [18]). The most
critical information used to automate the construction of the
DVE environment was filtered out to design vulnerability
information SVID. In addition, we have designed a prototype
system to verify the effectiveness of SVID. Finally, we selected
a representative set of software and verified the high-risk
vulnerabilities in recent years.

B. Intelligence Design

For the vulnerability in the software that satisfies the twelve-
factor application, we define the vulnerability information as
shown in Table I.

C. Intelligence Element

The following is a detailed explanation of the fields in the
vulnerability information and explains why we chose this
information.

TABLE I
VULNERABILITY INTELLIGENCE FORMAT

Classification Field Description Options

Basic Element
os-s Software operating system Required
os-e Exploit operating system Required

Software
Information

sn Software name Required
sv Software version Required

Software
Configuration

sdc Software dependency configuration Required
sic Software installation configuration Required
src Software runtime configuration Required

PoV

edc Exploit script dependency
configuration

Required

eic Exploit script installation configuration Required
erc Exploit script runtime configuration Required

Vulnerability
Verification

vvm
Vulnerability verification method Required

Vulnerability
Description

vd1 Vulnerability database Optional
id1 Vulnerability identification Optional
… …… …
vt Vulnerability type Optional
em Exploit mode Optional
vtm Vulnerability triggering method Optional
st Software type Optional
ve Vulnerability effect Optional
p Port Optional

vde Vulnerability description Optional
sve Software vendor Optional
svu Software vendor URL Optional
ex Extended fields Optional

1) Basic Element

Software Operating system: It is the operating system on
which the affected vulnerability of the vulnerability is
dependent. An application depends on its operating system, and
operating system information is also the basic information used
to reproduce the vulnerability environment. The format
specification of the operating system can refer to the format
specification of CPE [19]. In CPE, a typical operating system
information description is cpe:2.3:o:debian:debian_linux:7.0:
::*:*:*:*:*.

Exploit Operating system: It is the operating system on
which PoV depends. Exploit host and target software may not
be on an operating system, so we need to additionally define the
operating system on which the exploit depends to complete the
system configuration of the exploit host.

2) Software Information

Software name: The software name is used to declare the
name of the software affected by the vulnerability. Every
vulnerability depends on a particular piece of software. So if we
want to build a vulnerability recurring environment, we need to
build the affected software environment first. Affected software
names can help identify software quickly.

Software version: The software version is used to declare
the version information of the software affected by the
vulnerability. There is a scope for each version of the software
affected by the vulnerability. Vulnerabilities in the A version of
the software may not exist in the B version of the same software.
So, we need precise, unambiguous software version definitions
to uniquely identify different versions of the software. For the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

19

declaration of version information, refer to the declaration
specification of the semantic version 2.0.0 [20]. In addition, one
can also refer to the format specification of CPE.

3) Software Configuration

In the process of researching software configuration, PoV
and related description information, we proposed the DIR triad
model to describe software configuration related information
and PoV related information. Software dependency
configuration is used to describe the dependency environment
of the software and how it is configured. The software
installation configuration is used to describe how the software
itself is installed and configured. The software running
configuration is used to describe the relevant configuration of
the software at runtime, and defines the operating rules of the
software configuration script and PoV script. Within our
knowledge, for software that meets the twelve-factor
application, almost all software configuration script
information used to build a vulnerability recurring environment
and PoV information for verification purposes can be described
using the DIR triad model. In the following we will introduce
how the DIR triad model is applied in software configuration,
PoV and its associated descriptions, and why we chose them.

Software dependency configuration: It refers to the list of
environment dependencies required to define all dependencies
in the software configuration script, corresponding to the
Dependency Configuration in the DIR triad model. Software
configuration scripts often use some third-party function
modules and tools when implementing their configuration
functions. If these function modules and tools are missing, the
configuration scripts will not be executed as expected. In
addition, the environment required for the software
configuration script itself to run needs to be met, such as the
environment in which the script's development language is
configured. So, software configuration dependencies are
needed to precisely define all the modules, tools, development
languages, etc., and their version information.

Software installation configuration: It refers to the
software configuration script used to install and configure the
target software to enable it to have a target vulnerability and its
related configuration, corresponding to the Installation
Configuration in the DIR triad model. Software installation
configuration is a very important part of the vulnerability
recurring work, but it is often overlooked. According to
researchers, more than 87% of vulnerability reports do not
include information such as configuration and options for
software installation [7]. A vulnerability may exist in different
versions of the software, but even if the software is installed for
one of the affected versions, the successful installation does not
mean that the vulnerability must exist in the software and may
require additional configuration. Let’s take the CVE-2019-
6340 vulnerability as an example. The software version
affected by this vulnerability includes drupal:8.5.0 version, but
the vulnerability cannot be triggered directly after installing
drupal: 8.5.0, because one of the trigger conditions for this
vulnerability is to use the RESTful web service module (rest
module) enabled by the drupal 8 core site and allow PATCH or

POST requests. Therefore, additional software installation
configuration is required for the installed drupal software to
successfully trigger the vulnerability. Other trigger conditions
for this vulnerability also require additional software
configuration. So, in order to automate the construction of the
DVE environment, software installation configuration is
necessary.

Software runtime configuration: It refers to the way
required to run the software configuration script to define the
execution method of the software configuration script,
corresponding to the Runtime Configuration in the DIR triad
model. There may be many development languages for
software configuration scripts, or they may be defined by an
ansible playbook or an yml file in CI/CD. Different
implementation methods of different types of scripts depend on
the expert's experience. So, if we need to automate the
configuration of DVE for the machine, we need the software
running configuration to define how the software configuration
script works.

4) PoV

Exploit script dependency configuration: It refers to the
list of environment dependencies required to define
dependencies and their configuration in the exploit script,
which corresponds to the Dependency Configuration in the
DIR triad model. Exploiting scripts also rely on some third-
party modules and tools when implementing their exploits. A
typical tool is Metasploit [21]. So, without these dependent
modules or tools, an exploit may fail and it is impossible to
verify that the environment being built is a DVE. Similar to the
software configuration, the environment required for the
exploit script itself to run needs to be met, such as the
development language environment of the configuration script.
Therefore, exploit script dependency configuration are needed
to precisely define all the modules, tools, development
languages, etc. and their version information.

Exploit script installation configuration: It refers to the
PoV code and related configuration that exploits the
vulnerability to trigger a specific vulnerability for the target
environment, corresponding to the Installation Configuration in
the DIR triad model. An important step in automating the
construction of DVE is to verify that the existing environment
does have a target vulnerability, so automation of the exploit
needs to be implemented. PoV is the most important part of the
loopback process. If there is no PoV script to reproduce the
loophole, it will take a lot of manpower and resources, and it
needs the expertise of experts in the field. The worst part is that
it takes extra time to manually analyze. So, if we want to
automate the exploitation of the vulnerability, we need to
provide PoV in the intelligence.

Exploit script runtime configuration: It is used to define
how the exploit script is run, corresponding to the Runtime
Configuration in the DIR triad model. There are many possible
development languages for exploit scripts, and even a lot of
exploit code can be done with a single bash command. So, if we
need to automate the exploitation of the machine, we need the
exploit script runtime configuration to define how the exploit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

20

script works.

5) Vulnerability Verification

Vulnerability verification method: It is used to define
whether the verification exploit script successfully triggered the
specified vulnerability. In the exploit phase, although there are
already PoV scripts to help us trigger the vulnerability, the
trigger will not necessarily succeed, so we also need to check if
the vulnerability really triggers the success. Taking the remote
arbitrary code execution class vulnerability as an example, the
PoV script can create a representative specific file in the
specified directory after successfully triggering the
vulnerability, and then monitor the read and write status of the
file in the specified directory to verify whether the arbitrary
code execution vulnerability is successfully triggered. Only if
the verification is successful, prove that the vulnerability does
exist and the exploit is successful, it can be said that the DVE is
built. So, it is necessary to define how to verify the successful
exploitation of the vulnerability.

6) Vulnerability Description

All of the above field information is mandatory. The optional
field information is described below. Although the following
field information is not directly related to the automatic
construction of the DVE environment, it is very important for
describing the information about the vulnerability and software
and the application scenario for broadening the vulnerability
information, so it is an optional field. The meaning of each field
and its role are described in detail below.

Vulnerability database: It defines the dependent database
for the vulnerability number. Because the vulnerability
numbers of different vulnerability databases are different, a
field is needed to clarify which database the vulnerability
number belongs to prevent confusion. Therefore, there may be
multiple vulnerabilities database names, and each vulnerability
database name corresponds to an identifier.

Vulnerability identifier: It is an identifier that uniquely
represents the vulnerability and is used to distinguish between
different vulnerabilities and is a necessary field. Typical
numberings include the CVE official CVE serial number and
the CNNVD serial number of the China National Vulnerability
Database of Information Security (CNNVD). The same
vulnerability may have different IDs, but the ID of each
vulnerability should be able to uniquely identify a vulnerability.
For example, the CVE-2018-7600 vulnerability ID is different
from the CNNVD-201803-1136 vulnerability ID, but they
represent the same vulnerability. So, there can be more than one
ID field, and each number corresponds to a vulnerability
database name.

Vulnerability type: It defines the type of vulnerability. The
vulnerability type information is the basic information
necessary to describe the vulnerability, which can broaden the
application scenarios of vulnerability information. For example,
when the application is in the field of automated build range, it
is possible to automate the generation of a series of DVE
environments for range training for different vulnerabilities of
the same type. The way to declare the vulnerability type can be

found in CWE [22].
Exploit mode. It refers to the attack mode of an attacker

when exploiting the vulnerability. Vulnerability analysts,
testers can use this information to increase understanding of
attack behavior and enhance defense capabilities. This field can
broaden the application scenarios of vulnerability intelligence.
For example, when the application is in the automated build
range field, a series of DVE environments can be automatically
generated for range training for different vulnerabilities of the
same attack mode. The way to declare the exploit pattern can be
found in CAPEC [23].

Vulnerability triggering method: It is used to describe the
method that triggered the vulnerability and is the basic
information necessary to describe the vulnerability information.
The vulnerability analyst, the tester can choose the solution to
reproduce the vulnerability based on the vulnerability
triggering method.

Software type. It refers to the subordinate type of the
vulnerability affecting software. Software types can help
people understand the impact of software business logic and
vulnerabilities. In addition, software types can link different
software of the same class, allowing for correlations between
vulnerabilities.

Vulnerability effect: It refers to the effect that can be
exploited by the vulnerability. For example, a vulnerability can
be used to implement remote arbitrary code execution. The
vulnerability effect can help understand the hazards of the
vulnerability, help determine the vulnerability verification
method, and can also be applied to automate the construction of
the target field to generate the same vulnerability in the target
environment.

Port: A vulnerability-aware port is the listening port of the
software affected by the vulnerability. According to the twelve-
factor application, application software that satisfies the
twelve-factor application can provide services through port
binding. Therefore, by giving the port information, it can help
determine the software listening port, and then apply it when
building the DVE environment. A typical application is
honeypot technology, which can help security practitioners
automate the construction of honeypots and bind the software's
default port to increase the authenticity of honeypots for
intrusion fraud. Because the listening port of the software is
mostly only on a certain port, but it can also be specified by
humans, this information is not mandatory and optional.

Vulnerability description: Vulnerability description
information is the basic information necessary to describe a
vulnerability and is used to describe the entire vulnerability and
its affected software, environment-dependent information, etc.
in a natural language. And it can help people better understand
the vulnerability.

Software vendor: The affected software vendor refers to the
application from GNS3, which is used to identify the affected
software vendor, so that you can consult the relevant
information of the manufacturer when you encounter related
problems.

Software vendor URL: The affected vendors' URLs are
referenced from the GANS3's appliances, which are used to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

21

give the software vendor's official website to prevent vendor
information acquisition errors due to factors such as software
duplicate names and keyword conflicts.

Extended fields: Extended fields are reserved to describe
other unknown information, making vulnerability intelligence
scalable.

IV. PROTOTYPE DESIGN

The prototype system is designed as shown in Fig. 1, which
includes two types of roles, Manager and Worker. The workers
include Porter, Builder, Configurator, Exploiter, and Checker.

The flowchart of the prototype system is shown in Fig. 2.
After receiving the SVID, the manager will parse the SVID and
extract the useful information to distribute to other workers.
The manager distributes (id, os-s, os-e, sn, sv) to the carrier and
distributes (id, os-s, os-e, sn, sv, p) to the Builder, and
distributes (sdc, Sic, src, p) to the Configurator, distributing
(edc, eic, erc, p) to the attacker and distributing (vvm, em, p) to
the verifier.

Fig. 1 Prototype system use case diagram

Fig. 2 Prototype system flow chart

The entire system process is similar to the factory's pipeline
operations. After receiving the information distributed by the
manager, the Porter searches for and matches the available
original image, including the software image and the exploit
image, from the mirror repository based on the information (id,
os-s, os-e, sn, sv). The original image is then moved to the
Builder. After the original image is obtained, the Builder
configures the original image according to the information (id,
os-s, os-e, sn, sv, p), and runs the image to become the running
image. We will name it Image-R. After the previous step is
completed, the Builder hands the Image-R to the Configurator.
The Configurator configures the Image-R based on the (sdc, sic,
src, p) information to make the target image has the target
vulnerability. We will name the configured image as Image-RC.
After the configuration is completed, the Configurator hands
the Image-RC to the Exploiter, and the Exploiter completes the
configuration of the exploit host according to the (edc, eic, erc,
p) information, and uses the PoV to attack the target image. We
named the image after the exploit was completed as Image-
RCA. After that, the Checker obtains the Image-RCA from the
Exploiter and completes the detection according to the (vvm,
em, p) information, verifying that the previous exploit has been
successful, proving that the image has become a DVE, and
handing it over to Porter. Finally, the Porter moves the
validated DVE to the DVE repertory to complete a complete
production process.

V. IMPLEMENTATION

This section will introduce our specific implementation of
the above prototype design.

The initial implementation of SVID was to use the JSON
format as a ubiquitous, portable, and structured mechanism for
later collaboration and improvement.

Our prototype system uses docker technology as the key
technology to support the preservation, operation and exchange
of images, docker hub as the image repository, harbor as the
DVE repository, and Gitlab CI/CD pipelines to define and
control Manager and Workers. Because software that satisfies
the twelve element applications can provide services through
ports, port mapping can be used to implement mirroring
between builders, configurators, attackers, and verifiers.

GitLab CI/CD pipelines use runners to define different roles.
The Porter searches for matching available software images
from the docker hub with the mirrored TAG value based on the
information (id, os-s, os-e, sn, sv). For example, you can search
for available images in the sn:sv format. sn:sv itself is the
official Docker-recommended image naming convention, so
this design approach ensures that a large number of candidate
based images are available. The original image that the Porter
searched for was Docker Image, which needed to pull the
Docker Image from the docker hub and hand it to the builder.
The builder configures the original image based on the
information (id, os-s, os-e, sn, sv, p) and runs it to generate the
running Docker container Image-R. After above steps are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

22

completed, the configurator installs and configures the Docker
container Image-R according to the (sdc, sic, src, p)
information. The attacker then uses the PoV script to complete
the exploit process based on the (edc, eic, erc, p) information
and creates a unique identifier to prove that the exploit process
was successful. For example, for exploits of remote arbitrary
code execution classes, PoV scripts can create specified
unpredictable files in a specified directory. After the attack is
completed, the verifier completes the verification based on the
(vvm, em, p) information. For example, for exploits of remote
arbitrary code execution classes, the verifier can monitor the

read and write of all files in the specified directory. If the
specified unpredictable file is found to be successful, the
attacker's exploit process is successful, and the image
Image-RCA has become DVE. Finally, the Porter packages the
generated DVE into a Docker image and uploads it to the DVE
repository harbor to complete a complete production process.

VI. A TYPICAL CASE

This section will take a specific vulnerability CVE-2018-
7600 as an example to illustrate how SVID should be applied.

Fig. 3 Case network topology

The network topology diagram of the experiment is shown in
Fig. 3. After obtaining the SVID of CVE-2018-7600, the
Manager parses it. The vulnerability number is CVE-2018-
7600, and the affected software name is Drupal, and a typical
version number can be 8.5.0 after cleaning. Using this
information, we can search for available images in the existing
image repositories. Taking the public docker hub as an example,
we can use the software name drupal to search for the official
designated repository. There will be all different TAG values in
the official repository for identifying different images.
According to the software version information, we can search
and match among all TAGs and select the appropriate image,
such as the drupal:8.5.0 image. After finding the available
image, we can use the Docker API to complete the image pull
and container operation on the server that provides the docker
service. Because the software that satisfies the twelve-element
application can provide services through the port, the service
can be mapped to the configurator runner and the attacker
runner and the checker runner through port mapping. In
addition, we need to complete the image acquisition and
operation of the exploit runner according to os-e. The steps are
similar to the way the drupal service is built.

The drupal service provided in the drupal:8.5.0 image is not
installed and configured by default, so we need to complete the
software configuration. On the configurator runner, the
environment configuration is completed according to the
software configuration dependency, and then the software

configuration script is completed according to the software
running dependency, so that the drupal can successfully
complete the installation and the vulnerability configuration.

After the software configuration is complete, an exploit is
required. On the exploit runner, we need to first configure the
attack environment based on the exploit script dependency, and
then use the PoV script to complete a complete exploit process
based on the exploit script running dependency.

Once the exploit is complete, it needs to be verified. The
exploit effect of the CVE-2018-7600 vulnerability is remote
arbitrary code execution. Therefore, when exploiting the
vulnerability, the PoV script can be used to create a specific
name file in the specified directory to verify the effect when
exploiting the completion vulnerability and performing
arbitrary code execution. Monitoring of files is achieved by
monitoring file changes in this directory. When verifying, we
only need to check the monitoring log file to see if the specified
name file is created to check the exploit result.

After the check is successful, the validated DVE container
can be packaged as an image and uploaded to the harbor
repository for persistent storage of the DVE environment.

VII. CONCLUSION

In this article, we summarize the information needed in the
manual recurring vulnerability process, the existing
information in the existing vulnerability report, and the
configuration information used to define the network node in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

23

some professional software that sets up the network
environment. The most critical information for automating the
construction of the DVE environment is used to define
structured, standardized, machine-oriented vulnerability
intelligence SVIDs and to expand new application scenarios:
automate the construction of DVE. Compared with the threat
information of the traditional STIX2 format, the SVID
proposed in this paper focuses on the automated construction of
the vulnerability recurrence environment, making the
information more targeted. In addition, we highlight the
important role of software pre-configuration and PoV files in
vulnerability intelligence, and abstract the DIR triad model to
describe software configuration and PoV usage specifications,
reducing the technical requirements for vulnerability
intelligence users. It enables the vulnerability intelligence users
to focus on building the vulnerability recurring environment
without spending a lot of time learning the basic principles of
different types of vulnerabilities, effectively reducing the time
cost of the vulnerability intelligence users. Finally, we also
designed a prototype system to verify the validity of the SVID.
And a detailed analysis of a specific vulnerability using SVID
automation to build DVE process proved its feasibility.

In the following work, we will continue to study in the
following aspects: 1. How to construct the vulnerability
information SVID designed according to the existing threat
information. 2. How to use the natural language processing
method to obtain a variety of intelligence information Sources
(such as blogs, vulnerability announcements, etc.)
automatically identify, understand, and construct threat
information/vulnerability information/PoV. 3. How to apply
SVID to scenarios that require the construction of a target
environment, such as honeypots, honeynet, ranges environment,
etc. 4. How to implement a custom DVE environment
combination.

ACKNOWLEDGMENT

This work was supported by the Fundamental Research
Funds for the Central Universities (Grant No.
3132018XNG1815 and 3132018XNG1814).

REFERENCES
[1] NIST. National vulnerability database. https://nvd.nist.gov/. Retrieved:

April 26, 2019.
[2] Lily Hay Newman. Everything we know about Facebook’s massive

security breach.
https://www.wired.com/story/facebook-security-breach-50-million-acco
unts/. Retrieved: April 26, 2019.

[3] McAffee Corporation, McAfee Labs - Threat-Report, In: 2017,
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-thr
eats-sept-2017.pdf.

[4] DOD. Hacking the pentagon.
https://www.usds.gov/report-to-congress/2017/fall/hack-the-pentagon/.
Retrieved: April 26, 2019.

[5] Taylor Hatmaker. Google’s bug bounty program pays out $3 million,
mostly for Android and Chrome exploits.
https://techcrunch.com/2017/01/31/googles-bug-bounty-2016/.
Retrieved: April 26, 2019.

[6] Tom Warren. Microsoft will now pay up to $250,000 for Windows 10
security bugs.
https://www.theverge.com/2017/7/26/16044842/microsoft-windows-bug
-bounty-security-flaws-bugs-250k. Retrieved: April 26, 2019.

[7] Mu, Dongliang, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing,
Bing Mao, and Gang Wang. "Understanding the reproducibility of
crowd-reported security vulnerabilities." In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 919-936. 2018.

[8] Steven Musil. Researcher posts Facebook bug report to Mark
Zuckerberg's wall.
https://www.cnet.com/news/researcher-posts-facebook-bug-report-to-ma
rk-zuckerbergs-wall/. Retrieved: April 26, 2019.

[9] Menges, Florian, and Günther Pernul. "A comparative analysis of
incident reporting formats." Computers & Security 73 (2018): 87-101.

[10] Asgarli, Elchin, and Eric Burger. "Semantic ontologies for cyber threat
sharing standards." In 2016 IEEE Symposium on Technologies for
Homeland Security (HST), pp. 1-6. IEEE, 2016.

[11] Dong, Y., Guo, W., Chen, Y., Xing, X., Zhang, Y., & Wang, G. Towards
the Detection of Inconsistencies in Public Security Vulnerability Reports.

[12] Tounsi, W., & Rais, H. (2018). A survey on technical threat intelligence
in the age of sophisticated cyber attacks. Computers & security, 72,
212-233.

[13] CISA. Traffic Light Protocol (TLP) definitions and usage.
https://www.us-cert.gov/tlp. Retrieved: April 26, 2019.

[14] Steinberger, J., Sperotto, A., Golling, M., & Baier, H. (2015, May). How
to exchange security events? overview and evaluation of formats and
protocols. In 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM) (pp. 261-269). IEEE.

[15] Mavroeidis, V., & Bromander, S. (2017, September). Cyber threat
intelligence model: an evaluation of taxonomies, sharing standards, and
ontologies within cyber threat intelligence. In 2017 European Intelligence
and Security Informatics Conference (EISIC) (pp. 91-98). IEEE.

[16] Cichonski, P., Millar, T., Grance, T., & Scarfone, K. (2012). Computer
security incident handling guide. NIST Special Publication, 800(61),
1-147.

[17] The twelve-factor app. https://12factor.net/. Retrieved: April 26, 2019.
[18] GNS3. https://www.gns3.com/. Retrieved: April 26, 2019.
[19] NIST. Official Common Platform Enumeration (CPE) dictionary.

https://nvd.nist.gov/Products/CPE. Retrieved: April 26, 2019.
[20] Semantic versioning 2.0.0. https://semver.org/. Retrieved: April 26, 2019.
[21] Rapid7 Corporation. Metasploit. https://www.metasploit.com/. Retrieved:

April 26, 2019.
[22] MITRE Corporation. Common weakness enumeration.

https://cwe.mitre.org/index.html. Retrieved: April 26, 2019.
[23] MITRE Corporation. Common attack pattern enumeration and

classification. https://capec.mitre.org/. Retrieved: April 26, 2019.
[24] CISA. Common Vulnerabilities and Exposures. https://cve.mitre.org/.

Retrieved: May 13, 2019.

