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 
Abstract—Human pose estimation and tracking are to accurately 

identify and locate the positions of human joints in the video. It is a 
computer vision task which is of great significance for human motion 
recognition, behavior understanding and scene analysis. There has 
been remarkable progress on human pose estimation in recent years. 
However, more researches are needed for human pose tracking 
especially for online tracking. In this paper, a framework, called 
PoseSRPN, is proposed for online single-person pose estimation and 
tracking. We use Siamese network attaching a pose estimation branch 
to incorporate Single-person Pose Tracking (SPT) and Visual Object 
Tracking (VOT) into one framework. The pose estimation branch has 
a simple network structure that replaces the complex upsampling and 
convolution network structure with deconvolution. By augmenting the 
loss of fully convolutional Siamese network with the pose estimation 
task, pose estimation and tracking can be trained in one stage. Once 
trained, PoseSRPN only relies on a single bounding box initialization 
and producing human joints location. The experimental results show 
that while maintaining the good accuracy of pose estimation on COCO 
and PoseTrack datasets, the proposed method achieves a speed of 59 
frame/s, which is superior to other pose tracking frameworks. 
 

Keywords—Computer vision, Siamese network, pose estimation, 
pose tracking. 

I. INTRODUCTION 

UMAN pose estimation is a fundamental step for people’s 
behavior understanding and scene analysis in images. The 

task of pose estimation is to accurately recognize and locate the 
important keypoints of the human body. In order to understand 
the behavior of people in the video, pose tracking has become a 
new task in computer vision. Pose tracking is a large-scale 
benchmark for human pose estimation and articulated tracking 
in video.  

Similar to many other computer vision tasks, the research of 
pose estimation has made significant progress with the 
development of deep learning and the advent of publicly 
available pose dataset. The works in [1], [2] increased the mean 
Average Precision (mAP) metric to 77.0 and 73.7 for COCO 
human pose benchmark [3]. The performance on the MPII 
benchmark [4] has been saturated in recent years. The 
Percentage of Correct Keypoints (PCKH-0.5) metric has 
increased from 80% to more than 90%, and it has already 
reached 93.9% [1], [5], [6]. However, there has not been much 
work for pose tracking. Moreover, the speeds of these systems 
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are not satisfactory in most existing works. These methods for 
pose estimation and tracking are offline. Human detection, pose 
estimation and pose tracking are divided into sequential stages. 
The pose of future frames should be pre-computed in the 
procedure. They separately trained pose estimation and human 
pose matching as two modules. They are more focused on 
Multi-Object Tracking Accuracy (MOTA) criterion than Frame 
Per Second (FPS) criterion. 

For the VOT task, the problem to be solved is to give the 
position of the target to be tracked in the first frame and predict 
the position of the target in subsequent frames. The object 
position is generally described by bounding box. Due to the 
outstanding work of Wang et al. [9], the two tasks of VOT and 
Video Object Segmentation (VOS) are unified into one 
framework, and the object location can even be accurately 
described by binary segmentation mask. As for human pose 
tracking, not only the position of the tracking object but also the 
position of the body joints of the human body needs to be 
estimated in frames.  

In this paper, we consider the problem of estimating and 
tracking an arbitrary person’s keypoints in video. In order to 
narrow the gap between VOT and human pose tracking, we 
propose a multi-task learning approach that combines pose 
estimation and pose tracking in one stage. Inspired by the works 
in [7]-[9], we use Siamese network with Region Proposal 
Network (RPN) module for human tracking in videos. Based on 
the publicly available large dataset PoseTrack which contains 
explicit information on human keypoints and the success of 
fast-tracking methods with fully convolutional Siamese 
networks, we can achieve offline trainability and retaining 
online speed of these methods with satisfactory pose estimation 
results. To the best of our knowledge, this is the first paper to 
perform pose tracking using Siamese network. Once Siamese 
network performs the task of the human keypoints estimation in 
the process of tracking the target person, human pose tracking 
task is completed. 

There has been rapid progress on pose estimation with the 
emergence of CNN-based methods. The works in [2], [10] have 
demonstrated that a simple network structure can achieve very 
competitive pose estimation performance. Our proposed 
architecture can be represented by three branches. As in the 
framework proposed by Li et al. [8], proposal extraction is 
performed on the correlation feature maps of template branch 
and detection branch. The Siamese network learns the 
similarity between the target and multiple candidate by a 
sliding window operation to determine the position of the 
template image in the larger search image. In order to predict 
the keypoints of the target in the search picture, we added a 

Online Pose Estimation and Tracking Approach 
with Siamese Region Proposal Network 

Cheng Fang, Lingwei Quan, Cunyue Lu 

H



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:12, 2019

626

 

 

pose estimation branch to the feature map of the search image. 
The pose estimation branch shares the same CNN features with 
search image branch. The keypoint labels are only needed 
during offline training to compute the keypoint heatmap loss 
and not required during tracking. Each branch of the proposed 
architecture contributes towards the final loss. All the three 
branches are trained end-to-end under the supervision of RPN.  

We verify the effectiveness of our approach over two 
benchmark datasets: the COCO keypoints detection dataset [3] 
and the PoseTrack dataset [11]. The results show that our 
approach runs at about 62 FPS, which is superior to other 
existing frameworks, while preserving competitive mAP of 
detected keypoints. 

II. RELATED WORKS 

A. Single Person Pose Estimation and Tracking 

Since deep convolutional neural networks are used for 
human keypoints detection, there are two mainstream methods 
for single person pose estimation. One is directly regressing to 
the position of keypoints [12], [13], and the other is predicting 
the keypoints heatmap [14]-[17], which is generated by 
applying 2D Gaussian centered on the ground truth joint 
location. The coordinates of the highest heat values are the 
location of human joints. In fact, the final task of pose 
estimation is to output the coordinates of the predicted joint in 
the image. However, it is an extremely nonlinear process to 
directly let the network output two-dimensional coordinates for 
optimization learning. Besides, the loss function has weaker 
constraints on the weight of the neural network. Therefore, 
most modern methods perform pose estimation by predicting 
keypoints heatmap. There are several advantages for heatmap 
prediction: (1) The neural network can be fully-convolutional 
since the output is a two-dimensional image and does not need a 
fully connected layer. (2) There is a strong correlation between 
the human joints (such as head and chest, neck and shoulders). 
However, this correlation cannot be expressed and utilized 
during the regression of the coordinate of each joint. On the 
contrary, each joint of the human body corresponds to a 
response heatmap. The heatmaps corresponding to an input 
image contains this correlativity of human joints, which can be 
used to guide the network to learn. In short, the regression of 
the head joint can help return to the chest position, and the 
regression of the neck joints can also help the regression of left 
and right shoulders, and vice versa. (3) The heatmap also 
captures the contrast between the foreground (human joints) 
and the background, and can also be used to guide the network 
to learn. 

Pose tracking is a new topic after the emergence of the MPII 
Video Pose dataset [18] and PoseTrack dataset. A generic light- 
weight framework was proposed in [19], and both the pose 
estimation part and the Re-ID part of the work can be flexibly 
replaced. Xiu et al. [20] proposed a time-space-based method. 
The information of the preceding and succeeding frames is used 
for recovery for fuzzy and occluded frames. These works are 
excellent contributions in the field of multi-person pose 
tracking, even if their tracking speed can be further improved. 

However, there is not too much work for SPT. Due to the great 
success of the Siamese network for single object tracking; we 
explored the use of Siamese networks for human pose tracking. 

B. Siamese Network Series 

Before the deep neural network is used for VOT, a large 
number of trackers is improved based on the correlation filter 
algorithm. The classic algorithms include Kernelized 
Correlation Filter (KCF) [21], Discriminative Scale Space 
Tracking (DSST) [22] and so on. With the development of deep 
learning algorithm, scholars try to apply deep neural network 
methods to the field. The Siamese tracker represented by 
SiamFC [7] stands out and has received enthusiastic attention 
from researchers. The main reason is that the SiamFC shows us 
an ultra-fast tracking speed and preserving good tracking 
accuracy. Currently, the tracking field is mainly divided into 
two main lines, based on correlation filtering and Siamese 
networks. 

There are two branches in a Siamese network: template 
branch and detection branch. The offline-trained fully- 
convolutional network which compares the exemplar image z 
and the larger search image x obtains the similarity response of 
the two images. The two input images use the same CNN 
network φθ to extract features. The combining feature map can 
be obtained by cross-correlation: 

 
 ( , ) ( ) ( )g z x z x      (1) 

 
The SiamRPN [8] improves the detection accuracy and 

tracking speed of SiamFC by introducing RPN [23], which is 
used to generate anchor boxes in the object detection task. The 
RPN module consists of two branches. One is the classification 
branch for distinguishing positive and negative anchors and the 
other is the regression branch for producing corresponding 
bounding box regression coefficients. With the introduction of 
RPN, the Siamese network has the capability of multi-scale 
detection by generating different sizes of anchor mechanisms to 
cover various sizes, and can accurately regress to the position 
and size of the tracking object. The main idea of SiamMask [9] 
is to add a mask branch to SiamRPN for generating 
segmentation mask. The mask branch makes the object 
detection results more accurate. Moreover, SiamMask 
creatively unifies the VOT and VOS tasks in a framework that 
can simultaneously acquire the object’s bounding box and 
segmentation mask. Based on these efforts, we propose the 
PoseSRPN method, which aims to unify VOT and human pose 
estimation tasks, so that the algorithm simultaneously outputs 
the human body’s bounding box and keypoints. 

III. PROPOSED METHOD 

A. PoseSRPN Framework 

The Siamese network in PoseSRPN is based on SiamMask 
[9]. In SiamMask, the simple cross-correlation of (1) is 
replaced with depth-wise cross-correlation [24]. The system 
performs depth-wise cross-correlation between the exemplar 
and search image feature map in a sliding window way. For 
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Siamese networks, an important trick is that the input image 
pair is cropped around the tracking object. We obtain the input 
image pairs by extracting exemplar and search images that are 
centered on the object. Since the sub-windows that are most 
difficult to distinguish from the correct location of the target 
and the sub-windows that have the greatest impact on tracker’s 
performance are those adjacent to the target, we consider search 
images centered on the target. Therefore, the exemplar image z 
and the search image x are fixed-size images obtained by affine 
transformation centering on the target bounding box. The 
image preprocessing process is shown in Fig. 1. The left side is 
the original image, and the right is the image centered on the 
object and transformed by affine transformation. The image 
size after preprocessing is fixed, and the corners of the image 
are padded with mean values. The keypoints connection lines in 
both images are just to show that after processing the picture, 
the human joints coordinates in person keypoints annotation are 
also based on the new images. The pre-processed image is filled 
with a mean value, and the coordinates (x’, y’) in exemplar 
image or search image is transformed by the point (x, y) in the 
original image. The affine transformation can be expressed by 
(2): 
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         
        

 (2) 

 
where (tx,ty) represents the amount of translation, and parameter 
ai reflects the rotation, scaling, etc. of the image. 

 

 

(a) original image                 (b) preprocessed image 

Fig. 1 Image preprocessing. 
 

The overall structure of PoseSRPN is shown in Fig. 2. There 
are three parts in PoseSRPN. Siamese network is used for 
feature extraction for exemplar image and search image; RPN 
module has two branches producing correct bounding box 
classification and location. In Fig. 2 is pose estimation branch 
for recognizing and locating human keypoints in search image. 
The preprocessed image pairs are processed by the same CNN 
φθ and then passed through (1) to generate a response map. The 
depth-wise cross-correlation function is represented as d in 
Fig. 3. Each spatial element of the response map (left side of 
(1)) covers the similarity between the example image z and the 
corresponding spatial positions of search image x. For RPN 
module, there are k anchors of different scales and aspect ratios 
generated in each spatial element of response map. The 

response map is run through two 1×1 kernel convolutional 

layers to produce background/ foreground class scores and 
probabilities and corresponding bounding box regression 
coefficients. The classification loss uses cross entropy loss and 
the regression loss uses smooth L1 loss to penalize incorrectly 
bounding box. In the following we refer to them as Lcls and Lloc 
respectively.  

 

CNN

CNN

15*15*1024

31*31*1024

15*15*256

31*31*256

d
17*17*256

CNN

CNN

17*17*2k

17*17*4k

exemplar 
127*127*3

search 
255*255*3

CNN
7*7*1024

Deconv
56*56*64

score

box

keypoints

1*1
Conv

1*1
Conv

Siamese Network RPN Module

Pose Estimation Branch
 

Fig. 2 Framework of PoseSRPN 
 

The ground truth bounding box is described as (Gx, Gy, Gw, 
Gh) which denotes center point and shape of the box. The 

anchor box can be correspondingly marked as (Ax, Ay, Aw, Ah). 
The normalized distance is as (3) shows: 
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We can define smooth L1 loss function as below: 
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Then the loss of regression branch is: 
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The total loss of RPN module can be optimized as: 
 

 RPN cls locL L L   (6) 

 
where α is parameter to balance the two parts. 

Unlike the object detection task in Faster-Rcnn [23], in 
general, the same target in two adjacent frames in pose tracking 
task does not change too much. Therefore, in our pose tracking 
task, it is enough to generate anchors for one scale with 
different scales. The anchors generated in each spatial element 
of response map are less than the anchors generated in the RPN 
module of Faster-Rcnn. This trick makes the execution speed of 
the RPN module greatly improved. The anchor scale is set as 8 
and the anchor ratios are set as [0.33,0.5,1,2,3] in our model. 
The strategy to distinguish positive and negative training 
samples follows the selection strategy in SiamRPN [8]. 

 
TABLE I 

BACKBONE ARCHITECTURE 

block 
exemplar output 

size 
search output 

size 
backbone 

conv1 61×61 125×125 7×7, 64, stride 2 

conv2_x 31×31 63×63 

3×3 max pool, stride 2 

1 1,64

3 3,64 3

1 1,256

 
   
  

 

conv3_x 15×15 31×31 

1 1,128

3 3,128 4

1 1,512

 
   
  

 

conv4_x 15×15 31×31 

1 1,256

3 3, 256 6

1 1,1024

 
   
  

 

adjust 15×15 31×31 1×1,256 

xcorr 17×17 depth-wise correlation 

 
We use ResNet [25] as backbone network for image feature 

extraction in Siamese network and pose estimation branch. The 

backbone structure is shown in Table I. We perform depth-wise 
correlation after the ResNet conv4, which is called C4 for 
Siamese network. We adjusted the stride of C4 to 1 so the 
output feature size after performing C4 is unchanged. Inspired 
by [2], we use the simplest but efficient network to generate 
keypoints heatmaps from deep and low-resolution features. 
Finally, while tracking the target using the Siamese network, 
we estimate the location of the keypoints of the tracked object 
in the current frame.  

B. Pose Estimation Approach 

The network structure of the pose estimation branch is 

shown in Fig. 3. Notably, when performing the 1×1 

convolution network after ResNet conv5, which is called C5, 

only the center features were extracted. Therefore, the 15×15 

feature map became a 7×7 feature map. After that, we add three 

deconvolutional layers. We generate a heatmap by adding the 
two-dimensional Gaussian function to the ground truth 
coordinate of the keypoints; so that the network outputs 
predicted heatmaps, training to make the latter approach the 
former. Each location of human join p (x, y) in the image is 

mapped to the location ( , )
x y

p
n n
   
      

 in the heatmaps, where n is 

the downsampling factor generated by output stride. The 
Gaussian kernel Yxyc can be described as (7): 

 

 
2 2

2

( ) ( )
exp( )

2
x y

xyc
p

x p y p
Y


  

 
 

 (7) 

 
where σp is a standard deviation [26] which adapts to target 
size. 

We use focal loss [27] to train keypoint heatmaps. The 
design of focal loss reduces the weight of easily categorized 
samples, allowing model training to focus more on samples that 
are difficult to classify. The loss function for training keypoint 
heatmaps is as follows: 

 

ˆ ˆ(1 ) log( ) 11
ˆ ˆ(1 ) ( ) log(1 )

xyc xyc xyc

hm
xyc xyc xyc xyc

Y Y if Y
L

N Y Y Y otherwise



 

    
 

  (8) 

 

where x̂ycY  is predicted heatmap. ˆ =1xycY  corresponds to a 

detected keypoint and ˆ =0xycY  represents for background. α 

and β are hyper-parameters of the focal loss. We set α = 2 and β 
= 4 following [26]. 

In order to compensate for the discretization error caused by 
the output stride, a local offset is predicted for pose estimation. 
When the keypoint locations in the heatmaps are remapped to 
the search image, the offset can be described as: 

 

 ( , )p

x x y y
O

n n n n
           

 (9) 
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where 
pO  is the offset of keypoint ( , )p x y . We train the 

offset with an L1 loss 
 

 1 ˆ
off p p

p

L O O
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Fig. 3 Pose estimation branch network 
 

As a result, there are two outputs in this part. First output is 
the predicted k (k = 17 for COCO and PoseTrack) human 
keypoint heatmaps. The second is local offset for recovering 
the discretization error. The loss function Lkp for human 
keypoints estimation task is the sum of Lhm and Loff: 

 
 

kp hm offL L L 
 (11) 

 
The proposed network can be trained end-to-end on the 

datasets that contain the annotation of human keypoints like 
COCO keypoints dataset and PoseTrack dataset. The total 
losses for PoseSRPN can be defined as: 

 

 RPN kp cls loc kpL L L L L L         (12) 

 

We did not set α, β as hyper-parameters and just set α =1.2, 

β= 1.  

IV. EXPERIMENTS 

A. Implementation Details 

We train our network using COCO train2017 and PoseTrack 
2018 dataset. The COCO dataset contains over 250,000 person 
instances labeled with 17 keypoints. PoseTrack is a large-scale 
benchmark for human pose estimation and articulated tracking 
in video. PoseTrack train2018 dataset contains over 790 video 
sequences and labeled with 17 keypoints for each person 
instances. The exemplar and search image are cropped as the 

size of 127×127 and 255×255 respectively. The network 

backbone is pretrained on the ImageNet [28] classification task. 
During training, a first warmup phase in which the learning rate 

increases linearly from 10-2 to 5×10-2 for first 5 epochs is used. 

Finally, the learning logarithmically decreases to 10-3. 
During inference time, PoseSRPN is simply evaluated once 

per frame without online adaptation. We find the best 
estimation bounding box which has the highest-scoring in RPN 
module. We use the most accurate bounding box as reference to 
crop the next frame search region and find the human keypoints 
in the search region. Our training phase and testing experiments 

are implemented on a PC with an Intel i7-8700K CPU, 16 G 
RAM and Nvidia GTX 2080 GPU.  

B. Pose Estimation Results 

To evaluate our approach on pose estimation task, we use the 
COCO val2017 and PoseTrack val2018 dataset. For COCO 
benchmark, we use the average precision (AP) and average 
recall (AR) as evaluation metrics. These standard evaluation 
metrics are based on Object Keypoint Similarity (OKS) which 
plays the same role as the IoU (Intersection-over-Union) in 
object detection:  

 

 

2 2 2exp( / 2 ) ( 0)
=

( 0)

i i i
i

i
i

d s k v
OKS

v





 






 (13) 

 
where vi is the mark of the visibility of ground truth keypoint, vi 
= 1 represents the keypoint is visible; di is the Euclidean 
distance between the ground truth value of each keypoint and 
the detected keypoint; s is the object scale which is calculated 
according to the ground truth bounding box; ki represents the 
normalization factor of the keypoint, which reflects the degree 
of influence of the current keypoint pair and the overall human 
pose. 

We validated the AP and AR metrics of the proposed 
algorithm on the COCO val2017 dataset. The evaluation 
metrics are shown in Table Ⅱ. The AP50 in the table represents 
the average accuracy when the OKS threshold is 0.5. The AP is 
the mean precision average under 10 thresholds (OKS = 0.50, 
0.55... 0.90, 0.95), APM represents the average accuracy of the 
medium size target, and APL represents the average accuracy of 
the large size target. The algorithm proposed in this paper is 
compared with the existing human pose estimation methods 
including the pose estimation algorithm CPM [29] based on 
single-person ground truth position, using the object detector 
SSD [30] combined with CPM multi-person pose estimation 
algorithm and the CMU-Pose [31].  

It is shown that the average accuracy of the pose estimation 
part of the proposed algorithm is 0.6% higher than that of the 
single-person pose estimation algorithm CPM. Especially when 
the OKS threshold is lower, the average precision is 7.4% 
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higher than the CMU-Pose algorithm. The visualization of the 
pose estimation of proposed algorithm in this paper on the 
COCO dataset is shown in Fig. 4. The first image on the left is 
the visualization of all the keypoints, and the seven images on 

the right with blue shadows show the heatmaps of the seven 
keypoints of the human body. From left to right, these seven 
keypoints are human joints of nose, left eye, right eye, left ear, 
right ear, left shoulder and right shoulder. 

 
TABLE Ⅱ 

EVALUATION METRICS COMPARISON BETWEEN POSESRPN AND OTHER METHODS ON COCO VAL2017 DATASET

Methods AP AP50 AP75 APM APL AR AR50 AR75 

GT+CPM 62.7 86.0 69.3 58.5 70.6 — — — 

CPM+SSD 52.7 71.1 57.2 47.0 64.2 — — — 

CMU-Pose 65.3 85.2 71.3 62.2 70.7 — — — 

PoseSRPN 63.3 92.6 69.8 59.3 71.3 76.2 96.1 83.5 

 

Fig. 4 Visualization of pose estimation on COCO dataset 
 

TABLE Ⅲ 
EVALUATION METRICS COMPARISON BETWEEN POSESRPN AND OTHER METHODS ON POSETRACK DATASET 

Methods 
Head 
mAP 

Shoulder 
mAP 

Elbow 
mAP 

Wrist 
mAP 

Hip 
mAP 

Knee 
mAP 

Ankle 
mAP 

Total 
mAP 

PoseTrack 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2 

PoseFlow 64.7 65.9 54.8 48.9 33.3 43.5 50.6 51.7 

PoseSRPN 67.8 68.3 59.5 49.9 35.7 42.6 54.8 54.1 

 
The average accuracy of pose estimation for different 

keypoints was verified on the PoseTrack dataset. We compare 
the algorithm proposed in [11] and the PoseFlow [32], as shown 
in Table Ⅲ. On the PoseTrack dataset, the mAP of each 
keypoint detection for the PoseSRPN algorithm proposed in 
this paper is 2.4% higher than that of the PoseFlow algorithm, 
which also verifies the effectiveness of our pose estimation 
algorithm. Pose estimation branch of PoseSRPN not only 
predicts the position of keypoints through heatmaps, but also 
increases the prediction of discrete error caused by convolution 
step, so that the accuracy of keypoints detection improved 
effectively. 

C. Pose Estimation Results 

In order to test the object tracking performance of 
PoseSRPN, a tracking experiment was performed in the 
VOT2018 dataset. VOT is a test platform for single target 
tracking. The tracking performance evaluation indicators of 
VOT mainly include Expected Average Overlap (EAO), 
Accuracy, and Robustness. Table Ⅳ compares the tracking 
performance of PoseSRPN with several existing trackers.  

TABLE Ⅳ 
EVALUATION METRICS COMPARISON BETWEEN POSESRPN AND OTHER 

METHODS ON VOT2016 

Methods Accuracy Robustness EAO 

CSRDCF [33] 0.466 0.318 0.263 

STRCF [34] 0.523 0.215 0.345 

ECO [35] 0.484 0.276 0.280 

PoseSRPN 0.530 0.460 0.314 

 
TABLE Ⅴ 

POSE TRACKING SPEED COMPARISON BETWEEN POSESRPN AND OTHER 

METHODS 

Methods PoseFlow [32] LightTrack [36] PoseSRPN 

fps 10 0.76 52 

 
As shown in Table Ⅴ, PoseSRPN has a tracking speed of 59 

frames/s, which is faster than the pose tracking framework 
PoseFlow and LightTrack. This is mainly due to the speed 
advantage of the Siamese network tracker compared to other 
trackers. Although the RPN module is combined in the Siamese 
network, the number of anchors generated in the RPN module 
is reduced. Therefore, the algorithmic computation is less than 
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that of the object detection task in [23], but it can help the 
Siamese network to achieve multi-scale detection, which is 
beneficial to the detection accuracy of keypoints. 

V. CONCLUSION 

In this paper, a multi-task approach for pose estimation and 
tracking based on Siamese network is proposed. To the best of 
our knowledge, this is the first paper to use Siamese network 
for pose tracking. A pose estimation branch is added to the 
search image branch of the Siamese network to enable real-time 
keypoint detection. The pose estimation branch replaces the 
complex upsampling and convolution network structure with 
deconvolution, and therefore has a simple network framework. 
We use a heatmap-based keypoint detection method, and it 
increases the prediction of the offset caused by the convolution 
step. The final predicted coordinates of keypoints are obtained 
by adding the coordinates of the heatmap estimation to the 
predicted offset. The RPN module introduces a multi-scale 
method for object detection, which improves the accuracy of 
object detection and further improves the accuracy of pose 
estimation. The experimental results show that while 
maintaining the good accuracy of pose estimation on COCO 
and PoseTrack datasets, the proposed algorithm achieves a 
speed of 59 frame/s, which is superior to other pose tracking 
frameworks.  
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