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The Non-Stationary BINARMA(1,1) Process with
Poisson Innovations: An Application on Accident

Data
Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract—This paper considers the modelling of a non-stationary
bivariate integer-valued autoregressive moving average of order
one (BINARMA(1,1)) with correlated Poisson innovations. The
BINARMA(1,1) model is specified using the binomial thinning
operator and by assuming that the cross-correlation between the
two series is induced by the innovation terms only. Based on
these assumptions, the non-stationary marginal and joint moments
of the BINARMA(1,1) are derived iteratively by using some initial
stationary moments. As regards to the estimation of parameters of
the proposed model, the conditional maximum likelihood (CML)
estimation method is derived based on thinning and convolution
properties. The forecasting equations of the BINARMA(1,1) model
are also derived. A simulation study is also proposed where
BINARMA(1,1) count data are generated using a multivariate
Poisson R code for the innovation terms. The performance of
the BINARMA(1,1) model is then assessed through a simulation
experiment and the mean estimates of the model parameters obtained
are all efficient, based on their standard errors. The proposed model
is then used to analyse a real-life accident data on the motorway in
Mauritius, based on some covariates: policemen, daily patrol, speed
cameras, traffic lights and roundabouts. The BINARMA(1,1) model
is applied on the accident data and the CML estimates clearly indicate
a significant impact of the covariates on the number of accidents on
the motorway in Mauritius. The forecasting equations also provide
reliable one-step ahead forecasts.

Keywords—Non-stationary, BINARMA(1,1) model, Poisson
Innovations, CML.

I. INTRODUCTION

Time series of counts have commonly been modelled

using integer-valued autoregressive (INAR) and integer-valued

moving average (INMA) models, compared to its INARMA

counterpart. The simplest family of stationary first order INAR

(INAR(1)) models were initially developed by McKenzie [1]

and Al-Osh and Alzaid [2] and thereon, several INAR(1)

models under different distributional assumptions have been

developed in literature ([3], [4], [5]). While INAR(1) models

have gained lots of attention in literature, some researchers

have also concentrated on the development of INMA(1)

models ([1], [4], [6], [7]). However, these models were

limited to analysing univariate time series only. Hence,

many researchers considered the extension of these univariate
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models to a bivariate set-up in order to analyse bivariate count

observation.

Bivariate INAR(1) (BINAR(1)) ([8], [9], [10], [11], [12],

[13]) and bivariate INMA(1) (BINMA(1)) ([14], [15], [16])

have been considered and applied extensively in literature

under different distributional assumptions of the innovation

terms and thinning operations. However, count models that

include both AR and MA components have received less

attention in literature and have rarely been applied in practice.

The first INARMA was developed by McKenzie [1] under

stationarity condition, but the construction of such models

is not appealing to researchers due to the complication of

including both the AR and MA component. Recently, Weib

et al. [17] considered INARMA modelling of count time

series under stationarity assumption. However, the INARMA

models developed so far are not appropriate to analyse

real-life data which exhibit non-stationarity moments. Hence,

this paper proposes a BINARMA(1,1) model with correlated

Poisson innovations which can analyse non-stationary real-life

bivariate counts. As regards to the estimation of the model

parameters, the conditional maximum likelihood (CML)

method will be used due to the complicated nature of the

BINARMA(1,1) model.

The organisation of the paper is as follows: In Section II, the

BINARMA(1,1) model with correlated Poisson innovations

is developed by deriving the moments. Section III presents

the CML method for estimating the unknown parameters.

The forecasting equations for the BINARMA(1,1) model are

developed in Section IV. In Section V, a simulation study

is conducted in order to assess the BINARMA(1,1) model.

A real-life application on accident data in Mauritius is also

considered in Section VI. The conclusion is presented in

Section VII.

II. BINARMA(1,1) MODEL

The BINARMA(1,1) model is specified as

Y
[1]
t = ρ1 ∗ Y [1]

t−1 + ρ2 ∗R[1]
t−1 +R

[1]
t , (1)

Y
[2]
t = ρ3 ∗ Y [2]

t−1 + ρ4 ∗R[2]
t−1 +R

[2]
t , (2)

where Y
[k]
t is the counting random observation for the kth

series at the tth time point with corresponding innovation

terms R
[k]
t , for k = 1, 2 and t = 1, 2, . . . , T . The other

assumptions of the BINARMA(1,1) model are:



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:13, No:11, 2019

204

(a) The pair of innovations {[R[1]
t , R

[2]
t ]} follows the bivariate

Poisson distribution [18], where

Corr(R
[1]
t , R

[2]
t+h) =

{
ρ12 h = 0,

0 h �= 0.
(3)

(b) R
[k]
t is an independent and identically

distributed sequence of Poisson counts, i.e,

R
[k]
t ∼ Poisson(λ

[k]
t ) where λ

[k]
t = exp(x

′
tβ

[k])
with xt = [xt1, xt2, . . . , xtj , . . . , xtp]

′
and

β[k] = [β
[k]
1 , β

[k]
2 , . . . , β

[k]
j , . . . , β

[k]
p ]

′
for p covariates.

(c) ∗ is the binomial thinning operator [19], i.e.,

ρ ∗ V =

{∑V
l=1 bl(ρ), V > 0,

0 V = 0,

where the counting series {bl(ρ)} is a sequence of

independent and identically distributed Bernoulli random

variables with ρ ∗ V |V ∼ Binomial(V, ρ). Thus, E(ρ ∗
V ) = ρE(V ) and Var(ρ ∗V )=ρ(1−ρ)E(V )+ρ2Var(V).

(d)

Cov(Y
[k]
t , R

[k]
t+h) =

{
V ar(R

[k]
t ) h = 0,

0 h > 0.
(4)

and

Cov(Y
[k]
t , R

[j]
t+h) =

{
Cov(R

[k]
t , R

[j]
t ) h = 0,

0 h > 0.
(5)

Using the above assumptions, we obtain

μ
[1]
t ≡ E(Y

[1]
t ) = ρ1μ

[1]
t−1 + ρ2λ

[1]
t−1 + λ

[1]
t , (6)

μ
[2]
t ≡ E(Y

[2]
t ) = ρ3μ

[2]
t−1 + ρ4λ

[2]
t−1 + λ

[2]
t . (7)

As for the marginal variances,

Var(Y
[1]
t ) = Var(ρ1 ∗ Y [1]

t−1) + Var(ρ2 ∗R[1]
t−1) + Var(R

[1]
t )

+ 2Cov(ρ1 ∗ Y [1]
t−1, ρ2 ∗R[1]

t−1)

= E[Var(ρ1 ∗ Y [1]
t−1|Y [1]

t−1)] + Var[E(ρ1 ∗ Y [1]
t−1|Y [1]

t−1)]

+ E[Var(ρ2 ∗R[1]
t−1|R[1]

t−1)] + Var[E(ρ2 ∗R[1]
t−1|R[1]

t−1)]

+ Var(R
[1]
t ) + 2Cov(ρ1 ∗ Y [1]

t−1, ρ2 ∗R[1]
t−1)

= ρ1(1− ρ1)μ
[1]
t−1 + ρ21Var(Y

[1]
t−1) + ρ2(1− ρ2)λ

[1]
t−1

+ ρ22λ
[1]
t−1 + 2ρ1ρ2Cov(Y

[1]
t−1, R

[1]
t−1) + λ

[1]
t

= ρ1(1− ρ1)μ
[1]
t−1 + ρ21Var(Y

[1]
t−1) + (ρ2 + 2ρ1ρ2)λ

[1]
t−1

+ λ
[1]
t . (8)

Similarly,

Var(Y
[2]
t ) = ρ3(1− ρ3)μ

[2]
t−1 + ρ23Var(Y

[2]
t−1) + (ρ4 + 2ρ3ρ4)λ

[2]
t−1

+ λ
[2]
t . (9)

The cross-covariances between the two series is given by

Cov(Y
[1]
t , Y

[2]
t ) = ρ1ρ3Cov(Y

[1]
t−1, Y

[2]
t−1)

+ (ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + 1)ρ12

√
λ
[1]
t

√
λ
[2]
t .

(10)

The lag-covariances for the same series for h ≥ 1 are

Cov(Y
[1]
t , Y

[1]
t+h) = ρh1Var(Y

[1]
t ) + ρh−1

1 ρ2λ
[1]
t , (11)

Cov(Y
[2]
t , Y

[2]
t+h) = ρh3Var(Y

[2]
t ) + ρh−1

3 ρ4λ
[2]
t , (12)

while the cross-covariances are

Cov(Y
[1]
t , Y

[2]
t ) = ρ1ρ3Cov(Y

[1]
t−1, Y

[2]
t−1)

+ (ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + 1)ρ12

√
λ
[1]
t

√
λ
[2]
t ,

(13)

Cov(Y
[1]
t , Y

[2]
t+h) = ρh3Cov(Y

[1]
t , Y

[2]
t ) + ρh−1

3 ρ4ρ12

√
λ
[1]
t

√
λ
[2]
t .

(14)

Remark 1. The moments in (6)-(10) are obtained iteratively

for t = 2, . . . , T using the following initial means, variances

and cross-covariances:

μ
[1]
1 =

(
1 + ρ2
1− ρ1

)
λ
[1]
1 , (15)

μ
[2]
1 =

(
1 + ρ4
1− ρ3

)
λ
[2]
1 , (16)

Var(Y
[1]
1 ) =

ρ1(1− ρ1)μ
[1]
1 + (1 + 2ρ1ρ2 + ρ2)λ

[1]
1

(1− ρ21)
, (17)

Var(Y
[2]
1 ) =

ρ3(1− ρ3)μ
[2]
1 + (1 + 2ρ3ρ4 + ρ4)λ

[2]
1

(1− ρ23)
, (18)

Cov(Y
[1]
1 , Y

[2]
1 ) =

(1 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4)ρ12

√
λ
[1]
t

√
λ
[2]
t

(1− ρ1ρ3)
.

(19)

III. ESTIMATION OF PARAMETERS

This section describes the CML estimation method for

estimating the regression and correlation parameters based

on thinning and convolution properties following Pedeli

and Karlis [10]. Thus, the conditional density of the

BINARMA(1,1) model is given by

f1(k) =
k∑

j1=0

(
y
[1]
t−1

j1

)(
rt−1
t = y

[1]
t−1 − k

k − j1

)

ρj11 (1− ρ1)
y
[1]
t−1−j1ρk−j1

2 (1− ρ2)
y
[1]
t−1−2k+j1 , (20)

f2(s) =
s∑

j2=0

(
y
[2]
t−1

j2

)(
r
[2]
t−1 = y

[2]
t−1 − s

s− j2

)

ρj23 (1− ρ3)
y
[2]
t−1−j2ρs−j2

4 (1− ρ4)
y
[2]
t−1−2s+j2 , (21)
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and a bivariate distribution of the innovation terms f3(r
[1]
t =

y
[1]
t−1 − k, r

[2]
t = y

[2]
t−1 − s) = P

(R
[1]
t =r

[1]
t ,R

[2]
t r

[2]
t )

, where

f3(r
[1]
t = y

[1]
t−1 − k, r

[2]
t = y

[2]
t−1 − s)

= e−(λ
[1]
t +λ

[2]
t −ρ12

√
λ
[1]
t

√
λ
[2]
t )

min(k,s)∑
m=0

{[λ[1]
t − ρ12

√
λ
[1]
t

√
λ
[2]
t ]y

[1]
t−1−k−m

× [λ
[2]
t − ρ12

√
λ
[1]
t

√
λ
[2]
t ]y

[2]
t−1−s−m

× [ρ12

√
λ
[1]
t

√
λ
[2]
t ]m}/[(y[1]t−1 − k −m)!(y

[2]
t−1 − s−m)!m!].

(22)

The conditional density is written as

f((y
[1]
t , y

[2]
t )|(y[1]t−1, y

[2]
t−1, r

[1]
t−1, r

[2]
t−1),θ)

=
∑g1

k=0

∑g2
s=0 f1(k)f2(s)f3(r

[1]
t = y

[1]
t−1− k, r

[2]
t = y

[2]
t−1− s),

where θ = [ρ1, ρ2, ρ3ρ4, ρ12,β
[k]] is the vector of unknown

parameters, g1 = min(y
[1]
t , y

[1]
t−1) and g2 = min(y

[2]
t , y

[2]
t−1).

The conditional likelihood function is given by

L(θ|y) =
T∏

t=1

f((y
[1]
t , y

[2]
t )|(y[1]t−1, y

[2]
t−1, r

[1]
t−1, r

[2]
t−1),θ) (23)

and the maximum likelihood estimators of θ is obtained by

maximizing

log[L(θ|y)] = log

[
T∑

t=1

f((y
[1]
t , y

[2]
t )|(y[1]t−1, y

[2]
t−1, r

[1]
t−1, r

[2]
t−1),θ)

]
(24)

for some initial value of y0

IV. FORECASTING EQUATIONS

The conditional expectation and variance of the one-step

ahead forecast Y
[k]
t+1 given Y

[k]
t , R

[k]
t are expressed as follows:

E(Y
[1]
t+1|Y [1]

t , R
[1]
t ) = λ̂

[1]
t+1 + ρ̂1Y

[1]
t + ρ̂2R

[1]
t , (25)

E(Y
[2]
t+1|Y [2]

t , R
[2]
t ) = λ̂

[2]
t+1 + ρ̂3Y

[2]
t + ρ̂4R

[2]
t (26)

and

Var(Y
[1]
t+1|Y [1]

t , R
[1]
t ) = ρ̂1(1−ρ̂1)Y

[1]
t +ρ̂2(1−ρ̂2)R

[1]
t +λ̂

[1]
t+1,
(27)

Var(Y
[2]
t+1|Y [2]

t , R
[2]
t ) = ρ̂3(1−ρ̂3)Y

[2]
t +ρ̂4(1−ρ̂4)R

[2]
t +λ̂

[2]
t+1.
(28)

where R
[k]
t is approximated by λ

[k]
t .

V. SIMULATION STUDY

In this section, we generate BINARMA(1,1) count data

using (1)-(2) and present a simulation study to assess the

performance of the proposed model. Hence, the first step is to

generate the bivariate innovation terms using the multivariate

Poisson R code developed by Yahav and Shmueli [20].

Thereon, by assuming Y
[k]
1 = R

[k]
1 , we generate Y

[1]
t and Y

[2]
t

for t = 2, . . . , T with λ
[k]
t = exp(β

[k]
1 xt1 + β

[k]
2 xt2), where

xt1 =

⎧⎨
⎩

1 (t = 1, . . . , T/4),
2t (t = (T/4) + 1, . . . , 3T/4),
cos( 2πt6 ) (t = (3T/4) + 1, . . . , T ),

xt2 =

⎧⎨
⎩

sin( 3πt12 ) (t = 1, . . . , T/4),
cos(πt6 ) (t = (T/4) + 1, . . . , 3T/4),
sin( 2πt6 ) (t = (3T/4) + 1, . . . , T ).

Assuming T = 60, 300, 600, we conduct 5000 Monte Carlo

replications using ρ1, ρ2, ρ3, ρ4 are combinations of [0.3,0.4],

β
[k]
1 = β

[k]
2 = 1 and ρ12 = [0.1, 0.5] and the results are shown

below:

TABLE I
ESTIMATES OF THE REGRESSION PARAMETERS AND STANDARD ERRORS

UNDER NON-STATIONARY BINARMA(1,1) PROCESS

ρ12 T β̂
[1]
1 = 1 β̂

[1]
2 = 1 β̂

[2]
1 = 1 β̂

[2]
2 = 1

0.1 60 0.9825 0.9802 0.9842 0.9879
(0.1807) (0.1814) (0.1790) (0.1703)

300 0.9921 0.9938 0.9904 0.9910
(0.1394) (0.1415) (0.1302) (0.1354)

600 0.9953 1.0025 0.9995 0.9976
(0.0514) (0.0444) (0.0302) (0.0418)

0.5 60 0.9830 0.9831 0.9818 0.9835
(0.1718) (0.1891) (0.1878) (0.1767)

300 0.9925 0.9912 0.9940 0.9926
(0.1477) (0.1480) (0.1488) (0.1381)

600 0.9964 0.9954 0.9966 1.0022
(0.0462) (0.0413) (0.0492) (0.0320)

TABLE II
ESTIMATES OF THE CORRELATION PARAMETERS AND STANDARD

ERRORS UNDER NON-STATIONARY BINARMA(1,1) PROCESS

T ρ1 = 0.3 ρ2 = 0.4 ρ3 = 0.3 ρ4 = 0.4 ρ12 = 0.1
60 0.2823 0.3801 0.2850 0.3851 0.0888

(0.1752) (0.1857) (0.1710) (0.1888) (0.1947)
300 0.2902 0.3947 0.2911 0.3917 0.0945

(0.1370) (0.1330) (0.1320) (0.1338) (0.1459)
600 0.3011 0.3950 0.2971 0.3993 0.0986

(0.0426) (0.0521) (0.0417) (0.0440) (0.0522)

T ρ1 = 0.3 ρ2 = 0.4 ρ3 = 0.3 ρ4 = 0.4 ρ12 = 0.5

60 0.2844 0.3839 0.2818 0.3828 0.5826
(0.1733) (0.18) (0.1861) (0.1874) (0.2061)

300 0.2927 0.3932 0.2926 0.3910 0.5920
(0.1394) (0.1321) (0.1361) (0.1270) (0.1418)

600 0.2980 0.4019 0.2983 0.3979 0.5965
(0.0459) (0.0440) (0.0548) (0.0410) (0.0511)

From Tables I, II, it can be concluded that the mean

estimates of the model parameters are efficient for the different

combinations. As the time points increase, we observe a

decrease in the standard errors throughout.

VI. APPLICATION

The BINARMA(1,1) model is applied on daytime (Y
[1]
t )

and nighttime (Y
[2]
t ) accidents that occurred on the motorway

from International Airport of Mauritius to Reduit from 1st

January 2017 to 31st May 2017, comprising of 151 paired

observations. The following explanatory variables were also

collected: number of policemen (NP) deployed along the

motorway daily for patrol, number of speed cameras (NSC),

number of traffic lights (NTL) and number of roundabouts

(NRA). Table III presents the summary statistics of the

accident data:
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TABLE III
SUMMARY STATISTICS FOR THE NUMBER OF DAYTIME AND NIGHTTIME

ACCIDENTS WITH THE EMPIRICAL SERIAL- AND CROSS-CORRELATION

COEFFICIENTS

Series Mean Variance Lag-1 Cross
Day Accident 1.1394 1.5489 0.1716 0.1076

Night Accident 1.2841 1.6122 0.2524

The BINARMA(1,1) model is used to analyse the in-sample

accident data from 1st January 2017 to 15th May 2017 by

assuming λ
[k]
t = exp(β̂

[k]
0 + β̂

[k]
1 NTL+ β̂

[k]
2 NSC+ β̂

[k]
3 NP+

β̂
[k]
4 NRA). The CML estimates are presented in Tables IV, V.

TABLE IV
DAYTIME AND NIGHTTIME ACCIDENTS: ESTIMATES OF THE REGRESSION

PARAMETERS

Series β̂0 β̂1 β̂2 β̂3 β̂4

Y
[1]
t 0.1743 -0.0497 -0.0981 -0.1033 0.0428
s.e (0.2089) (0.0108) (0.0403) (0.0451) (0.0141)

Y
[2]
t 0.1614 -0.0344 -0.0716 -0.0926 0.1060
s.e (0.2113) (0.0129) (0.0344) (0.0408) (0.0393)

TABLE V
DAYTIME AND NIGHTTIME ACCIDENTS: ESTIMATES OF THE

DEPENDENCE PARAMETERS

Series ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂12

Y
[1]
t 0.1267 0.0938 0.1788
s.e (0.0468) (0.0647) (0.0696)

Y
[2]
t 0.1647 0.1052
s.e (0.0540) (0.0538)

From Tables III, IV, it is observed that all the covariates are

significant and there is the existence of dependence between

daytime and nighttime accidents. Using the forecasting

equations (25)-(26), we compute the one-step ahead forecast

for the out-sample observations 16th May 2017 to 31st

May 2017. Hence, the root mean square errors (RMSEs) for

daytime and nighttime accidents are 0.1855 and 0.2117.

VII. CONCLUSION

This paper introduces a non-stationary BINARMA(1,1)

model with correlated Poisson innovations. The mean,

variance and covariance expressions are derived under the

assumption of non-stationarity. The model parameters are

estimated using the CML method through a simulation study.

These estimates prove to be efficient and reliable. The

BINARMA(1,1) model is applied on a bivariate accident data.

The estimates and the RMSEs are both reliable.
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