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Analysis of One Dimensional Advection Diffusion
Model Using Finite Difference Method

Vijay Kumar Kukreja, Ravneet Kaur

Abstract—In this paper, one dimensional advection diffusion
model is analyzed using finite difference method based on
Crank-Nicolson scheme. A practical problem of filter cake washing
of chemical engineering is analyzed. The model is converted into
dimensionless form. For the grid Ω × ω = [0, 1] × [0, T ], the
Crank-Nicolson spatial derivative scheme is used in space domain
and forward difference scheme is used in time domain. The scheme is
found to be unconditionally convergent, stable, first order accurate in
time and second order accurate in space domain. For a test problem,
numerical results are compared with the analytical ones for different
values of parameter.

Keywords—Consistency, Crank-Nicolson scheme, Gerschgorin
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I. INTRODUCTION

THE phenomenon of longitudinal mixing can be defined

by a parabolic partial differential equation. The

displacement of solute from a packed bed of finite thickness is

expressed in terms of the following one dimensional advection

diffusion equation:

∂c

∂t
= DL

∂2c

∂x2
− u

∂c

∂x
(1)

where c(x, t) is the concentration of the fluid in the packed

bed, t is the time of start of displacement of the fluid from

the bed, x is the bed thickness, DL is the axial dispersion

coefficient, u is the interstitial velocity.

The initial condition is taken as c(x, t) = C0 = constant.

The boundary conditions are taken to be Robin type as:

uc−DL
∂c

∂x
= uCf , at x = 0 (2)

∂c

∂x
= 0, at x = L (3)

There are many engineering applications of the above model

like extraction of sunflower seed oil [4], flow reactor [6], [16],

measuring of neutron flux [7], synthesis of ethylene oxide [8],

biogas production by bacteria [9], distillation column [11],

sorption characteristics [12], [28], chromatography [13], [24],

brown stock washing [14], [15], [21], enzymatic hydrolysis

[18], glass beads [20], bio synthesis [23], purification of

biological compounds [26] and porous catalyst [29].

The advection diffusion model (1) is solved numerically via

finite difference method (FDM) using Crank-Nicolson (CN)

scheme. Details about CN scheme and other properties of
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FDM are available in standard books like [10], [19], [25],

[27]. In this paper, mathematical analysis in terms of stability,

consistency and convergence is presented.

II. DISCRETIZATION OF MODEL

The model is converted into dimensionless form using the

different dimensionless parameters:

C =
c− Cf

C0 − Cf
, X =

x

L
, T =

ut

L
, Pe =

uL

4DL
. (4)

The diffusion equation(1) reduces to the following PDE:

∂C

∂T
=

1

4Pe

∂2C

∂X2
− ∂C

∂X
, (5)

along with the initial and the boundary conditions as:

C(X,T ) = 1, ∀X, T = 0, (6)

4PeC − ∂C

∂X
= 0, X = 0, T > 0, (7)

∂C

∂X
= 0, X = 1, T > 0. (8)

In (5), the solution domain is a uniform equidistant grid

Ω × ω = (xi, tj), where i = 0(1)N, j = 0(1)M . The grid

[0, 1] × [0, T ] is subdivided into a set of equal rectangles of

size Δx = 1
N and Δt = T

M by equi-spaced lines parallel to

axis. Further, the steps of discretization are given hereunder.

A. Crank-Nicolson Scheme

In Crank-Nicolson scheme [3] is applied to (5). In

which forward difference is applied to approximate the time

derivative, Laplacian operator is evaluated at the midpoint

(xi, tj+1/2) and forward difference is applied for the spatial

derivative. After simplification the problem reduces to:

Ci,j+1 − Ci,j

Δt
=

1

8Pe

[
Ci−1,j+1 − 2Ci,j+1 + Ci+1,j+1

Δx2

+
Ci−1,j − 2Ci,j + Ci+1,j

Δx2

]

− 1

2

[
Ci+1,j − Ci−1,j

2Δx
+

Ci+1,j+1 − Ci−1,j+1

2Δx

]
. (9)

By taking ε = Δt
8PeΔx2 and η = Δt

4Δx , the system can be

rewritten as:

(−ε− η)Ci−1,j+1 + (1 + 2ε)Ci,j+1 + (−ε+ η)Ci+1,j+1

= (ε+ η)Ci−1,j + (1− 2ε)Ci,j + (ε− η)Ci+1,j . (10)
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This linear system of equations, after incorporating the

boundary condition can be expressed in the matrix form as:

PCj+1 = QCj +R (11)

where

P =

⎡
⎢⎢⎢⎢⎢⎣

1 + 2ε −ε+ η . . . . .

−ε− η 1 + 2ε −ε+ η . . . .

. . . . . . .

. . . . −ε− η 1 + 2ε −ε+ η

. . . . . −ε− η 1 + ε+ η

⎤
⎥⎥⎥⎥⎥⎦

,

Q =

⎡
⎢⎢⎢⎢⎢⎣

1− 2ε ε− η . . . . .

ε+ η 1− 2ε ε− η . . . .

. . . . . . .

. . . . ε+ η 1− 2ε ε− η

. . . . . ε+ η 1− 2ε

⎤
⎥⎥⎥⎥⎥⎦

,

Cj+1 =

⎡
⎢⎢⎢⎢⎢⎣

C1,j+1

C2,j+1

.

CN−2,j+1

CN−1,j+1

⎤
⎥⎥⎥⎥⎥⎦

, Cj =

⎡
⎢⎢⎢⎢⎢⎣

C1,j

C2,j

.

CN−2,j

CN−1,j

⎤
⎥⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎢⎣

(ε+ η)C0,j

.

.

.

(ε− η)CN,j

⎤
⎥⎥⎥⎥⎥⎦

.

Here P,Q are non-symmetric and strictly diagonally

dominant matrices of order (N − 1) × (N − 1). Matrices

Cj and R are obtained from initial and boundary conditions

respectively. The elements of matrix Cj+1 are unknown. The

above tridiagonal matrices can be solved by a variety of

numerical methods to generate the output at different grid

points. The matrix equation (11) can be written as:

Cj+1 = ACj ++fj , (12)

where A = P−1Q and fj = P−1R.

The analytic solution [2] of the above problem by using

Laplace transform is given as follows:

C = ePe(2−T )
∞∑
k=1

λksin(2λk)

(λ2
k + Pe2 + Pe)

× exp

(−λ2
kT

Pe

)
, (13)

where λk are positive roots, taken in order of increasing

magnitude of the transcendental equation tan2λ = 2λPe
λ2−Pe2 .

This solution will be used later on for comparison at different

Peclet numbers.

III. ANALYSIS FOR STABILITY

For a linear IBVP, stability of the numerical technique is

the necessary and sufficient condition for convergence [22],

[25]. For a ‘nearly diagonal matrix’, the diagonal elements

are good approximates to the eigenvalues. The Gerschgorin

theorem [17] quantifies this as well as provide bounds for the

spectrum ρ(A), i.e., eigen values of A.

Theorem1. If Ri =
∑N

k=1,k �=i |aik| then according to

Gerschgorin’s circle theorem the spectrum ρ(A) lies in the

union of the N disks |z − aii| ≤ Ri, in the complex plane.

Clearly, if Ri � |aii|; ∀i then the matrix may be approximated

as diagonal.

Theorem2. Let Ps be the sum of the moduli of the elements

along the sth row excluding the diagonal element as,s. Then

each eigenvalue of A lies inside or on the boundary of at least

one of the circles [25], i.e., |λ− as,s| ≤ Ps.

Result1. When the eigenvalue λi of matrix A are estimated by

circle theorem, then ‖A‖∞ or ‖A‖1 ≤ 1 forces the condition

|λi| ≤ 1.

The matrix method guarantees the stability of (11) as long

as the spectral radius |ρ(A)| < 1. Since ε = Δt
8PeΔx2 and

η = Δt
4Δx , therefore ε = βη, with β = 1

2PeΔx > 1. The latter

observation is true, since Δx is very small and the denominator

is more prominent therefore, it can be concluded that ε > η.

Therefore P and Q can be treated as ‘almost diagonal’ since

ε, η � 1. Hence ρ(P−1(P−1)′) ≈ ρ(P−2) = ρ(P−1)2 and

similarly ρ(QQt) ≈ ρ(Q2) = ρ(Q)2.

Finally, one gets the necessary bounds for the condition of

the stability. Thus, by invoking the spectral norm, it is shown

that ρ(A) < 1. Result 1 justifies the stability of the equation

(11). Hence, for all the values of Δx,Δt > 0 and P , the finite

difference process for (9) is unconditionally stable.

IV. ANALYSIS FOR CONSISTENCY

Let Fi,j(c) = 0 represents the difference equation

approximating the PDE (5) at the (i, j)th mesh point, with

the exact solution. The value of the local truncation error, i.e.,

Fi,j(C) measures the weight by which the analytical solution

(C) of the PDE (5), which is represented by the difference

equation (9), using finite difference scheme, do not satisfy

the difference equation at the mesh point (i, j). A numerical

algorithm is successful, if it be possible to make the truncation

error as small as possible by using a sufficiently small step

size. This further means convergence of the scheme. From (9)

the truncation error Ti,j of the difference equation at the (i, j)
mesh point is taken to be equal to the local truncation error

Fi,j(C). Therefore:

Ti,j = Fi,j(C) =
Ci,j+1 − Ci,j

Δt

− 1

8Pe

[
Ci−1,j − 2Ci,j + Ci+1,j

Δx2

+
Ci−1,j+1 − 2Ci,j+1 + Ci+1,j+1

Δx2

]

+

[
Ci+1,j − Ci−1,j

2Δx
+

Ci+1,j+1 − Ci−1,j+1

2Δx

]
. (14)

Using the Taylor series expansion for different terms of C
in (14), the principal component of the local truncation error

becomes:

Ti,j =

[
Δt

2!

(
∂2C

∂T 2

)
i,j

− Δx2

3!

(
∂3C

∂X3

)
i,j

]
.

Therefore, the global truncation error is Ti,j = O(Δt) +
O(Δx2). Hence, the numerical scheme is consistent since

Ti,j → 0, as Δx,Δt → 0.

V. ANALYSIS FOR CONVERGENCE

Let e be the global error, i.e., e = C−c. At the mesh points

ci,j = Ci,j − ei,j etc. Substituting these relations in (9) and



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:13, No:10, 2019

196

further incorporating Taylor’s series expansion, one gets:

(−ε− η)ei−1,j+1 + (1 + 2ε)ei,j+1 + (−ε+ η)ei+1,j+1

= (ε+ η)ei−1,j + (1− 2ε)ei,j + (ε− η)ei+1,j

+Δt

(
− 1

4Pe

∂2C

∂X2
+

∂C

∂X
+

∂C

∂T

)
(i,j)

+O(Δt2) (15)

As proposed by [25], if Ej represents Max |ei,j | at the jth

time level, irrespective of i and Mm be the maximum modulus

of the PDE in (15), Then

Ej+1 ≤ E(j) + ΔtMm (16)

This recursive relation leads to:

Ej ≤ E0 + jΔtMm = tjMm (17)

As initial values for c and C are same; E0 = 0. Also Mm

tends to zero, as C is the analytical solution of (5), therefore

Ej tends to zero as Δt tends to zero. As described above, the

relation of the error becomes

|Ci,j − ci,j | ≤ Ej

and it is proved that Ej tends to zero. Hence, the approximate

solution converges to the analytical solution.

VI. RESULTS AND DISCUSSION

A comparison of numerical (present) and analytic [2] is

given in Tables and for a wide range of parameter namely,

Peclet number (Pe). The values are matching appreciably for

the entire range of Peclet numbers, practically from 0 to ∞.

Based on this analysis, different figures are drawn. In Figure

1 to 3, at a fixed Peclet number, relative error between the

analytic results and the numeric ones is plotted for different

mesh lengths in space and time domains. For different Peclet

numbers (Pe = 0, 40, 160), it is found that the value of relative

error decreases as the values of Δx and Δt are becoming

smaller and smaller.
In Figs. 4-6, 3D mesh diagrams indicating the behaviour

of the solute removal process over the entire range of

dimensionless distance and time (0 ≤ X ≤ 1, 0 ≤ T ≤ 2) for

Peclet numbers Pe = 1, 10, 80 are plotted. It is observed as

time is increasing, the solute concentration is approaching to

zero. It is happening at a slow rate for small Peclet number

(Pe = 0), where as for higher Peclet number (Pe = 80), it is

fast approaching to zero.

VII. CONCLUSION

In this paper, a numerical method is discussed for the

advection diffusion problem over a finite slab, where the partial

time derivative is interpreted in the sense of forward difference.

The stability, consistency and convergence of the method are

estimated. The method is unconditionally stable for any time

and space steps. The results obtained by the Crank-Nicolson

scheme for a test problem are compared with the analytic

solution. The scheme is found to be simple, elegant and easy

to use. The scheme is second order stable in space domain

and first order in time domain. Further the scheme can be

extended for linear and non linear PDEs. For the test example,

the numeric results are matching with the analytic ones.

TABLE I
COMPARISON OF ANALYTIC AND NUMERIC VALUES FOR SMALL Pe

Pe = 1 Pe = 6 Pe = 40

t Analytic Present Analytic Present Analytic Present

[2] N=1000 [2] N=1000 [2] N=1500

M=6000 M=6000 M=5000

0.0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.2 9.951E-1 9.951E-1 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.4 8.985E-1 8.986E-1 1.000E+0 9.994E-1 1.000E+0 1.000E+0

0.6 7.177E-1 7.177E-1 9.559E-1 9.960E-1 1.000E+0 1.000E+0

0.8 5.378E-1 5.377E-1 7.455E-1 7.455E-1 9.747E-1 9.748E-1

1.0 3.909E-1 3.909E-1 4.448E-1 4.448E-1 4.778E-1 4.781E-1

1.2 2.801E-1 2.800E-1 2.144E-1 2.144E-1 4.493E-2 4.504E-2

1.4 1.992E-1 1.992E-1 8.905E-2 8.908E-2 9.904E-4 9.952E-4

1.6 1.412E-1 1.412E-1 3.341E-2 3.342E-2 7.900E-6 7.935E-6

1.8 9.987E-2 9.985E-2 1.168E-2 1.168E-2 3.111E-8 3.120E-8

2.0 7.058E-2 7.057E-2 3.882E-3 3.884E-3 7.41E-11 7.41E-11

TABLE II
COMPARISON OF ANALYTIC AND NUMERIC VALUES FOR LARGE Pe

Pe = 80 Pe = 160 Pe = 320

t Analytic Present Analytic Present Analytic Present

[2] N=2000 [2] N=2000 [2] N=2000

M=10000 M=10000 M=10000

0.0 1.000E+0 1.0000+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.2 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.4 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.6 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0

0.8 9.974E-1 9.974E-1 9.999E-1 9.999E-1 1.000E+0 1.000E+0

1.0 4.843E-1 4.846E-1 4.889E-1 4.893E-1 5.000E-1 4.929E-1

1.2 9.282E-3 9.288E-3 4.874E-4 4.852E-4 0.000E+0 1.638E-6

1.4 7.615E-6 7.594E-6 5.92E-10 5.70E-10 0.000E+0 3.45E-18

1.6 7.12E-10 7.05E-10 7.79E-18 7.04E-18 0.000E+0 5.36E-34

1.8 1.50E-14 1.47E-14 4.76E-27 3.93E-27 0.000E+0 1.31E-52

2.0 1.10E-19 1.06E-19 3.33E-19 2.47E-37 0.000E+0 3.39E-73
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Fig. 1 Relative Error for different Δx and Δt at Pe = 0
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Fig. 2 Relative Error for different Δx and Δt at Pe = 40
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Fig. 3 Relative Error for different Δx and Δt at Pe = 160

Fig. 4 Mesh Diagram at Pe = 0 for Δx = 1
1000

and Δt = 1
3000

Fig. 5 Mesh Diagram at Pe = 10 for Δx = 1
1000

and Δt = 1
3000

Fig. 6 Mesh Diagram at Pe = 80 for Δx = 1
2000

and Δt = 1
5000
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