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 
Abstract—As part of the development of a 4D autopilot system 

for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust 
trajectory generation and control algorithm, this work addresses the 
problem of optimal path control based on the flight sensors data 
output that may be unreliable due to noise on data acquisition and/or 
transmission under certain circumstances. Although several filtering 
methods, such as the Kalman-Bucy filter or the Linear Quadratic 
Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, 
the utter complexity of the control system, together with the 
robustness and reliability required of such a system on a UAV for 
airworthiness certifiable autonomous flight, required the development 
of a proper robust filter for a nonlinear system, as a way of further 
mitigate errors propagation to the control system and improve its 
,performance. As such, a nonlinear algorithm based upon the 
LQG/LTR, is validated through computational simulation testing, is 
proposed on this paper. 
 

Keywords—Autonomous flight, LQG/LTR, nonlinear state 
estimator, robust flight control & stability. 

I. INTRODUCTION 

UE to the complexity and rhythm of the nowadays life in 
this modern age, time is becoming increasingly scarce in 

order to keep up the pace with all the demands. Although 
advancements in automation procedures and systems had 
largely helped to reduce workload and improve schedules, 
there is still an important gap that must be fulfilled. For 
instance, whilst actual flight plan fulfilment requires 4D 
navigation, existing autonomous navigation procedures are 
mostly done in 3D because of the stringent certification 
requirements for 4D flight and due to the complexity in coping 
with time of arrival at waypoints. Therefore, there is a need for 
the development and testing of an algorithm that, when 
implemented on an airucraft’s autopilot system, will enable 
the aircraft to autonomously fulfil its scheduled time-of-arrival 
at a designated waypoint. As an initial step on that 
development process, the present work focuses on the 
simulated testing of improved and up-to-date optimal control 
and filtering methodologies that will be implemented in the 
aforementioned algorithm. More precisely, it presents the 
background theory and simulated results of a LQG/LTR 
controller method when applied to a Classical Atmospheric 
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Disturbances Simulation Test of an UAV on stable levelled 
flight.  

II. THEORETICAL BACKGROUND 

In order to achieve the desired level of flight efficiency and 
safety, especially with beyond visual range UAVs flights, it is 
crucial to ensure proper control of the aircraft through error 
mitigation and pilot/operator’s workload reduction 
technologies. This level of precision flight control is achieved 
by resorting to the physical implementation of computerized 
systems that allow for automated flight. These systems are 
generally known as Autopilot Systems, and they combine the 
information provided by the aircraft’s onboard sensors with 
the known Flight Dynamics Equations, Aircraft’s Data, to 
correlate them through an algorithm and achieve a timely 
Optimal Control solution that will be commanded by the 
system to the Aircraft’s Control Surfaces and Engine(s). This 
algorithm is referred to as an Optimal Control Method. 
Following on from the previously developed work [1] and 
tests results, this work focuses on the further improvement of 
the LQR Controller method by addressing the treatment of the 
unavoidable noise on data acquisition sensors with the 
implementation of a Kalman Filter upon the LQR, a 
combination usually referred to as an LQG Controller Method. 
The theoretical background for such methods is provided on 
the following sub-sections.  

A. LQR Controller Method 

In an LQR controller, the time-continuous linear system, 
referring to longitudinal control, is described by [1]-[4]: 

 

x Ax Bu   , IRnx  and IRmu             (1) 
 

The cost function is defined as: 
 

 
0

,J F x u dt


                            (2) 

 
where: x : Aircraft’s Longitudinal State variation; A : 
Jacobian Matrix concerning the State Vector; x : State Vector; 
B : Jacobian Matrix concerning the Control Vector; u : 
Control Vector; J : Cost Function; F : Function of the state 
and control vectors. 

 
with  , T TF x u x Qx u Ru                    (3) 

 
As for longitudinal flight, A  is the Jacobian matrix of F  
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concerning the aircraft’s state vector x  and B  the Jacobian 
matrix concerning the aircraft’s control vector u  obtained 
from linearization. 
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where u must be such that it minimizes the coast function on 
the following way: 

 

     
0

: : T Tu u x J u x Qx u Ru dt


                    (5) 

 
The feedback control law that minimizes the cost function 

in (2) is described by: 
 

u Kx                                         (6) 
 

where m nK   is the system’s gain matrix determined by: 
 

1 TK R B P                                    (7) 
        

This cost function (2) is often defined as a sum of the 
deviations of key measurements from their desired values. 
However, the main problem while properly scaling an LQR 
controller, i.e. fine-tuning the controller for optimal 
performance, resides in finding the adequate weighting 
factor’s Q and R matrices. In general, LQR design, Q and R 
are simply determined by the Bryson’s method [1], [5], where 
each state (Q matrix) and control (R matrix) parameter 
(diagonal element) is calculated in relation to its maximum 
amplitude:  

 

2 2
,max ,max

___
1 1

_ii ii
i i

Q R
x u

                          (8) 

        
where: A : State Vector Jacobian Matrix; 0x : Initial State 

Vector; 0u : Initial Control Vector; B : Control Vector 

Jacobian Matrix; V : Aircraft’s Speed;  : Path Angle; q : 

Pitch Rate;  : Pitch Angle; e : Elevator Deflection; T : 

Throttle Setting; u : Control Vector; x : State Vector; J : 
Cost Function; Q : State Vector Weighting Matrix; R : 

Control Vector Weighting Matrix; K : System’s Gain; P : P 
Problem. 

Although this method is a good starting point for trial-and-
error iterations on the search for the intended controller 
results, it is somehow limited by its maximum state values. 

Even though the control values are limited only by their 
control surface’s maximum physical properties, they lack a 
more proper optimization algorithm. 

However, a better alternative method, proposed by Luo and 
Lan [6], is available, since 1995, for the Q and R matrices 
estimation. The R matrix is still determined using Bryson’s 
method (8) [1], [5], as the problem lies, as noted before, in the 
determination of the optimal state values of the Q matrix. In 
this method, the cost function J (2) is minimized by a 
Hamiltonian matrix H, which is used to determine P. Q and R 
are, as stated before, weighting matrices for, respectively, the 
state and control variables, and must be respectively defined 
as positive-semidefinite and positive-definite. Considering that 
a symmetrical matrix has only real eigenvalues, it can be 
deduced that when , 0TQ Q Q  , all its eigenvalues are 

  0i Q   and, when , 0TR R R  , then all its eigenvalues 

are   0i R  . The R matrix is therefore a penalization (or 

ponderation) matrix of the control vector, which allows for 
some flexibility upon its generation, and is therefore 
calculated by Bryson’s method (8). However, the Q matrix 
must be such that its eigenvalues match the eigenvalues from a 
group I Hamiltonian matrix H. Accordingly to the principle of 
the Pontriagin’s Maximum, the Hamiltonian matrix is 
associated to the LQR’s “P Problem” (9) [1]. This consists in 
the calculus of the H matrix by minimizing the control’s 
output cost function (6) while it is restricted by the LQR’s 
longitudinal time-continuous linear equation (1). 

  

   
1

0

T

TT T

x Ax Bu A BR B
P H

Q AJ u x Qx u Ru dt





            



  
(9) 

           
The eigenvalues of H are thereby symmetrically distributed 

in relation to the imaginary axis, thus having positive and 
negative symmetrical real parts only. The “P Problem” is part 
of the Â matrix of the LQR’s feedback system described as 
[1]: 

 
1 TÂ A BR B P                        (10) 

 
P is found by solving the continuous time algebraic 

Riccati’s equation [2], [7], in (11): 
 

1 0T TA P PA PBR B P Q                     (11) 

 
As the eigenvalues of Â are the same of those of the Group I 

of the Hamiltonian matrix H, they can be specified as [1]: 
 

1 1 1;

;n n n

i

i

  
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

  

                                    (12)  
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with    Re 0; Im 0n n n n       . Therefore, the state 

matrix Q must be determined such that [1]: 
 

 : det 0ii I H                             (13) 
 
where I is an identity matrix. For simplified calculations, it is 
enough to use the state matrix A’s eigenvalues, but in order to 
minimize the cost function J (2) under certain imposed flight 
qualities, and therefore, these eigenvalues must be subjected to 
such impositions. The Q matrix is thereby defined as a 
diagonal matrix composed by a single vector 

 1 2
T

i nq q q q  . To satisfy the prior condition (13), qi 
must be such that [1]: 

  

         2
1

: det 0
n

i i i i i i

i

i f q I H q J q f q


     
(14) 

 
Finding the iq values that satisfy ( )J q will give the solution 

to Q. However, in order to ensure that Q comes as a positive-
semidefinite matrix with Group I eigenvalues, the “diagonal 
vector” is rather defined by the square root of its elements, i.e. 

2 2 2
1 2

T
i nq q q q    , which prevents Q from having 

undesired negative values in its diagonal [1]. A new control 
law comes as: 

 

 ref refu u K x x                        (15) 
      

This allows the LQR controller to fully stabilize an aircraft 
state and control variables for optimized R and Q weighting 
matrices as the control output vector is given in function of the 
deviation from the required output ( refu ) to maintain the 

aircraft on the desired attitude described by the reference state 
vector refx [1].  

B. Kalman-Bucy Filter 

From the general discrete-time domain Kalman Filter 
theory, the estimator is given by: 

 

   ˆ ˆ ˆ ˆx Ax L y Cx A LC x Ly            (16) 

 
The Kalman filter is applied whenever the uncertainties (or 

noise present either in the model, in the observations or in 
both) are not negligible and therefore, cannot be ignored. This 
means that 0   and 0  .These two random vectors are 

assumed to be white noises with Gaussian distribution [8], i.e. 
both have null averages and each one has over-time 
uncorrelated values. 
  

 
 

X AX t

Y Cx t




  
  


                               (17) 

                                                                                                        
The Kalman filter’s equation (in time-continuous domain, 

i.e. Kalman-Bucy Filter) follows the same logic reasoning as 
for the discrete-time domain, but with two particular details 
[8]: 
1. The Riccati’s equation is differential, meaning that: 

 

           
     

* * 1

0 0 0 0 0 0ˆ ˆ
T

P AP PA PC R CP Q

P t P E x x x x

    
       


                 (18) 

 
where 0x̂  is the assumed initial state for the system considered 

for the solving of the differential equation (16).  
2. The weighting matrices are given by [8]: 

 

              T TQ E and R E                    (19) 

 
Using (18) and (19) enables the achievement of the solution 

 kP t  for the differential matricial equation of Riccati on the 

instant kt , being that [8]: 
 

   , :P t t t t                           (20) 

 
means that the estimative is very accurate [8]. 

Let  k kP P t  be the solution of the Riccati’s equation on 

the instant kt , the gain is given by [8]: 
 

  1
k k kL t L P CR                              (21) 

 
The state filtering estimation equation is thereby as [8]: 

 

ˆ ˆ ˆ( )( )x Ax L t y Cx                            (22) 
 
wherein, 1ˆkx   must be calculated as the solution of the 

differential equation (22) [8].  

C. LQG Controller Method 

In control theory, the LQG is one of the most fundamental 
problems on optimal control. Essentially, the LQG controller 
is a Kalman Filter, i.e. a Liner Quadratic Estimator, applied to 
a LQR, i.e. Linear Quadratic Regulator and deals with 
uncertain linear systems disturbed by additive white Gaussian 
noise, while having incomplete state vector information (i.e. 
not all the state vector variables are measured and and/or 
readily available for feedback, meaning they are unknown 
variables) and undergoing control subject to quadratic costs. 
Moreover, the solution makes a linear dynamic feedback 
control law that is easily computed and implemented for the 
optimal control of perturbed non-linear systems [9]. 

The separation principle ensures that both the LQE and 
LQR can be developed and computed independently. LQG 
control applies to both linear time-invariant and time-varying 
systems, enabling the design of linear feedback controllers for 
non-linear uncertain systems.  
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1) Continuous-Time Linear System LQG 

Since the LQR requires a linearization of the system in 
order to be implemented, the same linearized system can be 
used for our advantage as it enables the use of the easier to 
implement linear LQG for a continuous-time system, instead 
of the non-linear option. 

Given the following time-continuous linear dynamic system 
[9]: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t A t x t B t u t t

y t C t x t t




  
  


                  (23) 

 
where: x  is the state vector; x  is the estimation of the state 
vector x ; u  is the control inputs vector; y  is the vector of 

the measured outputs available for feedback; ( )t  is the 

additive white Gaussian noise that affects the system; ( )t  is 

the measurement of the white Gaussian noise. The objective is 
to find the control input history ( )u t  which at every time t  

may depend only on the past measurements   ,0y t t t    

such that the following cost function is minimized [9]: 
 

0
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) , 0, ( ) 0, ( ) 0

TT T

T

J E x T Fx T x t Q t x t

u t R t u t dt F Q t R t

 
   


 (24) 

 
where E  is the expected value. The final time (horizon) T  
can be either finite or infinite. If the time horizon tends to 

infinity, the first term, ( ) ( )Tx T Fx T  becomes negligible.  

The LQG controller that solves the LQG control problem is 
specified by the following equations [9]: 
 

 
 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

ˆ(0) (0)

ˆ( ) ( ) ( )

x t A t x t B t u t K t y t C t x t

x E x

u t L t x t

    



  



    (25) 

  
At each time t , this filter calculates ˆ( )x t  of the state ( )x t  

based upon past measurements and inputs feedback. The 
Kalman gain ( )K t  is computed from the matrices ( )A t  and 

( )C t , as well as the two intensity ( )V t  and ( )W t  associated 

with the white Gaussian noises ( )t  and ( )t  and finally 

(0) (0)TE x x   ”. These five matrices determine the Kalman 

gain through the following associated matrix Riccati 
differential equation [9]:  
 

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(0) (0) (0)

T

T

T

P t A t P t P t A t

P t C t W t C t P t V t

P E x x



  

 
    



    (26) 

 
Given the solution ( ),0P t t T  , the Kalman gain is equal 

to [9]: 
 

1( ) ( ) ( ) ( )TK t P t C t W t                    (27) 

 
The matrix ( )L t  is called the feedback gain matrix and is 

determined by the matrices ( )A t , ( )B t , ( )Q t , ( )R t  and F  

through the following associated matrix Riccati differential 
equation [9]: 
 

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

T

T

S t A t S t S t A t

S t B t R t B t S t Q t

S T F



  

 
 



             (28) 

 
Given the solution ( ),0S t t T   the feedback gain is equal 

to [9]: 
 

1( ) ( ) ( ) ( )TL t R t B t S t                            (29) 
 

While the first of the two Riccati matrices is running 
forward in time, the second one is running backwards in time. 
This similarity in between the two Riccati matrices is known 
as duality. The first matrix Ricatti differential equation solves 
the LQE problem, while the second matrix Riccati differential 
equation solves the LQR. These problems are dual and 
together solve the LQG.  

If both ( )A t , ( )B t , ( )C t , ( )Q t , ( )R t  matrices and noise 

intensity matrices ( )V t and ( )W t  do not depend on t  and 
when T  tends to infinity, the LQG controller becomes a time-
invariant dynamic system, and therefore both matrix Ricatti 
differential equations can be replaced by the two associated 
algebraic Riccati equations. 

D. LQG/LTR Controller Method 

The LTR was specifically developed to overcome 
robustness problems in the LQG control method, hence it is 
most commonly known as the LQG/LTR Method, which 
stands for LQG Control synthesis with LTR [10]. It was firstly 
introduced by Doyle and Stein in [10]. “The point of this 
approach is based on the fact that using the observer has no 
effect on the closed loop transfer function but has a harmful 
influence on the robustness properties” [11]. The LQG/LTR 
method attenuates those harmful effects on stability margins 
by making the open loop transfer function of the system [11]. 
In fact, and accordingly with Chen, the LQG alone is “not an 
optimal control design method” [12], “not even a stochastic 
control design method” [13], and “uses Fictitious KF” [12] 
(Kalman Filter). Therefore, “LQG/LTR should be regarded as 
one word” [12], as it constitutes “a robust control design 
method that uses LQG control structure” [13]. So, let ( )G s  be 

a linear continuous-time plant with state-space matrices 
, , ,A B C  and 0D . From the system’s model [14]: 
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( C )x Ax Bu H y xy

y Cx Du

   
  


                    (30) 

 
where x , u  and y  are respectively the system’s state vector, 

the algorithm’s calculated control vector, and the system’s 

outcome of that control input. x  is the system’s state variation 
from the initial state, x , in time due to the control vector 
input, u  and the respective measured system’s outcome, i.e. 

the system’s state reaction to that input, y . The estimator, x̂ , 

is the system’s state estimation based on the previous system’s 
outcome, y . And the system’s feedback of the difference in 

between its known, measured current state, y , and it’s prior 

estimative, x̂ , is given by the estimation’s variation 

parameter, x̂ , as [14]:  
 

ˆ ˆ ˆ( )

ˆ

x Ax Bu H y Cx

u Gx Gx

    


   


                         (31) 

 
The LTR can be applied either at the entrance of plant, in 

which case G is constant and H is variable, or at the exit of 

the plant, in which case G is variable and H is time 
invariable (constant). The goal is then to minimize the cost 
function [14]: 
 

 
0

min ( ) ( ) ( ) ( )T TJ y t y t u t Ru t dt


             (32) 

 
Considering TQ C C  and R I  with 0  . Through 

Ackermann’s Formula [14], 0TQ Q   and hence 

0TR R  .Then, in accordance with the LTR fundamental 
Theorem, if the primal state is controllable, the dual state is 
observable, the Plant’s Nominal Transfer Function Matrix on 
frequency-domain, ( )NG s , is a square matrix, and its 

zeros/poles are on LHP (Left-Half Plan) [14]: 
 

1 TG B P                                    (33) 
 

where 0TP P    is the solution to the Algebraic Riccati’s 
Equation given by [14]: 
 

1
0T T TPA A P C QC PBB P


                  (34) 

 
And so, converting the above to an equivalent feedback 

controller in the transfer-function form the LQG/LTR gain, K, 
is given by [14][15]: 
 

   

   

11 1

0
lim ( ) ,  

with det .det 0

K s C I A B C I A H

I A BG I A HC


 

 

 


    
    

 (35) 

III. NONLINEAR FLIGHT MODEL LQG/LTR CONTROLLER 

METHOD SOLUTION 

However, as good as an advantageous approach the 
LQG/LTR method might be, in its current form it is only 
applicable to linear system’s models (plants). Meanwhile, 
Aircraft’s Navigation is inherently nonlinear and time-
continuous. Therefore, there is a need to adapt the previously 
described method’s equations and formulation for continuous-
time nonlinear LQG/LTR system’s application. For that 
purpose, the method should comply with two pre-
requirements: 
 

|| || 0

 

( )
lim 0,  ( ) is nonlinear

|| x ||

Find Q   || ( ) ||

x

that satisfies

f x
f x

f x x



  

  

             (36) 

 
The system’s model (plant) thereby is defined as: 

 

ˆ ( )
,  with 0

x Ax Bu f x
Du

y Cx Du

  
  

                (37) 

 
The linear LQG/LTR system’s model is given by (30) [14]: 

 

   ˆ ˆ ˆx Ax Bu f x H y Cx

y Cx

    



               (38) 

 
Therefore, it is easy to see that, when replacing y Cx  on 

the first equation, we get our nonlinear ( )f x  for the estimator 

[14]: 
 

 ˆ ˆx Ax Bu H Cx Cx                         (39) 

 
Interestingly enough, ˆ ˆCx Cx x x   , which is nothing 

less than the estimation’s error, x  [14]: 
 

ˆx x x                                          (40) 
 

Also, the variation in estimation’s error is given by [14]: 
 

x Ax                                              (41) 
 

It would seem from here, that the first criteria for this 
method are not met as: 
 

|| || 0 || || 0

|| || 0

ˆ( ) ( )
lim 0 lim 0

|| || || ||

ˆ( )
lim 0

|| ||

x x

x

f x H Cx Cx

x x

H x x

x

 




  


 

    (42) 

 
which, as the fraction’s bottom element converges to zero 
faster than the upper element, would not hold true to the 

condition meaning that  f x  would converge for infinity 

rather than to zero as intended. However, remember that from 
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(40), the estimation’s error, x , is null if A  is stable [14], 
meaning that: 
 

     
|| || 0 || || 0 || || 0

|| || 0 || || 0

ˆ 0
lim 0 lim 0 lim 0

|| || || || || ||

0
lim 0 lim 0 0 0 0

|| ||

x x x

x x

f x H x x H

x x x

x

  

 


    

     
  (43) 

 
Thereby, the condition holds true for that ( )f x , as long as 

A  is stable. This becomes even more evident the greater the 
order of the nonlinear system, as e.g.: 
 

   

 

2

|| || 0 || || 0

2 2

|| || 0 || || 0

|| || 0

ˆ
lim 0 lim 0

|| || || ||

0
lim 0 lim 0

|| || || ||

lim 0 0 0

x x

x x

x

H x Cx Cxf x

x x

H x Hx

x x

Hx

 

 



 
  


   

   

      (44) 

 
Therefore as long as A  is stable, which is ensured by the 

LQG (through the linearization of the flight system’s 
equations as pre-requirement for LQR implementation), not 
only the second order of Taylor’s expansion, ( )f x , will 

satisfy the criteria, as, as it would be desirable, it ensures over-
time estimation accuracy as 0x  .  

The Algebraic Riccati’s Equation (34) is another example 
of a nonlinear ( )f x  through its A  and B  matrices, and since 

P  was calculated in order to equal the equation to zero, it 
meets the criteria. 

With ( )f x  borrowed from the already existing method, 

only the matrix Q  remains to be defined in such a way that it 

meets the established criteria. From Aoki [16], for a 
multivariable quasilinear stochastic system (Aircraft’s 
Navigation fits in the description), where ,  ,  and A B C

matrices variations, and  (noise)  variations are null, it is safe 

to assume 0 .P P const C B     . Therefore, on 
MATLAB®, the command that would give the LQR solution 
lqr(AT,CT,Q,R) is replaced by the modified command 
lqr(A,B,Q,R) in order to achieve the LQG solution. The 
calculated eigenvalues on previous work, for the longitudinal 
flight’s short and long period modes, are given by [1]: 
 

   1,2 2,25 19843 0,0693 0,1588SP LP i i          (45) 

 
The LQR’s weighting matrix Q  is traditionally calculated 

by the Bryson’s Method (8) [1]. Quickly it is perceived that 
the Bryson’s Method directly satisfies the second criteria, for 
positive eigenvalues only, as, from LQR (3): 
 
 

 

 

 

 

Fig. 1 LQG Control Method results on a Classical Disturbances 
Simulation Test 

 

 
2
,max

2
,max

T
T T

i

T

i

x x
f x x Qx x Qx x x

x

x

x

 



    

 

    (46) 

 
which is not the case, as the obtained eigenvalues on (45) have 
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negative real parts. However, on the previous work [1], matrix 
Q  was calculated through a new method presented by Luo 

and Lan in 1995 [6], which proved to be a more robust and 
reliable method. For the Luo and Lan Method, Q  must be 

such that: 
 

      

    

     

that
minimizes

2

1

2

1

: det 0

0

i i i i

n

i i

i

n

i i

i

i f q I H q J q

J q f q x

J q f q x











    

  

   





  (47) 

 
This method has the advantage of being able to calculate the 

Q  matrix in order to satisfy the mentioned condition despite 

the use of negative poles/eigenvalues,  . Therefore, this 
method allows for the continuation from the previously 
achieved eigenvalues. Using the same eigenvalues will also 
provide a better comparison term between the results of this 
quasilinear LQG/LTR method with the previously achieved 
results using only LQR.  

As it is easily perceptible from the comparison between the 
two figures, the purposed LQG/LTR method offers a faster 
convergence to the reference values to the same degree of 
smoothness as the standalone LQG method and its predecessor 
in which it is built upon, the LQR method. As this purposed 
method simply replaces the calculation formulae for the Q 
matrix, and uses the same MATLAB® lqr command due to the 
Aoki method, this LQG/LTR with Aoki’s method does not 
require an increase on computational workload, remaining as 
nimble as the original non-filtered LQR method. The diagonal 
values of the new Q matrix are given by 

0.0076 0.0075 0.0156iq  0.0122 0.0113 0.0006 0.4572 0.0663
T . 

IV. CONCLUSION 

In conclusion, as both the LQR and the LQG ensure a stable 
A matrix, the resource to the Luo and Lan method, in 
conjunction with the Aoki’s method, enables the use of the 
established LQG/LTR solution formulae for the nonlinear 
continuous-time domain systems, by simply recalculating the 
Q matrix values to be used, without having to resource to the 
separation principle, and separately design an LQR and an 
Extended Kalman Filter (EKF), which had otherwise proven 
to be inadequate as they had led to several complications with 
matrix dimensions disagreements in previous attempts. This 
LQG/LTR method provides a very quick, easy, and low-
computational solution for nonlinear continuous-time systems. 
It is easily seen that the LQG/LTR results converge faster and 
smoother than the LQG alone, proving both the LQG/LTR 
concept and the new method.      
 

 

 

 

 
Fig. 2 Purposed LQG with Loop Transfer Recover Control Method 

results on a Classical Disturbances Simulation Test 
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