
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

443


Abstract—2016 has become the year of the Artificial Intelligence

explosion. AI technologies are getting more and more matured that
most world well-known tech giants are making large investment to
increase the capabilities in AI. Machine learning is the science of
getting computers to act without being explicitly programmed, and
deep learning is a subset of machine learning that uses deep neural
network to train a machine to learn features directly from data. Deep
learning realizes many machine learning applications which expand
the field of AI. At the present time, deep learning frameworks have
been widely deployed on servers for deep learning applications in both
academia and industry. In training deep neural networks, there are
many standard processes or algorithms, but the performance of
different frameworks might be different. In this paper we evaluate the
running performance of two state-of-the-art distributed deep learning
frameworks that are running training calculation in parallel over multi
GPU and multi nodes in our cloud environment. We evaluate the
training performance of the frameworks with ResNet-50 convolutional
neural network, and we analyze what factors that result in the
performance among both distributed frameworks as well. Through the
experimental analysis, we identify the overheads which could be
further optimized. The main contribution is that the evaluation results
provide further optimization directions in both performance tuning and
algorithmic design.

Keywords—Artificial Intelligence, machine learning, deep
learning, convolutional neural networks

I. INTRODUCTION

ITH the development of machine learning, many
machine learning techniques [1], [2] have been

developed and are being updated to adapt to new software
libraries, which bring a big challenge. Machine learning is a
type of artificial intelligence that provides machines with the
ability to learn without being explicitly programmed. The
purpose of machine learning is to learn from variable data and
create a suitable model by repeatedly optimizing, evaluating,
and tuning parameters of the model. And with a large amount of
input data, deep learning techniques [3]-[5] can learn the
feature presentation very well. Deep learning is a recently
developed field which is a new area in machine learning
methods. Deep learning emulate to imitate the human brain by
learning, analyzing and solving different kinds of complex
problems. It is derived from the concept of artificial neural
networks [6] and utilizes learning algorithms that are inspired
by our understanding of how the brain learns. In addition, deep
learning has a layered-based architecture that has been
motivated by artificial intelligence. The output layers give the

S. T. Wang, F. A. Kao, C. Y. Chou and Y. B. Fang are with the National

Center for High-Performance Computing, Taiwan, R.O.C. (e-mail: stwang@
nchc.org.tw).

output that determine which input has been read.
Currently, one of the important challenges of deep learning is

it is a very time-consuming process. Large scale of input data
will result in a high requirement of computation resources.
Reference [7] indicated the insight in deep learning which is
possible to replace in modeling by using of large-scale datasets
for training. With the advances in deep learning frameworks,
this insight led to large scale deep learning deployments.
Moreover, designing a deep learning model requires data space
exploration of a large number of hyper-parameters and
processing the data. Thus, accelerating the training process is
critical for deep learning developments. Distributed deep
learning is one of the necessary technologies in reducing
training time. A single accelerator has limited computational
resource to process a large scale neural network, so distributed
training algorithms are proposed to solve this problem such as
model parallelization and data parallelization [8].

For complex deep learning tasks, and especially for training
deep neural networks, large scale deep learning platform is
inevitably built as distributed processing. Several popular
distributed deep learning frameworks including TensorFlow
[9] and Horovod [10] have achieved not only high throughput
in a single GPU, but also have well scalability across multiple
GPUs and multiple nodes. In this paper, we compare these
distributed frameworks for deep learning and benchmark their
performance against the centralized frameworks. They are
evaluated using the running performance on ResNet-50 [11]
convolutional neural network with the ILSVRC2012 ImageNet
dataset [12] over multi GPU and multi nodes in our cloud
environment.

The rest of this paper is organized as follows. Section II
introduces the distributed training frameworks. Section III
gives descriptions of our experimental environment. We show
our experimental results in Section IV, and Section V discusses
future work and concludes.

II. DISTRIBUTED DEEP LEARNING FRAMEWORK

Training a deep learning model can take a significant amount
of time. Typically, millions of parameters need to be trained
and a huge amount of data need to be stored. While there are
many possible ways to solve this issue, one can either extract a
smaller portion as a sample of the whole dataset or upgrade the
computing device. However, these approaches may lead to
accuracy loss, and upgrading the device may be costly. So, a
new way to fix this issue is to use distributed deep learning
techniques to reduce the training time.

Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Performance Evaluation of Distributed Deep Learning
Frameworks in Cloud Environment

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

444

A. Distributed TensorFlow

TensorFlow is an open source deep learning library for
research and production use. Distributed TensorFlow is one of
the TensorFlow’s API which is designed to be easy to use and
provide good performances. There are two ways to update the
gradient in Distributed TensorFlow, i.e., synchronous, and
asynchronous. Synchronous uses Ring-AllReduce algorithm
[13] and asynchronous uses parameter server architecture to
send models to all of the workers. The usage of these two
methods is different. For asynchronous, it is often used when
there are many instances with low computing power. For
synchronous, it was used by strong machines such as GPUs,
high speed network between machines would be an important
issue.

For evaluating the performance of Distributed TensorFlow,
we use Mirrored Strategy in the benchmark. Reference [14] is
the description of this strategy. It has to contain one or more
parameter servers and workers when running Distributed
TensorFlow benchmarks. The parameter server only needs to
broadcast the updates. The worker coordinates model training,
initializes the model, counts the number of training steps,
monitors the session and saves and restores model checkpoints
to recover from failures. One disadvantage of Distributed
TensorFlow is that we have to manage the starting and stopping
of servers, keep track of the ports of all servers, and starting and
stopping those servers manually.

B. Horovod

Horovod is another approach to distributed deep learning
framework by Uber. At first, they use the standard distributed
TensorFlow technique, but soon after they realized that some
problems were found:
 The documentation of Distributed TensorFlow did not

state what code modification is needed, which could slow
trainings.

 Uber lost half of their resources due to scaling problems.
In order to solve these issues, Uber developed a new

component called Horovod, in their Michelangelo machine
learning platform. Horovod adopted works from TensorFlow
Ring-AllReduce algorithm and made few changes:
1. Horovod without having to configure TensorFlow versions.

It was developed as a package which can help to cut down
the time needed for installing.

2. Using the Ring-AllReduce of NVIDIA NCCL (Collective
Communications Library) [15] to communicate between
different machines. This model can support multiple
GPUs.

3. Implemented a broadcast operation that enforces
consistent initialization of the model on all workers.

We examined Horovod, as it has a simpler API and good
performance on Nvidia GPUs. Horovod requires the
installation of Open MPI and NCCL-2 libraries, and it only
requires a few of changes to Distributed TensorFlow programs.
It introduces the hvd objects that have to be initialized. The hvd
object averages the gradients using allreduce or allgather. A
specific GPU will be bound to the process using its local rank.

III. EXPERIMENTAL ENVIRONMENT

In this section, we will introduce Taiwania 2 - the testbed of
experiments to compare the performance between different
distributed deep learning frameworks at National Center for
High Performance Computing (NCHC) [16]. As shown in Fig.
1, Taiwania 2 has achieved a ranking of 20th in the world in the
November 2018 edition of the TOP500 List, the highest rating
for a Taiwan-made supercomputer ever. It consists of 252
nodes, each of which contains two CPUs and eight of the most
advanced GPUs. It takes 2016 NVIDIA Tesla V100 GPUs that
deliver 9 petaFLOPS of superior performance. Its host
architecture design is in line with international trends.

Fig. 1 Taiwania 2 Supercomputer

In addition to utilizing its cloud computing platform to offer
fast computing capabilities, large storage space, and a secure
network, it now provides more immediate and convenience
services to industry and academia. The most important cloud
platform service is TWCC (Taiwan Computing Cloud). TWCC
runs on the strength of Taiwania 2; it was designed that this
platform could expedite the developments of AI-related
technologies and services. In the meanwhile, TWCC not only
supports large numbers of nodes for high-speed parallel
computing across nodes, but also employs the latest container
virtualization techniques [17] for GPGPU (General Purpose
Computing on GPU) service. Table I lists the detailed
information of the hardware and software configurations.

TABLE I
TAIWANIA 2 SPECIFICATION

CPU Dual Intel Xeon Gold 6154(18C) 3.0GHz

Local Storage 240GB SATA3 SSD ; 4TB NVMe

Memory 768GB DD4-2666 RDIMM

GPU 8x NVIDIA Tesla SXM2 V100 w/ 32GB HBM2

Network 4x Mellanox IB EDR 100Gb single port HCA

Operating System CentOS 7.5

Parallel File System IBM Spectrum Scale (GPFS)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the performance results of distributed
training. The effective way to evaluate the running performance
is to measure the time duration of an iteration that processes a
batch of input data. We choose the ResNet-50 model running
on the ILSVRC2012 ImageNet dataset. This deep model has its
own characteristics to test the performance of frameworks. In
order to avoid the file I/O overheads from hard disks, we run

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

445

three epochs, and the first epoch is not to calculate the average
time of the iteration. Since the total number of images is up to
one million, it is very time consuming to run all the tests in one
epoch. So, we change the epoch size to make each experiment
run about 64-128 batches in one epoch.

Beside the running time measured, we also quantify the
impact of network speed for data communication during
distributed training computation. To evaluate the network
performance and detect possible bottlenecks, a number of
comparisons could be done. The idea was to evaluate the
performance of various protocols of the system as
independently as possible. Fig. 2 focuses on evaluating the
node-to-node network performance. We compared
performance of Infiniband and 10 GbE (10 Gigabit Ethernet).

Performance can be checked using utilities such as NetPIPE
(Network Protocol Independent Performance Evaluator) [18].
NetPIPE benchmark is a protocol independent utility, designed
to probe the full throughput characteristics between networked
computers. For the evaluation process, two nodes are
configured as a sender and a receiver. We present the
performance of node-to-node communication in Fig. 2, the
InfiniBand network is slightly better than 10 GbE network,
which shows an average of 14 times faster than 10 GbE while
the message size is 1000 Kbytes. This is as expected, the 10
GbE network performance is much lower compared to the
InfiniBand network while running distributed training works on
our platform.

Fig. 2 Node-to-Node Network Bandwidth Comparison

Fig. 3 ResNet-50 Training – Container Performance Comparison

We now employ Docker [19] and Singularity [20] container

virtualization techniques for GPGPU and HPC (High-
performance Computing) service. Docker basically extends
LXC with a kernel level API and mainly focusing on network
service virtualization. Singularity is another container-based
approach which was created with the idea of compute mobility.
Comparison is performed on TensorFlow CNN Benchmark
[21], because there are reference implementations of a few of
most popular models, picked models are used in a variety of

tasks. All models are trained on the exact same data, where the
same method of data loading and preprocessing is applied. Fig.
3 is the result times present mean epoch time between all runs
and epochs for ResNet-50 model in both frameworks. The
Singularity container runs roughly 10% faster than Docker
either training with 1 GPU or 8 GPUs per container. This is
because Singularity container seamlessly integrates with
diverse HPC environments and tools, it does not support
context change then I/O operations flow directly between
environments where those operations are happening reducing
the operation overhead and execution times.

We benchmarked Distributed TensorFlow and Horovod on 2
nodes against the convolutional neural network benchmark for
the ResNet-50 model to see if the different batch size in one
epoch for each network would lead to different results. In Fig. 4,
we used an initial batch size of 128 as default. We then changed
the batch size 256 to determine its effect on the performance.
We ran the same experiment several times to ensure the
consistency of the results. It shows the training performance of
Horovod is 17% faster than Distributed TensorFlow. The main
reason is the implementation overhead of communication
protocol between workers. This can be explained by ResNet’s
high number of model parameters, caused by the use of fully

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

446

connected layers combined with its small number of layers.
These characteristics shifted the critical path from GPU
computation to communication and created a networking
bottleneck.

The main premise of benchmarking distributed training is to
scale out computation across many nodes in order to speed up
I/O and to lower execution time and to see if the additional
communication overhead would lead to different results.

Fig. 5 plots the results obtained using a ResNet-50 using up
to 64 GPUs. With 64 GPUs, we achieved 89% scaling
efficiency due to overheads over the InfiniBand network, but
65% scaling efficiency over 10b GbE. The efficiency of
InfiniBand has achieved almost linear scaling from 1 to 64
GPUs, while 10 GbE has only a slight speedup. This is as
depicted in Fig. 2 above, due to the performance of the
InfiniBand network that is slightly better than 10GbE network.
On other hand, the training speed over InfiniBand was about
37% as fast as over 10 GbE. This benchmark demonstrates that

training over InfiniBand network scales well and experience a
significant efficiency gain when using RDMA (Remote Direct
Memory Access) protocol.

Fig. 4 Distributed DL Frameworks Comparison

Fig. 5 ResNet-50 Training – InfiniBand vs. 10GbE

V. CONCLUSION

In this paper, we have presented works on such different
benchmarks of distributed training for deep learning workloads
over many GPUs using TensorFlow and Horovod in our cloud
platform. According to the experimental results, we identify
overheads and bottlenecks which could be further optimized.
This also shows some performance gaps among the different
training frameworks, and it exists many optimum methods that
could be further optimized to improve the speed of data
communication across intra-node and inter-node.

There is still a lack of benchmarks to adequately assess the
performance of scaling out deep learning workloads. In the
future, this evaluation can be further extended on
heterogeneous environment for large neural networks to get the
best acceleration. We plan to evaluate the scalability of deep
learning frameworks across low-bandwidth or high-latency
networks. We also plan to utilize AMD GPUs to further
evaluate the performance of parallel training and inference.

REFERENCES
[1] Witten, Ian H., et al. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2016.
[2] Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. "Supervised machine

learning: A review of classification techniques." Emerging artificial
intelligence applications in computer engineering 160 (2007): 3-24.

[3] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning."
nature 521.7553 (2015): 436.

[4] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview."
Neural networks 61 (2015): 85-117.

[5] Abadi, Martin, et al. "Deep learning with differential privacy."
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.

[6] Yao, Xin. "Evolving artificial neural networks." Proceedings of the IEEE
87.9 (1999): 1423-1447.

[7] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift." arXiv preprint
arXiv:1502.03167 (2015).

[8] Lee, Seunghak, et al. "On model parallelization and scheduling strategies
for distributed machine learning." Advances in neural information
processing systems. 2014.

[9] Abadi, Martín, et al. "Tensorflow: A system for large-scale machine
learning." 12th Symposium on Operating Systems Design and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

447

Implementation, 2016.
[10] Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and easy

distributed deep learning in TensorFlow." arXiv preprint
arXiv:1802.05799 (2018).

[11] Chilimbi, Trishul, et al. "Project adam: Building an efficient and scalable
deep learning training system." 11th Symposium on Operating Systems
Design and Implementation, 2014.

[12] Large Scale Visual Recognition Challenge 2012 (ILSVRC2012),
http://www.image-net.org/challenges/LSVRC/2012/

[13] Hasanov, Khalid, and Alexey Lastovetsky. "Hierarchical redesign of
classic MPI reduction algorithms." The Journal of Supercomputing 73.2
(2017): 713-725.

[14] Li, Shengbo Eben, Shaobing Xu, and Dongsuk Kum. "Efficient and
accurate computation of model predictive control using pseudospectral
discretization." Neurocomputing 177 (2016): 363-372.

[15] Potluri, Sreeram, et al. "Efficient inter-node MPI communication using
GPUDirect RDMA for InfiniBand clusters with NVIDIA GPUs." 2013
42nd International Conference on Parallel Processing. IEEE, 2013.

[16] NCHC, National Center for High-performance Computing.
http://www.nchc.org.tw/

[17] Soltesz, Stephen, et al. “Container-based Operating System
Virtualization: a Scalable, High-performance Alternative to
Hypervisors,” ACM SIGOPS Operating Systems Review. Vol. 41. No. 3.
ACM, 2007.

[18] Snell, Quinn O., Armin R. Mikler, and John L. Gustafson. "Netpipe: A
network protocol independent performance evaluator." IASTED
international conference on intelligent information management and
systems. Vol. 6. 1996.

[19] Bernstein, David. "Containers and cloud: From lxc to docker to
kubernetes." IEEE Cloud Computing 1.3 (2014): 81-84.

[20] Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer.
"Singularity: Scientific containers for mobility of compute." PloS one
12.5 (2017): e0177459.

[21] Pena, Dexmont, et al. "Benchmarking of CNNs for low-cost, low-power
robotics applications." RSS 2017 Workshop: New Frontier for Deep
Learning in Robotics. 2017.

