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 
Abstract—2016 has become the year of the Artificial Intelligence 

explosion. AI technologies are getting more and more matured that 
most world well-known tech giants are making large investment to 
increase the capabilities in AI. Machine learning is the science of 
getting computers to act without being explicitly programmed, and 
deep learning is a subset of machine learning that uses deep neural 
network to train a machine to learn  features directly from data. Deep 
learning realizes many machine learning applications which expand 
the field of AI. At the present time, deep learning frameworks have 
been widely deployed on servers for deep learning applications in both 
academia and industry. In training deep neural networks, there are 
many standard processes or algorithms, but the performance of 
different frameworks might be different. In this paper we evaluate the 
running performance of two state-of-the-art distributed deep learning 
frameworks that are running training calculation in parallel over multi 
GPU and multi nodes in our cloud environment. We evaluate the 
training performance of the frameworks with ResNet-50 convolutional 
neural network, and we analyze what factors that result in the 
performance among both distributed frameworks as well. Through the 
experimental analysis, we identify the overheads which could be 
further optimized. The main contribution is that the evaluation results 
provide further optimization directions in both performance tuning and 
algorithmic design.  
 

Keywords—Artificial Intelligence, machine learning, deep 
learning, convolutional neural networks 

I. INTRODUCTION 

ITH the development of machine learning, many 
machine learning techniques [1], [2] have been 

developed and are being updated to adapt to new software 
libraries, which bring a big challenge. Machine learning is a 
type of artificial intelligence that provides machines with the 
ability to learn without being explicitly programmed. The 
purpose of machine learning is to learn from variable data and 
create a suitable model by repeatedly optimizing, evaluating, 
and tuning parameters of the model. And with a large amount of 
input data, deep learning techniques [3]-[5] can learn the 
feature presentation very well. Deep learning is a recently 
developed field which is a new area in machine learning 
methods. Deep learning emulate to imitate the human brain by 
learning, analyzing and solving different kinds of complex 
problems. It is derived from the concept of artificial neural 
networks [6] and utilizes learning algorithms that are inspired 
by our understanding of how the brain learns. In addition, deep 
learning has a layered-based architecture that has been 
motivated by artificial intelligence. The output layers give the 
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output that determine which input has been read.  
Currently, one of the important challenges of deep learning is 

it is a very time-consuming process. Large scale of input data 
will result in a high requirement of computation resources. 
Reference [7] indicated the insight in deep learning which is 
possible to replace in modeling by using of large-scale datasets 
for training. With the advances in deep learning frameworks, 
this insight led to large scale deep learning deployments. 
Moreover, designing a deep learning model requires data space 
exploration of a large number of hyper-parameters and 
processing the data. Thus, accelerating the training process is 
critical for deep learning developments. Distributed deep 
learning is one of the necessary technologies in reducing 
training time. A single accelerator has limited computational 
resource to process a large scale neural network, so distributed 
training algorithms are proposed to solve this problem such as 
model parallelization and data parallelization [8].  

For complex deep learning tasks, and especially for training 
deep neural networks, large scale deep learning platform is 
inevitably built as distributed processing. Several popular 
distributed deep learning frameworks including TensorFlow 
[9] and Horovod [10] have achieved not only high throughput 
in a single GPU, but also have well scalability across multiple 
GPUs and multiple nodes. In this paper, we compare these 
distributed frameworks for deep learning and benchmark their 
performance against the centralized frameworks. They are 
evaluated using the running performance on ResNet-50 [11] 
convolutional neural network with the ILSVRC2012 ImageNet 
dataset [12] over multi GPU and multi nodes in our cloud 
environment.  

The rest of this paper is organized as follows. Section II 
introduces the distributed training frameworks. Section III 
gives descriptions of our experimental environment. We show 
our experimental results in Section IV, and Section V discusses 
future work and concludes. 

II. DISTRIBUTED DEEP LEARNING FRAMEWORK 

Training a deep learning model can take a significant amount 
of time. Typically, millions of parameters need to be trained 
and a huge amount of data need to be stored. While there are 
many possible ways to solve this issue, one can either extract a 
smaller portion as a sample of the whole dataset or upgrade the 
computing device. However, these approaches may lead to 
accuracy loss, and upgrading the device may be costly. So, a 
new way to fix this issue is to use distributed deep learning 
techniques to reduce the training time. 
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A. Distributed TensorFlow 

TensorFlow is an open source deep learning library for 
research and production use. Distributed TensorFlow is one of 
the TensorFlow’s API which is designed to be easy to use and 
provide good performances. There are two ways to update the 
gradient in Distributed TensorFlow, i.e., synchronous, and 
asynchronous. Synchronous uses Ring-AllReduce algorithm 
[13] and asynchronous uses parameter server architecture to 
send models to all of the workers. The usage of these two 
methods is different. For asynchronous, it is often used when 
there are many instances with low computing power. For 
synchronous, it was used by strong machines such as GPUs, 
high speed network between machines would be an important 
issue. 

For evaluating the performance of Distributed TensorFlow, 
we use Mirrored Strategy in the benchmark. Reference [14] is 
the description of this strategy. It has to contain one or more 
parameter servers and workers when running Distributed 
TensorFlow benchmarks. The parameter server only needs to 
broadcast the updates. The worker coordinates model training, 
initializes the model, counts the number of training steps, 
monitors the session and saves and restores model checkpoints 
to recover from failures. One disadvantage of Distributed 
TensorFlow is that we have to manage the starting and stopping 
of servers, keep track of the ports of all servers, and starting and 
stopping those servers manually. 

B. Horovod 

Horovod is another approach to distributed deep learning 
framework by Uber. At first, they use the standard distributed 
TensorFlow technique, but soon after they realized that some 
problems were found: 
 The documentation of Distributed TensorFlow did not 

state what code modification is needed, which could slow 
trainings. 

 Uber lost half of their resources due to scaling problems. 
In order to solve these issues, Uber developed a new 

component called Horovod, in their Michelangelo machine 
learning platform. Horovod adopted works from TensorFlow 
Ring-AllReduce algorithm and made few changes: 
1. Horovod without having to configure TensorFlow versions. 

It was developed as a package which can help to cut down 
the time needed for installing.  

2. Using the Ring-AllReduce of NVIDIA NCCL (Collective 
Communications Library) [15] to communicate between 
different machines. This model can support multiple 
GPUs. 

3. Implemented a broadcast operation that enforces 
consistent initialization of the model on all workers. 

We examined Horovod, as it has a simpler API and good 
performance on Nvidia GPUs. Horovod requires the 
installation of Open MPI and NCCL-2 libraries, and it only 
requires a few of changes to Distributed TensorFlow programs. 
It introduces the hvd objects that have to be initialized. The hvd 
object averages the gradients using allreduce or allgather. A 
specific GPU will be bound to the process using its local rank. 

III. EXPERIMENTAL ENVIRONMENT 

In this section, we will introduce Taiwania 2 - the testbed of 
experiments to compare the performance between different 
distributed deep learning frameworks at National Center for 
High Performance Computing (NCHC) [16]. As shown in Fig. 
1, Taiwania 2 has achieved a ranking of 20th in the world in the 
November 2018 edition of the TOP500 List, the highest rating 
for a Taiwan-made supercomputer ever. It consists of 252 
nodes, each of which contains two CPUs and eight of the most 
advanced GPUs. It takes 2016 NVIDIA Tesla V100 GPUs that 
deliver 9 petaFLOPS of superior performance. Its host 
architecture design is in line with international trends.  

 

 

Fig. 1 Taiwania 2 Supercomputer 
 

In addition to utilizing its cloud computing platform to offer 
fast computing capabilities, large storage space, and a secure 
network, it now provides more immediate and convenience 
services to industry and academia. The most important cloud 
platform service is TWCC (Taiwan Computing Cloud). TWCC 
runs on the strength of Taiwania 2; it was designed that this 
platform could expedite the developments of AI-related 
technologies and services. In the meanwhile, TWCC not only 
supports large numbers of nodes for high-speed parallel 
computing across nodes, but also employs the latest container 
virtualization techniques [17] for GPGPU (General Purpose 
Computing on GPU) service. Table I lists the detailed 
information of the hardware and software configurations. 
 

TABLE I 
TAIWANIA 2 SPECIFICATION 

CPU Dual Intel Xeon Gold 6154(18C) 3.0GHz 

Local Storage 240GB SATA3 SSD ; 4TB NVMe 

Memory 768GB DD4-2666 RDIMM 

GPU 8x NVIDIA Tesla SXM2 V100 w/ 32GB HBM2  

Network 4x Mellanox IB EDR 100Gb single port HCA 

Operating System CentOS 7.5 

Parallel File System IBM Spectrum Scale (GPFS) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

This section presents the performance results of distributed 
training. The effective way to evaluate the running performance 
is to measure the time duration of an iteration that processes a 
batch of input data. We choose the ResNet-50 model running 
on the ILSVRC2012 ImageNet dataset. This deep model has its 
own characteristics to test the performance of frameworks. In 
order to avoid the file I/O overheads from hard disks, we run 
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three epochs, and the first epoch is not to calculate the average 
time of the iteration. Since the total number of images is up to 
one million, it is very time consuming to run all the tests in one 
epoch. So, we change the epoch size to make each experiment 
run about 64-128 batches in one epoch.  

Beside the running time measured, we also quantify the 
impact of network speed for data communication during 
distributed training computation. To evaluate the network 
performance and detect possible bottlenecks, a number of 
comparisons could be done. The idea was to evaluate the 
performance of various protocols of the system as 
independently as possible. Fig. 2 focuses on evaluating the 
node-to-node network performance. We compared 
performance of Infiniband and 10 GbE (10 Gigabit Ethernet). 

Performance can be checked using utilities such as NetPIPE 
(Network Protocol Independent Performance Evaluator) [18]. 
NetPIPE benchmark is a protocol independent utility, designed 
to probe the full throughput characteristics between networked 
computers. For the evaluation process, two nodes are 
configured as a sender and a receiver. We present the 
performance of node-to-node communication in Fig. 2, the 
InfiniBand network is slightly better than 10 GbE network, 
which shows an average of 14 times faster than 10 GbE while 
the message size is 1000 Kbytes. This is as expected, the 10 
GbE network performance is much lower compared to the 
InfiniBand network while running distributed training works on 
our platform. 

 

 

Fig. 2 Node-to-Node Network Bandwidth Comparison 
 

 

Fig. 3 ResNet-50 Training – Container Performance Comparison 
 
We now employ Docker [19] and Singularity [20] container 

virtualization techniques for GPGPU and HPC (High- 
performance Computing) service. Docker basically extends 
LXC with a kernel level API and mainly focusing on network 
service virtualization. Singularity is another container-based 
approach which was created with the idea of compute mobility. 
Comparison is performed on TensorFlow CNN Benchmark 
[21], because there are reference implementations of a few of 
most popular models, picked models are used in a variety of 

tasks. All models are trained on the exact same data, where the 
same method of data loading and preprocessing is applied. Fig. 
3 is the result times present mean epoch time between all runs 
and epochs for ResNet-50 model in both frameworks. The 
Singularity container runs roughly 10% faster than Docker 
either training with 1 GPU or 8 GPUs per container. This is 
because Singularity container seamlessly integrates with 
diverse HPC environments and tools, it does not support 
context change then I/O operations flow directly between 
environments where those operations are happening reducing 
the operation overhead and execution times. 

We benchmarked Distributed TensorFlow and Horovod on 2 
nodes against the convolutional neural network benchmark for 
the ResNet-50 model to see if the different batch size in one 
epoch for each network would lead to different results. In Fig. 4, 
we used an initial batch size of 128 as default. We then changed 
the batch size 256 to determine its effect on the performance. 
We ran the same experiment several times to ensure the 
consistency of the results. It shows the training performance of 
Horovod is 17% faster than Distributed TensorFlow. The main 
reason is the implementation overhead of communication 
protocol between workers. This can be explained by ResNet’s 
high number of model parameters, caused by the use of fully 
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connected layers combined with its small number of layers. 
These characteristics shifted the critical path from GPU 
computation to communication and created a networking 
bottleneck. 

The main premise of benchmarking distributed training is to 
scale out computation across many nodes in order to speed up 
I/O and to lower execution time and to see if the additional 
communication overhead would lead to different results. 

Fig. 5 plots the results obtained using a ResNet-50 using up 
to 64 GPUs. With 64 GPUs, we achieved 89% scaling 
efficiency due to overheads over the InfiniBand network, but 
65% scaling efficiency over 10b GbE. The efficiency of 
InfiniBand has achieved almost linear scaling from 1 to 64 
GPUs, while 10 GbE has only a slight speedup. This is as 
depicted in Fig. 2 above, due to the performance of the 
InfiniBand network that is slightly better than 10GbE network. 
On other hand, the training speed over InfiniBand was about 
37% as fast as over 10 GbE. This benchmark demonstrates that 

training over InfiniBand network scales well and experience a 
significant efficiency gain when using RDMA (Remote Direct 
Memory Access) protocol.  

 

 

Fig. 4 Distributed DL Frameworks Comparison 

 

 

Fig. 5 ResNet-50 Training – InfiniBand vs. 10GbE 
 

V. CONCLUSION 

In this paper, we have presented works on such different 
benchmarks of distributed training for deep learning workloads 
over many GPUs using TensorFlow and Horovod in our cloud 
platform. According to the experimental results, we identify 
overheads and bottlenecks which could be further optimized. 
This also shows some performance gaps among the different 
training frameworks, and it exists many optimum methods that 
could be further optimized to improve the speed of data 
communication across intra-node and inter-node.  

There is still a lack of benchmarks to adequately assess the 
performance of scaling out deep learning workloads. In the 
future, this evaluation can be further extended on 
heterogeneous environment for large neural networks to get the 
best acceleration. We plan to evaluate the scalability of deep 
learning frameworks across low-bandwidth or high-latency 
networks. We also plan to utilize AMD GPUs to further 
evaluate the performance of parallel training and inference.  
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