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Abstract—The wireless communication network is developing
rapidly, thus the wireless security becomes more and more important.
Specific emitter identification(SEI) is an vital part of wireless
communication security as a technique to identify the unique
transmitters. In this paper, a SEI method based on multiscale
dispersion entropy(MDE) and refined composite multiscale dispersion
entropy(RCMDE) is proposed. The algorithms of MDE and RCMDE
are used to extract features for identification of five wireless
devices and cross-validation support vector machine (CV-SVM)
is used as the classifier. The experimental results show that the
total identification accuracy is 99.3%, even at low signal-to-noise
ratio(SNR) of 5dB, which proves that MDE and RCMDE can
describe the communication signal series well. In addition, compared
with other methods, the proposed method is effective and provides
better accuracy and stability for SEI.

Keywords—Cross-validation support vector machine, refined
composite multiscale dispersion entropy, specific emitter
identification, transient signal, wireless communication device.

I. INTRODUCTION

W ITH the development of the wireless communication

network, the wireless networks face with serious

security threats. The wireless communication security becomes

more and more important and has attracted much attention in

recent years.

Specific emitter identification (SEI) is a technique to

identify the unique RF transmitters and has been applied to

enhance the wireless communication security. SEI technique

associates a given signal with a unique emitter by comparing

the subtle features of the given signal with a library of feature

sets that uniquely identify a signal and selecting the class

that best matches [1]. The key of SEI is extracting radio

frequency(RF) fingerprint because of its uniqueness which is

similar to human fingerprints. RF fingerprint represents the

inconsistency in the production process of the wireless emitters

components including printed circuit boards, power amplifiers

and other components [2].

In the case of communication signals, SEI techniques are

generally classified into two categories: transient based and

steady-state based [3]. A transient signal is the part that the
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output power of the transmitter goes from zero to the level

needed for communications. A steady state signal is the part

between the transient signal and the end of the whole pulse

signal. Transient based SEI techniques were firstly proposed

in the 1990s [4], [5], then scholars and research institutions

investigated the feature extraction methods based on transient

signals for a little over a decade. The steady-state based

techniques were firstly proposed until 2008 [3].

Much research has been done based on transient signals.

The statistical features including variance, skewness, kurtosis

and others were used as RF fingerprint in [6], [7]. The

high order statistics of the transients envelope were also

extracted as features for classification. The Short Time Fourier

Transform(STFT) was utilized to obtain the energy envelope

of the instantaneous transient signal and six features were

extracted from the envelope such as kurtosis, skewness,

variance, maximum slope [8].

There are also a great number of studies based on steady

state signals. The preamble of a whole signal was extracted

and then RF fingerprint was extracted from the preamble

sequences [3], [9], [10]. In [11]–[13], the RF feature extraction

was based on modulation characteristics, such as frequency

difference, I/Q origin offset, constellation errors and so

on. The wavelet-based technique was utilized to extract

features for SEI [14] [15]. The authors in [16] extracted

the fingerprint features from integral bispectrum. In [17], the

fractal dimensions were used to extract the fingerprint features.

In addition to the transient based and steady-state based

techniques, there are other RF fingerprint methods which are

analyzed from another aspect, such as nonlinear techniques.

It is considered that the actual communication signals

contain nonlinear property. Carroll has demonstrated that

amplifiers of transmitters contain unavoidable nonlinearities

because they depend on semiconductors [18]. As a result,

the nonlinear characteristics of communication transmitters

signals can be extracted as the RF fingerprints.

As a nonlinear dynamic parameter, entropy is an effective

and broadly used measure of the irregularity and uncertainty

of time series [19], [20]. In recent years, Xie et al. firstly

developed an improved Approximate Entropy (imApEn)

algorithm to extract the nonlinear complexity of the signals

as a new RF fingerprint [21]. Permutation entropy has also

been applied to identify the unique transmitter [22]–[24]. The

researchers have also used dispersion entropy (DisEn), which

has never been used previously for RF fingerprint [22].

The multiscale dispersion entropy(MDE) is a fast and

powerful technique to quantify the complexity of signals, and

it has been used for the analysis of physiological signals thanks
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to their ability to distinguish different types of dynamics [25],

[26]. The authors in [26] also proposed refined composite

multiscale dispersion entropy (RCMDE) for improving the

stability of MDE by extracting the complexity features across

multiple time scales. These entropy-based methods can obtain

stable results for noisy signals thanks to the coarse-graining

process.

In this paper, a novel SEI method based on multiscale

dispersion entropy (MDE) and refined composite multiscale

dispersion entropy(RCMDE) is proposed. The method

includes a complete identification process and the performance

of the method is confirmed by experimental results. In

addition, the proposed method is compared with some

aforementioned SEI methods using the same communication

signals.

The rest of the paper is organized as follows. In Section II,

the definition of MDE and RCMDE are introduced. In Section

III, the proposed SEI method is explained in detail. In Section

IV, the experimental results are provided and the comparison

with different statistical features is analyzed. Finally Section

V concludes the paper.

II. DEFINITION OF MDE AND RCMDE

A. Multiscale Dispersion Entropy (MDE)

The algorithm of MDE includes two main steps [26],

as shown in Fig. 1. Firstly, the original signal u =
{u1, u2, . . . , uL} is divided into several non-overlapping

segments of length τ . The parameter τ is called scale factor.

The coarse-grained [27] signals can be derived by calculating

the average of each segment as follows:

x
(τ)
j =

1

τ

jτ∑
b=(j−1)τ+1

ub, 1 ≤ j ≤
⌊
L

τ

⌋
= N (1)

The second step is calculating the entropy value for each

coarse-grained signal using DisEn. It is worth noting that MDE

is more than the combination of the coarse-graining [27] with

DisEn.

Fig. 1 The MDE algorithm

The definition of the DisEn for series x = {x1, x2, . . . , xN}
is introduced as follows:

1) Obtaining the Classified Time Series: The series x =
{x1, x2, . . . , xN} obtained from the first step is mapped into

y = {y1, y2, . . . , yN} from 0 to 1 using the normal cumulative

distribution function (NCDF) as follows:

yj =
1

σ
√
2π

∫ xj

−∞
e

−(t−μ)2

2σ2 dt (2)

where μ and σ are the mean and standard deviation (SD)

of time series x, respectively. Both of the parameters are

constant for all scale factor τ . Then each yj is mapped to

an integer from 1 to c using the linear algorithm zcj =
round (c · yj + 0.5).

2) Generating the Dispersion Pattern: The series zm,c
i are

generated as follow [19], [20], [28]:

zm,c
i =

{
zci , z

c
i+d, . . . , z

c
i+(m−1)d

}
,i = 1, 2, . . . , N−(m−1)d

(3)

where m is the embedding dimension and d is the time

delay. Each series zm,c
i is mapped to a dispersion pattern

πv0v1...vm−1 , where zci = v0, z
c
i+d = v1, . . . , z

c
i+(m−1)d =

vm−1.

3) Calculating the Probability: The probability for each

potential dispersion pattern πv0...vm−1 is obtained as follows:

p
(
πv0...vm−1

)
=

number{i|i ≤ N − (m− 1)d, zm,c
i has type πv0...vm−1}

N − (m− 1)d
(4)

4) Calculating the DisEn Value: The DisEn value is

obtained as follows:

DisEn(x,m, c, d) = −
cm∑
π=1

p
(
πv0...vm−1

) · ln (p (πv0...vm−1

))
(5)

B. Refined Composite Multiscale Dispersion Entropy
(RCMDE)

The RCMDE algorithm is similar to MDE, but there

is something different in the first step. A modified coarse

graining procedure is used to drive the coarse-grained series.

The kth coarse-grained time series X
(τ)
k of the original signal

u is derived as follows:

x
(τ)
k,j =

1

τ

k+y−1∑
b=k+τ(j−1)

ub, 1 ≤ j ≤ N, 1 ≤ k ≤ τ (6)

For different scale factor τ , the starting points of the

coarse-grained process are different. Then, the DisEn is used

to calculate the relative frequency of each potential dispersion

pattern. Finally, for each scale factor τ , RCMDE is obtained

as follows:

RCMDE(x,m,c,d,τ)=−
cm∑
π=1

p
(
πv0...vm−1

)·ln(p (πv0,vm−1

))
(7)

where p
(
πv0...vm−1

)
= 1

τ

∑t
1 p

(τ)
k is the relative frequency of

the dispersion pattern π in the series x
(τ)
k (1 ≤ k ≤ τ).

III. THE PROPOSED METHOD

The method for SEI proposed in this paper is presented

in this section. The flowchart of the complete SEI method is

shown in Fig. 2.
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Fig. 2 The proposed SEI method

A. Transient Detection

It has been known that the transient signals from different

emitters usually have special RF fingerprint for SEI. Therefore,

transient signals are chosen to extract features and transient

extraction plays an important role in the complete SEI process.

As illustrated in Fig. 3 (a), the former part of a burst contains

channel noises, power ramp-up transient signal and stable

signal. If a transient is not extracted properly, the features

extracted from the transient signal will carry information from

channel noise or the steady state part of the signal.

In order to extract the transients automatically, a

self-adaptive threshold method based on envelope is used.

Firstly, the energy envelope of the collected signal is obtained

using the Short Time Fourier Transform (STFT) [8]. Then

smoothing the envelope with a low-pass filter is performed

in order to find the start point easier. The envelope value is

obviously different between channel noise and transient signal

as shown in Fig. 3 (b).

The start point is defined as the point that all the values

in the envelope after it are bigger than the threshold. The

threshold is defined as follows:

threshold = α · (value−Max− value−Min) (8)

where value−Max is the maximum value of the envelope and

value−Min is the minimum value. The parameter α is set to

2/3 based on experiments.

(a) The former part of a burst

(b) The energy envelope

Fig. 3 Transient detection

After finding the starting point, the transient data is extracted

with a fixed length from the start point. According to the

sampling rate fs and the power rising time tr, the length of

the transient is set as tr · fs.

B. RF Fingerprint Extraction

Two feature vectors is extracted from the transients using

the MDE and RCMDE algorithms, respectively, which are

described in Section II. These two vectors are combined

together into one entropy vector as the RF fingerprint.

Choosing appropriate parameter values is important for

every entropy-based approach. There are four parameters for

MDE and RCMDE, including the number of classes c, the

embedding dimension m, the time delay d, and the maximum

scale factor τ . No detailed analysis is made for parameter

selection in this paper. Nevertheless, it is mentioned that the

range 2 < c < 9 leads to similar results in [20].

Therefore, the parameters are set as c = 6, m = 2, d = 1
according to [20]. In addition, the scale factor τ is assigned

equal to 10 which means the length of the entropy values is 10

for MDE or RCMDE. And all the entropy values are chosen

as the features for each transient.

C. Classification

Cross-validation support vector machine (CV-SVM) [29] is

used to classify the feature vectors. Traditional SVM chooses
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parameters from experience. However, CV-SVM can obtain

the optimum parameters.

The support vector machine(SVM) theory is a state-of-the

art supervised machine learning algorithm proposed to solve

the pattern recognition problem. SVM can solve linearly

inseparable problems efficiently by mapping a linearly

inseparable space to a linearly separable high-dimensional

feature space and a linear separator can be found in it.

In the high-dimensional feature space, it is able to find

a separating hyperplane with the largest margin and the

hyperplane can maximize the space between different classes

[30]. For the linearly inseparable data, the classification

function is defined as:

f(x) = sign

[(
L∑

i=1

αiyiK (xi, xj)

)
+ b

]
(9)

where K (xi, xj) is the kernel function.

Based on the basic model, the idea of cross-validation and

grid-search [31] is used to optimize the parameters of the SVM

model. The parameters C and g are the penalty parameter of

the error term and kernel parameter, respectively. It can be

seen that when (C, g) takes different values, the classification

accuracy is different. Cross-validation aims at finding the

parameter pairs (C, g) with the highest cross-validation

accuracy by trying various combinations of parameters C and

g.

A model can be generated with the best parameters from

the training dataset. The testing dataset is classified with the

model. The identification accuracy is defined as follows:

Accuracy =
number{correctly classified samples}

number{all testing samples}
(10)

IV. EXPERIMENT AND RESULT ANALYSIS

A. Experiment

In out experiment, five nRF24L01 wireless devices are used

and they are marked as D1 to D5, respectively. The five

transmitters are configured to transmit a fixed payload with

a data rate of 1Mbit/sec, and to operate in the following

frequency band :2510-2530MHz with the center frequency

2520MHz.

Fig. 4 Signal acquisition system

The signal acquisition system is used to collect RF signals

from the transmitters, as shown in Fig. 4.

A ROHDE&SCHWARZ FSW13 signal and spectrum

analyzer connected to a antenna converts the RF signals to

the baseband. The frequency center and the measurement

bandwidth are set as 2520 MHz and 20MHz, respectively.

A computer controls the signal and spectrum analyzer via

local area network and the signal samples are sampled directly

in In-phase and Quadrature components (IQ) format at a

sampling rate of 40Msps. For each wireless device, a set of

160 packets are collected.

For the collected signals, the transient detection and RF

features extraction are operated as the process in Fig. 2. At

the classification stage, the features of all transients are divided

into two parts: the training dataset and the test dataset. For

each emitter, the training set has 100 samples and the test set

has 60 samples.

To verify the performance of the proposed SEI method at

different signal-to-noise ratios(SNRs), gaussian white noise is

added to the signals of D1-D5. The SNR is set from -5dB to

30dB at intervals of 5dB.

B. Result Analysis

Three of 20 entropy values of MDE and RCMDE are

chosen to generated a three-dimensional scatter diagram as

Fig. 5(SNR=5dB). In this figure, the 1st eigenvalue is on the

x axis and the 10th eigenvalue is on the y axis with the 2nd

eigenvalue on the z axis. The points of the same shape are from

the same emitter and each point corresponds to one transient.

It is obvious in Fig. 5 that the points of the same emitter are

clustered into one cluster and there is little overlap between

different clusters. It means that these eigenvalues are able to

separate various emitters. In other words, the method based

on MDE and RCMDE is suitable for classification.

Fig. 5 Scatter diagram with 1st eigenvalue, 2nd eigenvalue and 10th
eigenvalue for D1-D5

The performance of MDE and RCMDE is demonstrated

under different SNRs situations in order to evaluate the

anti-noise capability and stability. As shown in Table I, it

can be seen that the recognition rate of the proposed method

remains high under different SNR conditions. The recognition

rate can reach 99.3% even at the SNR of 5dB.

In order to verify the effectiveness of the proposed method,

a comparative experiment is also operated. Other features are
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TABLE I
THE RECOGNITION RATES (%)

Method
SNR

-5dB 0dB 5dB 10dB 15dB 20dB 25dB 30dB

variance+kurtosis+skewness+shannon entropy 44 64.8 72 72 67.67 74.33 69.33 70.67
J-R(high order statistics) 22.86 28 35.33 45.33 52 51.67 56.33 58.67

variance+kurtosis+skewness+shannon entropy+J-R 40.57 68.8 68 76.4 80.67 83.33 84.33 85.33
DE 21.71 34 39.67 49.33 56 51.33 53.67 45.67

MDE+RCMDE 85.71 99 99.33 98.67 99 97.67 98.33 99

extracted as a contrast including variance, kurtosis, skewness,

Shannon entropy and high order statistics of the transients

envelope. The combinations of features has been set up to

evaluate the performance better, as shown in Table I.

The corresponding results are shown in Table I and a line

chart is created as Fig. 6.

Fig. 6 shows the change of the total accuracy using different

features sets with the SNR from -5dB to 30dB. It can be

seen that the accuracy of MDE and RCMDE is higher than

others clearly when the SNR is above -5dB. Furthermore, the

recognition rates keep steady with the SNR varying from 0dB

to 30 dB when the MDE and RCMDE is applied.

Fig. 6 Recognition rates with different SNRs

It is obvious that the proposed method based on MDE and

RCMDE has higher recognition rate than other features such

as variance, kurtosis, skewness, Shannon entropy and high

order statistics J-R of the envelope . The accuracy of proposed

method based on MDE and RCMDE is above 97% with the

SNR from 0dB to 30dB. And the accuracy can reach 85%

even the SNR is -5dB.

Aiming at proving the robustness and stability of the

proposed method, 100 repetitive experiments using the

proposed method(SNR=5dB) are also carried out in our

experiment. For each emitter, 100 features vectors are chosen

randomly to create a training set and the rest 60 feature vectors

are used as a test set. The total recognition rate and the rates

of emitters D1-D5 are obtained in each experiment. A boxplot

of 100 experiments results is generated as shown in Fig. 7.

It can be seen that the median value of the total recognition

rate is 98.83% and the smallest value is 98% without

considering the outliers. And the median value of the

recognition rate for D1-D3 is 100% with the smallest value

greater than 96%. The rates of D4 and D5 are all above

95% for all experiments. Overall, the recognition performance

Fig. 7 Boxplot for 100 experiments

keeps high steadily according to the results, which means that

the SEI method proposed in this paper is suitable for wireless

devices classification.

V. CONCLUSION

This paper proposes a SEI method based on MDE and

RCMDE considering the inherent nonlinearities of the wireless

devices. The entropy values of MDE and RCMDE are

extracted as feature vectors, which can describe the inherent

nonlinear dynamical characteristics. CV-SVM is used as

a classifier and a series of experiments are performed to

evaluate the proposed method with five NRF24L01 devices.

The classification experimental results demonstrate that the

proposed method is effective and can achieve a good

performance even at a low SNR. In the future work,

other noises except gaussian white noise will be taken into

consideration and the performance of the proposed method

can be verified further using other wireless devices such

as Bluetooth devices. In addition, increasing the number of

wireless devices for classification will be also considered.
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