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Jeffrey′s Prior for Unknown Sinusoidal Noise
Model via Cramer-Rao Lower Bound
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Abstract—This paper employs the Jeffrey′s prior technique in the
process of estimating the periodograms and frequency of sinusoidal
model for unknown noisy time variants or oscillating events (data) in
a Bayesian setting. The non-informative Jeffrey′s prior was adopted
for the posterior trigonometric function of the sinusoidal model
such that Cramer-Rao Lower Bound (CRLB) inference was used
in carving-out the minimum variance needed to curb the invariance
structure effect for unknown noisy time observational and repeated
circular patterns. An average monthly oscillating temperature series
measured in degree Celsius (0C) from 1901 to 2014 was subjected to
the posterior solution of the unknown noisy events of the sinusoidal
model via Markov Chain Monte Carlo (MCMC). It was not only
deduced that two minutes period is required before completing a cycle
of changing temperature from one particular degree Celsius to another
but also that the sinusoidal model via the CRLB-Jeffrey′s prior for
unknown noisy events produced a miniature posterior Maximum A
Posteriori (MAP) compare to a known noisy events.

Keywords—Cramer-Rao Lower Bound (CRLB), Jeffrey′s prior,
Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte
Carlo (MCMC), Periodograms.

I. INTRODUCTION

FREQUENCY domain type of time series expresses the

fusion of trigonometric functions (e.g. sine or cosine

or both) of undulation that possessed different periods of

completing circular patterns with maximum and minimum

value of some quantities that varies (amplitude) [1]. It is

otherwise known as spectral density model – meant for

putrefying changes (variations) in form, position, and in

state of processes into examining the complete periodical

components along with its different frequencies [2], [3].

It is a noisy type of time series model for examining

and discovering repeated cycles, revolutions, and regular

intervals (periodic) of signals in turbulent or boisterous (noisy)

distributed observations in time series events. The assessment

of repeated cycles or patterns is by whether the pinnacle

of periodograms derived from the sinusoidal model that is

affected by random (stochastic) component of a data noisy

spectrum or spectral density [4]-[6]. However, periodogram

(amplitude) parameters embedded in sinusoidal model are

different form of modified spectral models, hyperbolic time

series models, or structural time series models to establish,
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carve-out the prevailing periods of the observational time

events. It is a tool meant for the establishment and prevailing

of cyclical traits encounter in timely observational series

especially in seasonal events (uniform interval of monthly

and quarterly data). Similarly, another indispensable subset

parameter of the sinusoidal model is the frequency–a fraction

of the complete cycle that is completed in a single period [7],

[8].

Substantial applications and simulation studies have been

applied to Fast Fourier Transformation (FFT) model, modified

spectral density models, sinusoidal model, and its variants.

Among the few applications of sinusoidal model and its

variants are the periodical behaviour of index reected series

of cyclic warming (negative Southern Oscillation Index (OSI))

and cooling (positive OSI) of the eastern and central Pacific,

which affects the sea level pressure at two locations that

were subjected to structural spectral time series model [2].

It was inferred that the spectral peak of the OSIs arose

at a zero frequency and clarification was made for a clear

mode of the corresponding frequency not achievable at the

period of four years. Reference [9] showed that the observe

peak in the periodogram was highly unlikely under the

spectrum assumptions than the underlying power spectrum

continuum. They divided the used timely observational series

into two parts and used the largest periodogram residuals

of the two different series to derive a redefined Fourier

frequency for the detection of Quasi-Periodic Oscillation

(QPO) via Bayesian method of periodogram estimation by

Markov Chain Monte Carlo (MCMC). In addition, the choice

of prior distribution was affirmed to be uniform distribution

when the choice parameterization is needed with the use of

Bayes factor [10]. He applied the derived solution of the

posterior to 180 terrestrial impact craters repeated oscillating

time series, and concluded the absence of periodic variation

in the cratering rate; that is, no strong evidence of periodicity

was superimposed on the constant rate of the craters with

the believe of the presence of intricate signals. Furthermore,

[11] described the Bayesian approach as an alternative

technique in estimating time axes and periodiogram associated

to sinusoidal with or without known noise effect. It was

noted that the Bayesian method of parameter estimation

technique for sinusoidal (periodogram) or Fourier frequency

model not only adopted non-informative prior of either the

uniform distribution or the Gaussian distribution but also

failed to diagnose invariance structure effect that might

have associated to the time repeated cycles (data) when

incorporating into sinusoidal model. In order to curb the

problem of invariance structure effect for unknown noisy time
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events, the Cramer-Rao Lower Bound (CRLB) for deriving the

minimum variance is needed by the distributional time events.

The improper (non-informative) prior of the Jeffrey′s prior will

be adopted in estimating the unknown noisy (sigma) for the

sinusoidal or periodogram model via the CRLB inference.

II. NOTATION AND DEFINITION OF RELATED TERMS

To address the problem of this choice of invariance structure

associated with Bayesian sinusoidal (periodogram) or Fourier

frequency model, the Jeffrey′s improper (non-informative)

prior approached will be adopted in this paper. The concept of

Cramer-Rao Lower Bound (CRLB) as defined by [12], [13],

the inverse of the Fisher information will be introduced to

solve the choice of invariance structure characterized by the

Jeffrey′s prior in Bayesian periodogram with unknown noise

model. The variance of any parameter under consideration for

any estimation problem with likelihood function fx(x/θ) is

the inverse of Fisher information as defined [14], [15] as

I(
∧
θ) = Ey

[(
∂ log fy(y/θ)

∂θ

)]2
=

−Ey

[(
∂2 log fy(y/θ)

∂θ2

)]
(1)

Given a sinusoidal trigonometric like model to be

f(ti) = C cos(wti) + D sin(wti) (2)

For parameters θ = {C , D, ω} for a single variable time,

series set of events with wave of a single quantity over time
′′y′′ with time ′′t′′ for a general model data

yi = f(ti) + ξ(ti) (3)

Then the conditional distribution of the invariance structure

is needed in computing the Fisher information. ξ(ti), yi ∼
i.i.d(0, σ2) ∀, i = 1, · · · , t

III. PARAMETER ESTIMATION

A. The Fisher Information from the Jeffrey′s Prior in
Obtaining Bayesian Periodogram with Unknown Noise Model

The resulting Jeffrey′s prior for the unknown variance ′′σ2′′

of a set of zero mean Independent and Identical Distribution

(I.I.D) of Gaussian is

p(σ2)∞ 1

σ2
(4)

P (σ2, /H,M) =
t∏

i=1

1√
σ22π

e
−
(

yi− f(ti)

2σ

)2

(5)

=

(
1

σ2

) t
2 (

1√
2π

) t
2

e
−

t∑
i=1

(
yi− f(ti)

2σ

)2

(6)

The resulting posterior density is,

p(σ2/ yi)∞
(

1

σ2

) t
2+1

e
− 1

2σ2

t∑
i=1

(yi−f(ti))
2

(7)

log p(σ2/ yi)∞
(
t

2
+ 1

)
log

(
1

σ2

)
− 1

2σ2

t∑
i=1

(yi − f(ti))
2

(8)

let, σ2 = λ

p(λ/ yi)∞−
(
t

2
+ 1

)
log (λ)− 1

2λ

t∑
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(yi − f(ti))
2

(9)
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(
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= −
(
t
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λ

+
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2

(10)

∂2 log p
(
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)
∂λ2

=

(
t
2 + 1

)
λ2

− 1

λ3
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(yi − f(ti))
2

(11)

Ex

⎡
⎣∂2 log p

(
λ/yi

)
∂λ2

⎤
⎦ =

(
t
2 + 1

)
λ2

− 1

λ3
Ex
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2
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(12)

=

(
t
2 + 1

)
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− 1

λ3
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(yi − f(ti))
2
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(13)

recall,

t∑
i=1

(yt − f(ti))
2
=

t∑
i=1

y2i − 2
t∑

i=1

yif(ti) +
t∑

i=1

f(ti)
2

(14)

t∑
i=1

y2i − 2

t∑
i=1

yi (C cos(wti) + D sin(wti))+

t∑
i=1

((C cos(wti) + D sin(wti)))
2

but,
t∑

i=1

((C cos(wti) + D sin(wti)))
2
=

C2
t∑

i=1

cos2(ωti)+D2
t∑

i=1

sin2(ωti)+2CD
t∑

i=1

cos(ωti)sin(ωti)

for ′i′ that is greater than one, and from approximating

solutions of trigonometry.

t∑
i=1

sin2(ωti) =
t

2
− 1

2

t∑
i=1

cos(2ωti) ≈ t

2

t∑
i=1

cos2(ωti) =
t

2
+

1

2

t∑
i=1

cos(2ωti) ≈ t

2

t∑
i=1

cos(ωti) sin(ωti) =
1

2

t∑
i=1

sin(2ωti) ≈<
t

2

for a large sample size, (i � 1) such that its variation

frequency is zero or no more, that is, the data has been de-trend

[16]. It implies,
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t∑
i=1

((C cos(wt) + D sin(wt)))
2 ≈ t

2

(
C2 + D2

)
(15)

let,

h(ω) =
t∑

i=1

yi cos(wt); n(ω) =
t∑

i=1

yi sin(wt)

(14) becomes,

t∑
i=1

(yt − f(t))
2
=

t∑
i=1

y2i+
t

2

(
C2 + D2

)−2 [Ch(ω) +Dn(ω)]
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Ex
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2
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Mean and variance of ξ(ti), yi are zero and σ2 respectively.

But,
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since, σ2 = λ
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The Fisher Information of the Bayesian periodogram for

Jeffrey′s prior for unknown noise model is

t
(
1 +

[
1
2

(
C2 + D2

)])− (
t
2 + 1

)
σ4

The CRLB (Minimum Variance of the Unbiased Estimator)
for ′′σ2′′ , which is the inverse of Fisher information is

V ar(
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I(σ2)
≤ σ4
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2
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−
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2
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In other words, the unknown variance structure for Jeffrey′s
prior when dealing with the unknown noise model for

Bayesian periodogram can now be approximately switched to

Bayesian periodogram for known noise model for estimated

C and D.

B. Estimation of Frequency Parameters of the Bayesian
Periodograms

Assuming,

f(ti) = C cos(wti) + D sin(wti) for i = 1, . . . , t

X(ω) =

⎡
⎢⎢⎣

cos(iω) sin(iω)

...
...

cos(nω) sin(nω)

⎤
⎥⎥⎦

such that β = (C,D)T , Y = ( y1, · · · , yn)

L1(C,D, ω) = [Y −X(ω)β]
T

[Y −X(ω)β] (22)

Minimizing C, D, ω

∧
β(ω) =

[
XT (ω)X(ω)

]−1
XT (ω)Y (23)

Substituting β by
∧
β(ω) in (22)

Z1(ω) = L1

( ∧
C(ω),

∧
D(ω), ω

)
= Y T (1− Px(ω))Y

(24)

where Px(ω) = X(ω)
[
XT (ω)X(ω)

]−1
XT (ω)

If
∧
ω minimizes (24) we denoted

( ∧
C(ω),

∧
D(ω), ω

)
considering

Y (1) = Y −X(
∧
ω)

∧
β1

where,
∧
β1 = (

∧
C,

∧
D)T , Y will now be replaced by Y (1)

such that

L2(C,D, ω) =
[
Y (1) −X(ω)β

]T [
Y (1) −X(ω)β

]
(25)

L2(C,D, ω) would be minimized with respect to

C, D, & ω and repeated continuous (iteratively) the process

until convergence is achieved.

IV. APPLICATION

The periodical noise data of temperature recorded in degree

Celsius (0C) by the Lagos State ministry of environment were

a good example of oscillating pattern events. The variability in

the dataset was cyclical. The dataset is a monthly temperature

recorded from 1901 to 2014 for meteorological forecast and

comparison for seasonal effects. It consists of 114 data

monthly points. It is regarded as a single noisy quantity of time

variant series of events. It stationary process was confirmed

and was in line with possessed traits of noisy data for spectral

or frequency domain analysis, that is, the oscillating patterns

of the temperature series.

Fig. 1 indicates a blue coated-cluster colour between

-1.0 and 0.5, suggesting that the recorded temperature for

the 114 years was ranged between 220C and 300C with
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Fig. 1 The Noisy measured series of the Temperature in 0C

Fig. 2 The Timely Periodical Signal of the Temperature in 0C

clustered-mean around 24 0C and 29 0C repeated patterns.

In addition, the periodiograms parameters are between -1.5

and 1.5, however molded around -1.0 and 1.0 amplitude. Both

Figs. 1 and 2 reveal the temperature noisy series incorporated

into the periodogram model in colour blue.

Figs. 1-3 confirm the dominant apex area around sample

frequency of 0.5. This suggested that the apex periodiogram

parameters occurred at apex value for the sample frequency

and the Fourier transformation adopt frequency values of zero

to one. This resulted into ω = 0.5, this connotes a periodical

effect of 1
0.5 = 2 periods. This implies that two minutes

period is required before completing a cycle of temperature

changing from one particular 0C to another. A more robust

and bold peak was associated to the Fourier and known noisy

sinusoidal periodograms (that is, a proper bell-shape for a

normal curve) compare to a taper peak of the periodogram

curve experienced via unknown noise but estimated by CRLB.

The extraneous periodogram effect of frequency in the latter

might be due to shrinking a consistency larger set to a normally

Fig. 3 The Periodiogram Curve for Unknown, Fourier, and Known Noise

distributed variate with the tendency of large variability and

unknown variance; and when the timing of the frequency or

amplitude changes periodically from longer to longest or vice

versa (cyclical changes of patterns).

The posterior periodograms and frequencies of the two

innovations of unknown and know noise where initiated by the
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Fig. 4 (a) & (b) Posterior Periodogram Estimates of the Sinusoidal Model
Unknown and Known Noise

TABLE I
MAXIMUM A POSTERIORI (MAP) OF PERIODOGRAMS AND

PERFORMANCES OF THE BAYESIAN NOISY INNOVATIONS

Known Noise Unknown Noise
T. M Per.MAP S.E T. M Per.MAP S.E

C 0.2688 0.4250 0.0025 0.8644 0.8292 0.0025
D 1.0834 0.7680 0.0025 0.4664 0.4321 0.0025
ω 0.5042 0.5029 0.01 0.4801 0.4647 0.01

Known Noise Unknown Noise
BIC= 999.766 BIC= 960.1774

posMAP=19169 posMAP=12953
C-Prior=-0.5380 C-Prior= -0.5380
D-Prior= -0.4772 D-Prior=-0.4772
ω-Prior= -0.3152 ω-Prior= -0.3152

Index: S.E=Standard Error; BIC= Bayesian Information Criterion;
Per.MAP=Periodiograms Maximum A Posteriori (MAP); T.M=True Means

f(ti) = 0.8 cos(0.5ti) + 0.6 sin(0.5ti)

MCMC approach. The Bayesian posterior amplitudes of the

known noise used the presume information (that is, the prior

information) from the Fourier or Schuster periodograms as its

conjugate prior. In other words, the noise (variance) of the data

or for the Fourier transformation were assumed known. Unlike

the Bayesian posterior amplitudes of the unknown noise, the

noise (variance) of the data or for the Fourier transformation

was assumed unknown. The Jeffrey′s non-conjugate prior

via CRLB was adopted in circumvent an estimate for the

noise. The MCMC converged to close form solution after the

25,000th iteration for the periodogram parameters. The blue

dropdown line of the left hand side of the rectangular Figs. 4(a)

and (b) to the index base are the estimates. Both converged

to; {C,D, ω} = {0.8, 0.6, 0.5}
From Table I, the means of periodogram parameters

(C, D, ω), for the unknown noise generated by CRLB via

Jeffrey′s prior (0.8644, 0.4664, 0.4801) are deeply centered on

the range of values of the estimated posterior values compare

to a slightly deviation from the periodogram parameter of

D=1.0834 generated for the known noise. However, the

standard errors of both the two innovations (unknown and

known noise) are approximately the same. The overall

posterior Maximum A Posteriori (posMAP), an index similar

to the Maximum Likelihood (ML) of the classical approach

is 19169 for known noise compare to a relatively small

index of 12953 associated to the CRLB-Jeffrey′s prior for

the unknown repeated pattern noisy series. The lower the

posMAP of estimator(s), the lower the associated error of

the model; the stability in the performance of the subjected

model or incorporated data. This led to a miniature model

performance of BIC of 960.1774 for the CRLB-Jeffrey′s prior

for the unknown noise compared to a higher of 999.766 by

the known noisy sinusoidal model, as shown in Fig. 5.

Fig. 5 Posterior Maximum A Posteriori for the Known and Unknown Noisy
Sinusoidal model

Fig. 6 Predicted 0C for periodogram Model Unknown and Known Noise

Fig. 6 predicts the data in coated blue, green and red

are for the known and unknown noise for the sinusoidal;

and the temperature series itself respectively. However, the

two sinusoidal lines give a near perfect prediction of the

temperature series as if it was raw. This indicated a good signal

capture of the periodogram model.

V. CONCLUSION

To resolve the limitation of choices of non-informative prior

invariance associated to estimating periodograms (amplitudes)

and frequency with Bayesian technique of sinusoidal model,
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known variance (noise) by Jeffrey′s prior of the repeated

patterns has been used and adopted via analytical and marginal

density approach. In case of an improper prior or unknown

variance (noise), CRLB marginalized density approach of

extracting the noise via Jeffrey′s prior is an ideal and

alternative approach for large dataset and invariance structure

for Bayesian sinusoidal or periodogram model.
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