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Abstract—The Internet of Things (IoT) will lead to the 

development of advanced Smart Home services that are pervasive, 
cost-effective, and can be accessed by home occupants from anywhere 
and at any time. However, advanced smart home applications will 
introduce grand security challenges due to the increase in the attack 
surface. Current approaches do not handle cybersecurity from a 
holistic point of view; hence, a systematic cybersecurity mechanism 
needs to be adopted when designing smart home applications. In this 
paper, we present a generic intrusion detection methodology to detect 
and mitigate the anomaly behaviors happened in Smart Home Systems 
(SHS). By utilizing our Smart Home Context Data Structure, the 
heterogeneous information and services acquired from SHS are 
mapped in context attributes which can describe the context of smart 
home operation precisely and accurately. Runtime models for 
describing usage patterns of home assets are developed based on 
characterization functions. A threat-aware action management 
methodology, used to efficiently mitigate anomaly behaviors, is 
proposed at the end. Our preliminary experimental results show that 
our methodology can be used to detect and mitigate known and 
unknown threats, as well as to protect SHS premises and services. 
 

Keywords—Internet of Things, network security, context 
awareness, intrusion detection 

I. INTRODUCTION 

HE exponential growth of interconnections and 
interactions between ubiquitous devices has led to the 

development of the Internet services which evolve from 
computer and mobile networks to the IoT. It is expected that the 
number of IoT devices will reach more than 50 billion 
interconnected devices by 2020 [1]. By networking the devices 
to enable them to interact with data, computational tasks, and 
services, the IoT services revolutionize our way of living, 
working, communicating, educating, maintaining our health, 
and entertaining, etc. [2]-[4]. IoT applications, such as Smart 
Infrastructures (e.g., smart homes) are comprised of complex 
systems and characterized by interdependence, independence, 
cooperation, competition, and adaptation [5]-[7]. IoT services 
allow smart infrastructures to collaborate in order to offer 
customized services that satisfy people’s needs. As one of the 
more important IoT applications, SHS utilize advanced 
automation and communication techniques to deliver 
sophisticated monitoring and control over the building’s 
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functions [8]. The major objectives of SHS are to achieve 
reliable and efficient operations, and to significantly reduce 
operational costs while improving the occupants’ quality of 
living [9].  

In the IoT environment, systems interact with each other 
using different levels of trust relationships, and consequently, 
require ultimate security solutions to protect information and 
processes. The exponential growths in the number of 
interconnected Internet-enabled devices expose the 
vulnerability of IoT applications such as SHS, to attackers. 
Even devices which are intended to operate only in local area 
networks sometimes get connected to the Internet due to 
careless configuration or to satisfy special needs (e.g., they 
need to be remotely monitored). There is a huge risk that these 
devices can be compromised and experience attacks with 
severe impacts (e.g., life threatening scenarios) [3], [7]. For 
instance, in 2014, a botnet of more than 100,000 home 
networking routers and other IP connected home devices such 
as smart TVs, multi-media centers, and refrigerators have been 
found to be involved in sending 750,000 malicious e-mails over 
a two-week period [10]. The security challenge of SHS consists 
of identifying security constraints on what should be protected. 
Current cybersecurity solutions are far from being satisfactory; 
most of them are focused on a single scenario instead of taking 
a holistic approach to cybersecurity [11]-[14].  

One promising solution for the aforementioned problems in 
the smart home scenario is the Anomaly-based Behavior 
Analysis (ABA) approach. ABA is an information security 
mechanism that uses a baseline model to describe the normal 
behaviors of a system, so that malicious behaviors can be 
detected when a deviation from the baseline model is observed. 
Because of its ability for detecting novel threats, ABA has been 
actively studied by researchers to perform intrusion detection 
on cyber-attacks. However, since the information acquired 
from SHS systems can be from a variety of sources (e.g. asset 
configuration, user identity, network protocols, temporal and 
spatial information, sensors etc.), the existing ABA 
methodologies for protecting SHS which can merely analyzing 
no more than three kind of information (e.g. combine the 
network protocol information with one or two other types of 
information) cannot work properly when protecting a 
sophisticated system [15]-[17]. Hence, these existing ABA 
methodologies should be improved with a technique that can 
efficiently handle heterogeneous information and use the 
information to describe the normal behavior of a system in a 
more holistic manner. As a technique that is widely used in 
pervasive computing, the Context Aware computing aims at 
gathering the information that can be used to characterize the 
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situation of a system in real time and adapt behaviors of the 
system accordingly [18]. This technique provides a mechanism 
to divide complex SHS behaviors into a finite set of contexts 

that can be analyzed by ABA methods such that their detection 
accuracy is improved significantly. 

 
TABLE I 

SHS NETWORK THREAT MODEL 

Attack Categories Impacts Mitigation Mechanisms 

Network Sniffing and Port Scanning 
Attackers can gain knowledge of devices and resources, and 

then use them to plan active attacks. 
Firewall, Authentication, Encryption, 

Network-based IDS 

Packet Injection, Replay Attacks 
Victim assets will be disrupted by responding to malicious 

packets. 
Encryption, Time stamping, Authentication, 

Network -based IDS, CA-ABAS 

Redirection 
Messages in transit can be dropped and eavesdropped. Victim 

assets will be isolated from the network. 
Secure Sockets Layer, Authentication, 

Network-based IDS, CA-ABAS 
Man-In-the-Middle Attacks, Spoofing 

Attacks 
Attackers can masquerade as authorized assets, thereby gaining 

local machine privilege to cause severe damage. 
Firewall, Authentication, Encryption, 

Network-based IDS, CA-ABAS 

Network Flooding 
Unusually slow network performance and denial of access to 

assets or services. 
Anti-jamming, Firewall, Authentication, 

Network-based IDS, CA-ABAS 

Code injection 
Data loss or corruption, lack of accountability, denial of access, 

or even administrator privileges takeover. 
Input validation, Encryption, Authentication, 

Host-based IDS, CA-ABAS 

Physical attacks 
Loss or damage of computer and peripheral equipment, 

eavesdropping network traffic, denial of service. 
Activity logging, Access control, CA-ABAS 

Physical Damage, Human errors 
Damage of computer and peripheral equipment, lack of 

accountability, denial of service. 
Activity logging, Safety policy, CA-ABAS 

 
In this paper, we introduce a novel Intrusion Detection 

System framework (IDS) named Context Aware Anomaly 
Behavior Analysis System (CA-ABAS) to protect SHS against 
known and unknown attacks or failures. In the framework, we 
defined a data structure for SHS which can be utilized to 
abstract and map the heterogeneous information collected from 
multiple resources into a formalized array of context. An 
anomaly behavior analysis is designed, specific to the 
contextual array, so that a baseline model which can explicitly 
describe the normal usage pattern of SHS assets under different 
contexts is generated. Our anomaly behavior analysis can be 
regarded as a one-class anomaly detection process, where the 
baseline model is generated only based on the normal 
operations of SHS assets. Consequently, the proposed IDS can 
detect a wide range of cyber or physical attacks against SHS, as 
long as these attacks result in state change of the home assets. 
We have evaluated our approach by launching several 
cyberattacks (e.g. User-identity Fraud, Replay, and Flooding 
attacks) against our Smart Home testbed developed at the 
University of Arizona Center for Cloud and Autonomic 
Computing. The results show that our CA-ABAS can be used 
to effectively protect SHS with one occupant. 

The rest of the paper is organized as follows: The 
backgrounds of the anomaly behavior analysis, Smart Home 
vulnerabilities and impact levels are discussed in Section II. In 
Section III, a Smart Home Context Data Structure is 
introduced. In Section IV, our CA-ABAS is described in detail. 
Section V is devoted to present a summary of our experimental 
evaluation results. Finally, the paper is concluded in Section VI. 

II. BACKGROUND 

A. Related Works 

In general, there are two kinds of behavior analysis 
techniques: anomaly-based and signature-based approaches 
[13]. The ABA defines a baseline model to describe all the 
normal behaviors so that outliers of this model can be 

considered abnormal behaviors. On the other hand, the 
signature-based behavior analysis uses a model to explicitly 
describe all the known abnormal behaviors. Compared with the 
signature-based approach, the advantage of the anomaly-based 
approach is its ability to detect unknown attacks. However, the 
major challenge of the anomaly-based approach is its high 
false-positive detection rates, especially when there is a big 
change in the normal operation of the target system.  

The ABA approach is usually implemented as a detector 
within IDS. Because of its ability for detecting novel threats, 
ABA has been actively studied by researchers to perform 
intrusion detection on cyber-attacks. The existing works for 
protecting SHS with IDS are described as follows. In [15], 
Nobakht et al. proposed an anomaly-based IDS framework. 
The framework collects home asset usage through monitoring 
OpenFlow traffic and performs ABA by utilizing Support 
Vector Machine (SVM) algorithm. The anomaly-based IDS 
framework proposed in [16] collects SHS wireless signals 
through probes, and then performs anomaly detection by 
identifying the assets’ physical location. In [17], Mariusz et al. 
deploy one local IDS within home gateway and one remote IDS 
on service provider side. In this way, the service provider can 
update the detection rules to the local IDS based on expert 
system. The information collected by the two IDS includes 
system resources, application logs and network traffic [17]. The 
drawbacks of these existing works are as follows: 1) The ABA 
algorithm utilized in [15] and [16] are two-class algorithms 
which means it needs both normal and anomaly data to generate 
baseline model. Since such a baseline model is trained to 
differentiate the patterns of normal and anomaly training data, 
the model’s performance for detecting novel attacks (whose 
patterns are deviate from the patterns of anomaly training data) 
is questionable. 2) The ABA performed by [16] is only based 
on physical location information. The ABA performed by [15] 
can only analyze traffic between gateway and mobile apps. 
These works cannot protect SHS in a holistic manner. 3) The 
IDS in [17] rely heavily on expert knowledge, and the baseline 
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model of their expert system is not introduced in detail. 
Moreover, the authors in [17] did not validate their work with 
any experiments. 4) All the existing works did not take context 
information such as user identity, temporal behavior 
information, and time slot into consideration. 

To detect anomaly usages that occurred in SHS with a 
sustained low false-positive rate, we propose an anomaly 
behavior analysis approach which can generate a baseline 
model to explicitly describe the normal usage pattern of home 
assets. The contributions of this paper are as follows: 1) Our 
ABA approach is designed to analyze a variety of kinds of 
context information including identity information, temporal 
behavior information, spatial information, and asset availability 
information. 2) We proposed a context modeling scheme which 
can aggregate and abstract the context information through 
mapping operations. 3) We proposed an anomaly 
characterization algorithm so that multiple baseline models 
which have one-to-one correspondence to behaviors under each 
context can be generated. During the real-detection, 
abnormality level of the current behavior is quantified based on 
baseline model of the current context. 4) To make the ABA 
approach achieve better detection performance for anomalies 
with higher potential threat, a threat-aware action management 
mechanism is introduced. 

B. Vulnerabilities of SHS 

According to a security analysis of home applications on the 
market [19], [20], smart homes are facing two vulnerabilities in 
general: 1) all the home applications are merely protected by 
simple username/password mechanisms, and 2) the 
web-services and smart applications installed in users’ laptops 
and cell phones are usually designed to be over-privileged [21], 
which means that applications have ability to trigger 
unauthorized commands. For instance, a phone application 
which is merely designed to control air conditioner may 
potentially be used to send a command for controlling a gate. 
The threat vectors that can be launched against SHS network 
are shown in Table I. The information includes the category of 
the attack, the impacts if the attackers succeed, and the possible 

mitigation mechanisms. Those threats can cause disruption and 
malfunction of home assets or even create life threatening 
scenarios, especially when HVAC control and emergency 
power is affected. Moreover, the threats can be caused by both 
outsiders and insiders. All the attacks (except Network Sniffing 
and Port Scanning attack, which is a passive attack) are active 
attacks which lead to disruption, over-privilege or malfunction 
of home assets. All these consequences can be reflected by the 
anomaly behaviors invoked by the victim assets. Since our 
proposed IDS (CA-ABAS) aims at detecting the anomaly 
behaviors of home assets under formalized contexts and 
triggering mitigation actions accordingly, it can be utilized to 
address the active attacks listed in the threat model. 

C. Impact Levels 

The impact level is defined as the most severe consequence 
that a behavior can lead to [22]. Hence, it can be used as a scale 
to quantify the potential damages of anomaly behaviors that 
occurred within the SHS. The impact levels of SHS behaviors 
vary based on the type of involved home appliances and their 
change of status (e.g. from on to off) [23]. For instance, the 
impact level of opening the main door is higher than turning on 
a light. Moreover, switching on an oven at random time is more 
severe than switching it off, since switching on the oven could 
result in a fire accident, while switching off the oven can 
merely result in the food being uncooked. On the other hand, 
the impact levels of behaviors can be quantified by referring to 
the Federal Information Processing Standards Publication 199 
(FIPS 199) impact level assessment criteria [22]. FIPS 199 
characterizes the impact of threats as Low, Moderate or High. 
The Low impact represents the limited adverse effect on assets 
or individuals, the examples of such impact include minor 
damage to assets, minor financial loss, and disturbance of 
individuals. Moderate impact represents significant adverse 
effect, such impact include damage of property, privacy leaks, 
big financial loss, and minor harm to individuals. High impact 
represents severe or catastrophic adverse effect; such impact 
includes major financial losses, major damage to assets, and 
severe harm to individuals. 

 
TABLE Ⅱ 

SHS IMPACT MODEL 

Operations Impact level Consequence 

Turn on lights, Turn on AC Low Minor financial loss, Minor disturbance of individuals 
Turn off AC, turn off lights , turn off oven, close the garage door, close faucet, 

close front door 
Low Minor disturbance of individuals 

Open garage door, open faucet Moderate Huge financial loss 

Watch monitor, close monitor Moderate Privacy leaks, life threatening scenarios 

Open front door, open oven High Harm to individuals, major financial losses 

 
Based on the aforementioned categories of impact levels, we 

proposed a baseline impact model in Table II which includes 
some of the SHS behaviors, so that other SHS behaviors can be 
mapped into the model accordingly. Through assigning each 
operation an impact level, threat-aware action management 
(see Section IV.F) can be implemented to handle suspicious 
behaviors. For instance, the failure of detecting main door 
break-in is unforgiveable; hence, we should pay more attention 

to those critical behaviors even when such operations are only 
slightly suspicious. Another example is that, the detection of 
one suspicious minor operation (e.g. turn off a light) is usually 
trivial; hence such detection should be selectively suppressed. 

III. SMART HOME CONTEXT DATA STRUCTURE (SHCDS) 

The development of SHCDS is based on the concept of 
context modeling which is to represent the information 
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acquired from the sensors and resources during execution of the 
system into context which can explicitly describe the system’s 
behavior [24]. In general, the information acquired from IoT 
devices exhibit two inherent characteristics: redundancy and 
heterogeneity. By utilizing our data structure, the redundancy 
of the IoT information can be mitigated by grouping the useful 
information into corresponding classes based on their 
categories. On the other hand, the heterogeneity of information 
can be eliminated by mapping the relevant information into 
higher level context which is more precise and more accurate. 

 

 

Fig. 1 SHCDS 
 

The hierarchical structure of the SHCDS is shown in Fig. 1. 
The highest hierarchy defines the sentence format of our 
context with tuples ordered as: 1) Who: which assets are 
involved; 2) How: how they behave; and 3) What: what is the 
current situation [25]. In the second hierarchy of SHCDS, a set 

of context classes are created to perform grouping and mapping 
operations on the IoT information. During the grouping 
operation, each context class selects the information they are 
interested in as input and discard the other information. For 
instance, the context class named Sender is configured to select 
the following information as input: 1) Sender’s IP address, 
sender’s authentication information and sender’s HTTP 
cookies, which are all extracted from the packet stream. 2) 
User’s account information which is acquired from the log of 
the configuration. 3) Sender’s physical location which is 
acquired from a GPS signal. During the mapping operation, the 
grouped features are aggregated and mapped into higher-level 
information based on predefined methods. For instance, we can 
obtain the higher-level information named “User ID” by 
aggregating the HTTP cookies and credential information 
provided by the sender with pre-defined account information. 
The higher-level information generated will be stored as 
attributes into classes as shown in the lowest hierarchy. Note 
that class attributes listed in Fig. 1 contain high-level 
information that can be generated in different ways based on 
different applications. An implementation of the SHCDS is 
introduced in detail in Section IV.D. 

Note that our SHCDS aims at describing the control events 
which occur between users/gateway (as sender) and end 
devices (as receiver). However, some end devices such as 
sensors may act as senders to update local data to the gateway. 
Such events can be protected by the Cyber DNA techniques we 
proposed previously in [5], [26]. 

 

 

Fig. 2 CA-ABAS Architecture 
 

IV. CONTEXT AWARE IDS 

A. Architecture 

Our IDS framework consists of four modules that perform 
Context Aware ABA for protecting SHS networks, as shown in 
Fig. 2. The asset context acquisition module is in charge of 
continuously monitoring SHS networks and providing the 
required low-level context information for further processing. 
By utilizing our SHCDS, the context modeling module 
aggregates and maps the context information into higher-level 
context format named contextual array. The anomaly behavior 
analyzer determines whether or not the contextual array is 
normal based on our novel anomaly characterization function. 
The output of the analyzer is then taken by the action 
management module to perform impact analysis, so that 

appropriate protective actions that can stop or mitigate the 
impact of the detected attacks can be determined.  

B. SHS Testbed 

The experimental testbed (see Fig. 4) used to evaluate our 
approach includes a secure gateway which can provide services 
for automation and networking purposes, and end devices 
which include all the home appliances and sensors. The goal of 
our testbed is to simulate the operations of a home automation 
system with the functionality of safety control, energy saving, 
and the improvement of occupants’ comfort and convenience. 
The home appliances in our testbed include: front door, garage 
door, oven, faucet, light, window, cooking bench, and water 
heater. 
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Fig. 3 Smart home website user interface 
 

In our system, a gateway is designed to provide HTTP-based 
web services with website interface (see Fig. 3), so that the 
home owners can use mobile devices or computers to remotely 
monitor and control the appliances. In the meantime, the 
gateway can act as a central controller to trigger commands to 
end devices based on user-defined control scenarios. To verify 
the users’ credential, the gateway utilizes a password 
authentication whenever an operator becomes active. If an 
operator’s usage pattern is found suspicious by our behavior 
analysis approach, a further authentication mechanism, which 
can be either face recognition or text message validation, will 
be triggered to the suspicious operator. 
 

 

Fig. 4 Home Automation System Testbed 

C. Asset Context Acquisition 

In our approach, all the information which might be used to 
describe the situation of SHSs will be collected. Table III shows 

in detail the context information we collected about the SHS.  
Based on the types of acquisition process, the collected 

information is classified as: 1) features extracted from packet 
streams, 2) manually provided features, and 3) locally provided 
features. In what follows, we describe the characteristics of 
each feature. 

1) Features Extracted from Packet Streams  

The packet streams in our ABA testbed consist of both 
network packet traffic and serial port traffic. The packet stream 
(such as HTTP stream) carries the interaction between users’ 
mobile device and secure gateway; hence, it is the major 
resource of features regarding users’ remote control usages. 
Moreover, some of the SHS assets (such as Nest products) may 
interact with users’ mobile devices through IP router instead of 
SHS gateway, these interaction can be captured either through 
sniffing the router traffic or through integrating the routing 
function into the secure gateway so that the IP router is no 
longer needed. As to the users’ physical control usages, which 
are invoked through physically accessing to the end devices, 
the end devices can be configured to update these usages to the 
gateway through sending either serial port frames or smart 
home protocol packets. To implement the data collection in an 
integrated SHS system with communication traffic encrypted, 
refined APIs from asset providers are needed so that the data 
collection can be performed through their gateway assets 
[27]-[29]. 

2) Manually Provided Features 

 Home occupants can manually provide information to the 
gateway through the user interface. Such information may 
include preference, asset configuration, account information, 
and etc. For instance, whenever a new home appliance is put 
into use, owners should register it in the secure gateway by 
providing its device type and weight of importance.  

3) Locally Provided Features  

These features can be acquired locally from the system log of 
our secure gateway. An example of such features includes 
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current time, available memory, current CPU utilization, and 
current buffer utilization of the gateway. 

D. Context Modeling 

Based on the utilization of the SHCDS, the heterogeneous 
features are dynamically mapped and aggregated into 
high-level context information called Context Attributes. Those 

attributes are then formed as a well-organized feature space 
called Contextual Array which will be used for further analysis. 
Our modeling process consists of two steps: 1) Unified Model 
Language (UML) model development, and 2) Contextual Array 
formation. In what follows, we describe each step in further 
detail. 

 
TABLE Ⅲ 

SHS ASSET CONTEXT INFORMATION 

Feature identifiers 
Resource of the 
context features 

Description 

User’s primary credential Manually provided Each user’s pre-registered account name, password, and authorization level. 

User’s Secondary credential Manually provided Each user’s pre-registered phone number, face recognition pattern. 

Device ID Manually provided 
The identity of each registered appliance assigned based on its usage (e.g. an oven can be tagged as 

‘oven#1’). 
Impact Levels Manually provided The level of security impact (low/moderate/high) for each control behavior (see Section II.C). 

Current behavior Packet streams 
The user’s remote control behavior is carried by a communication packet. The physical control 

behavior is carried by a change-of-state notification sent by the home assets. 
Status of home appliances Serial port traffic The latest operation status of a home appliance (e.g. on/off). 

Behavior Invoke Time Locally provided The time when a remote control behavior or a physical control behavior is captured by the gateway. 

Available Memory Locally provided The current available memory of the gateway by taking current operations into consideration. 

CPU usage Locally provided The amount of CPU used by the current operations. 

Buffer Utilization Locally provided The amount of buffer of gateway required by current operations. 

 
1) UML Model Development 

In the first step, a set of context classes are created as a class 
diagram by utilizing UML modeling technique [30]. As defined 
in our Context Aware Data Structure, the class diagram consists 
of four context classes: 1) sender class to maintain the 
credential information of each user, 2) asset location class to 
derive the location information of users, 3) log of gateway class 
to maintain gateway system log, and 4) temporal behavior class 
to describe the usage of home assets in the time domain. 

Once the features for an asset usage are obtained via context 
acquisition, the context classes perform data modeling on those 
features based on two operations: grouping and mapping. 
During the grouping operation, each class selects its relevant 
context features as their input. For instances, HTTP cookies and 
credential information of the users are grouped into the Sender 
class, and all the information which is locally provided by the 
secure gateway is grouped into Log of Gateway class.  

After the grouping operation, context classes perform 
pre-defined mapping operations to map the grouped features 
into context attributes as follows: 

User ID (U) is a string with one to one correspondence to 
each valid user. A user is regarded as valid if only if he/she 
provides a valid primary credential (e.g. enter the right 
password). 

Behavior Sequence (B) is a string that contains a sequence 
of captured behaviors which are consecutive to each other. A 
captured behavior is represented as a string indicating a state 
change of the home appliance which is caused by the captured 
behavior. For instance, a Nest thermostat has four operational 
models as “heat”, “cool, “off” and “eco”; and its temperature 
mode can be switched within a predefined range. To map its 
modes into finite states, we can use temperature slots to map 
every certain range of temperatures into specific certain slot. 
Specifically, if we set a range of 10℃ as one time slot and name 

the time slot as its temperature up-bound, a thermostat “T1” 
with operational model as “eco” and temperature mode as 27℃ 
(belongs to the temperature slot named “30”) can be mapped 
into a state as “T1E30”. Similarly, if a captured behavior causes 
the main door “D1” to switch to state “O” (open/on), we can 
represent this behavior as “D1O”. These captured behaviors are 
considered as consecutive to each other if 1) they are invoked 
by the same user, and 2) the time interval between two 
behaviors is below a pre-defined threshold (e.g. 10 seconds). 
We defined the maximum length of behavior sequence as |𝐵| 
and use sliding window to discard the earliest behaviors if the 
number of consecutive behaviors exceeds the value of |𝐵|. For 
instance, given |𝐵| 3, if a user invoked the following five 
consecutive behaviors: open garage door (G1O), turn on light 
No. 2 (L2O), close garage door (G1C), close light No. 2 (L2C), 
and open main door (D1O), we can represent those behaviors in 
turn as the following three Behavior Sequences:{“G1C”, 
“L2C”, “D1O”}, {“G1O”, “L2O”, “G1C”}, { “L2O”, “G1C”, 
“L2C”}, and {“G1C”, “L2C”, “D1O”}. On the other hand, if a 
user invoked a behavior G1O which is not consecutive to any of 
the other existing behaviors which means no behavior is 
invoked during 10 seconds before and after the behavior G1O, 
the corresponding Behavior sequence would be formed as 
{“G1O”, “N/A”, “N/A”}. 

Behavior Pair Set (S) is a multiset that consists of the pairs 
of captured behaviors which are belonging to the same 
Behavior Sequence. The Behavior Pair Set can explicitly 
describe the one-to-one correlation of behaviors within each 
Behavior Sequence. The formation of the Behavior Pair Set for 
a Behavior Sequence where |𝐵| 3 is as follows: Given a 
Behavior Sequence {“G1C”, “L2C”, “D1O”}, the 
corresponding Behavior Pair Set is formed as {“G1C,D1O”, 
“G1C,L2C”, “L2C,D1O”}. Given a Behavior Sequence 
{“G1O”, “L2C”, “N/A”} which includes two consecutive 
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behaviors, the corresponding Behavior Pair Set is formed as 
{“G1C,L2C”, “G1C,N/A”, “L2C,N/A”}. Given a Behavior 
Sequence {“G1C”, “N/A”, “N/A”} which includes only one 
behavior, the corresponding Behavior Pair Set is formed as 
{“G1C,N/A”, “G1C,N/A”, “G1C,N/A”}. We defined the 
number of behavior pairs included in the Behavior Pair Set 
as  |𝑆| . As shown from the previous examples,  |𝑆| 3 
when |𝐵| 3. Similarly, if |𝐵| of Behavior Sequence is set to 
either 2 or 4, |𝑆| will be equal to either 1 or 6. 

Time Slot (T) is an integer indicating which slot is the 
current time belongs to. In our research, we set the duration of 
one time slot as two hours so that a whole day is divided into 12 
slots. For instance, if a behavior is invoked at 8:25 a.m., its 
corresponding time slot is 5. By setting the duration of a time 
slot as two hours instead of one or half an hour, more behavior 
patterns can be included into each time slot. 

Physical Location (L) is a string indicating if the captured 
behavior invoked from either inside or outside of the home. 
At-home behaviors are those commands invoked through 
manual access of home appliances or through remote 
commands carried by the local Wi-Fi network traffic. 
Outside-of-home behaviors are invoked through remote 
commands that are carried by external IP network traffic. 

Gateway Availability (G) is an integer that represents the 
current availability of the gateway, and is used to identify 
possible threats targeting the gateway availability. Since the 
gateway is used to communicate sensors and actuators with the 
internet and, at the same time provide local access to 
appliances, it is important to constantly verify its availability 
[15]. In order to achieve this task, our secure gateway performs 
continuous monitoring for three parameters [15]: 1) available 
memory (AM), 2) CPU utilization (CU), and 3) buffer 
utilization (BU). We assume that under no attack and no 
monitoring activity, all the parameters are at full capacity; 
hence, we assign 100% to gateway availability. For example 
NAM=76,1832 is the nominal available memory of the system, 
which means that 76,1832 equals 100% of memory availability. 
From here, any memory consumption (CAM) is compared 
against NAM, giving a percentage of available memory. Equation 
(1) shows how to compute the impact I of a given attack, where 
CAM, CBU, and CCU are the current values of AM, BU, and CU, 
and NAM, NBU, and NCU are the nominal values for each feature.  

 

𝐼 1  ∙ 0.4 ∙ 0.3 ∙ 0.3            (1) 

 
From (1) we notice that when the current values are nominal 

and the impact is zero. The output of (1) cannot be directly used 
in our context array due to the continuous nature of its values. 
We use (2) to obtain four levels of availability, where level 3 is 
the desired stage under normal operation and level 0 is the 
worst case scenario.  

 

𝐺

0 
1 
2 
3 

𝑖𝑓 𝐼 0.75
𝑖𝑓 0.5 𝐼 0.75
𝑖𝑓 0.25 𝐼 0.5

𝑖𝑓 𝐼 0.25

                          (2) 

IV. CONTEXTUAL ARRAY FORMATION 

In the second step, context attributes are retrieved from 
classes to form a contextual array which is a data array 
describing the current context. The contextual array is then 
stored into the SQL database for further analysis. All the 
contextual arrays are stored as a matrix with six 
dimensions  C 𝑈, 𝑇, 𝐵, 𝑆, 𝐿, 𝐺 , where the capital letters 
within the brace are the abbreviations of attribute dimensions. 
For instance if user Bob remotely turns on the light “L1”, air 
conditioner “A1”, and water heater “H1” at 6:20 p.m. before 
arriving home, the contextual array to describe such context is 
shown in Fig. 5. 

 

 

Fig. 5 Contextual array for a sample context 

E. Anomaly Behavior Analysis 

Our anomaly behavior analysis (ABA) models a user’s usage 
pattern of domestic devices by statistically analyzing their 
consecutive behaviors, so that the potential threat of the 
captured behaviors can be estimated. The analyzer for such 
analysis is defined as a system A 𝑓, 𝑁  with two 
components, N and 𝑓. The component N is a baseline dataset 
N 𝑈 , 𝑇 , 𝐵 , 𝑆 , 𝐿 , 𝐺  which includes all the historical 
normal behaviors that have been captured. Since a user’s recent 
behaviors can reflect their usage pattern better than older 
behaviors, the analyzer keeps removing the outdated arrays 
(e.g. arrays stored for more than two months) from the database 
to avoid data drift. In the proposed system, the baseline dataset 
N consists of a number of sub-dataset 𝑁 , , where {𝑢, 𝑙  is the 
index of sub-dataset. In this way, the contextual arrays triggered 
by different users 𝑢 at different locations 𝑙 are stored separately 
into the corresponding sub-dataset. 

The component 𝑓 is an anomaly detector defined as 𝑓 𝐸, 𝑁 , 
where 𝐸 is the contextual array to be analyzed. The output of 
𝑓 𝐸, 𝑁  is the detection decision indicating whether the 
contextual array being analyzed is normal or not. The design of 
𝑓 𝐸, 𝑁  is inspired by works presented in [31]-[33], where the 
normal consecutive transitions of WI-FI and DNS protocols are 
modeled through an anomaly characterization function. The 
functions proposed in these works apply statistical techniques 
to quantify the n-transition patterns in the protocols and then 
characterize the normal score of these transitions [31], [32]. 
Specifically, if the frequency of a sequence of n protocol 
transitions over an observation time window is far different 
from the frequency of the same transition that is stored in the 
baseline model, the normal score of this transition would be 
low. Such score characterization is based on an assumption that 
the transition patterns follow a well-defined protocol state 
machine with no context information involved. However, in the 
SHS applications, users are likely to perform the same set of 
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consecutive behaviors with different orders or to skip some of 
the behaviors when performing the same set of consecutive 
behaviors, we design 𝑓 𝐸, 𝑁  as a combination of detection 
decisions for both Behavior Sequence and Behavior Pair Set. 
That is, given an array input  𝐸 𝑢, 𝑡, 𝑏, 𝑠, 𝑙, 𝑔 , where  𝑢 ∈
𝑈 , 𝑡 ∈ 𝑇 , 𝑏 ∈ 𝐵 , 𝑡 ∈ 𝑇 , 𝑏 ∈ 𝐵 , 𝑠 ∈ 𝑆 , 𝑙 ∈ 𝐿 , 𝑔 ∈ 𝐺 .  The 
output of  𝑓 𝐸, 𝑁  is the array’s normal score which can be 
represented as: 

 
𝑓 𝐸, 𝑁 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑏, 𝑙, 𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  (3) 

 
where 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑏, 𝑙, 𝑔  is the detection decision for 
behavior sequence 𝑏 and 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  is the detection 
decision for the behavior pair set S.  

The value of 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑏, 𝑙, 𝑔  can be either 1 as normal 
or 0 as abnormal, and it can be determined based on the 
following equation: 

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
1 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑏, 𝑙, 𝑔 𝑠𝑐𝑜𝑟𝑒 𝑁 ,

0 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑏, 𝑙, 𝑔 𝑠𝑐𝑜𝑟𝑒 𝑁 ,     (4) 

 
where 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑏, 𝑙, 𝑔  is the normal score of the behavior 
sequence being analyzed, 𝑠𝑐𝑜𝑟𝑒 𝑁 , is the baseline score 
corresponding to a dataset of a specific user ID and physical 
location. The value of 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑏, 𝑙, 𝑔  can be obtained as: 
 

𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑏, 𝑙, 𝑔
, , , ,

, , , / , , ,
       (5) 

 
where 𝑐𝑜𝑢𝑛𝑡 𝑢, 𝑡, 𝑏, 𝑙, 𝑔  is a database operation that counts 
the number of contextual arrays in the baseline dataset 𝑁 ,  
whose values of 𝑈, 𝑇, 𝐵, 𝐿, 𝐺  equal to 𝑢, 𝑡, 𝑏, 𝑙, 𝑔 . In other 
words, it counts how many behavior sequence 𝑏 the user 𝑢 has 
invoked at time 𝑡 and location 𝑙 with gateway availability as 𝑔 
during normal operations. The 𝑐𝑜𝑢𝑛𝑡 𝑢, 𝑡, 𝑙, 𝑔  operation 
counts the number of contextual arrays that user 𝑢 has invoked 
at time 𝑡  and location  𝑙  with availability 𝑔  during normal 
operations. 𝑘𝑖𝑛𝑑𝑜𝑓𝑏 𝑢, 𝑡, 𝑙, 𝑔  is a database operation that 
counts how many kinds of behavior sequence that user 𝑢 has 
ever invoked at time 𝑡 and location 𝑙 with availability𝑔during 
normal operation. Hence, 𝑐𝑜𝑢𝑛𝑡 𝑢, 𝑡, 𝑙, 𝑔 /𝑘𝑖𝑛𝑑𝑜𝑓𝑏 𝑢, 𝑡, 𝑙, 𝑔  
indicate the average number of behavior sequences that user 𝑢 
has ever invoked at time 𝑡  and location  𝑙 with availability 
𝑔 during normal operation. The baseline score 𝑠𝑐𝑜𝑟𝑒 𝑁 ,  
can be obtained by calculating 𝑠𝑐𝑜𝑟𝑒  for every contextual 
array stored within baseline dataset 𝑁 ,  and then selecting the 
𝑠𝑐𝑜𝑟𝑒  with the smallest value as our baseline score for 𝑁 , . 
Similarly, the value of 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  can be 
determined as:  

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
1 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑠, 𝑙, 𝑔 𝑠𝑐𝑜𝑟𝑒 𝑁 ,

0 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑠, 𝑙, 𝑔 𝑠𝑐𝑜𝑟𝑒 𝑁 ,      (6) 

 
where 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  is the normal score of the Behavior 
Pair Set 𝑏 being analyzed. The value of 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  can 
be obtained as: 
 

𝑆𝑐𝑜𝑟𝑒 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  
∑ , , , ,| |

, , , / , , ,
         (7) 

 
where 𝑘𝑖𝑛𝑑𝑜𝑓𝑠 𝑢, 𝑡, 𝑙, 𝑔  is a database operation that counts how 
many kinds of behavior pair set 𝑠 that user 𝑢 has ever invoked 
at time 𝑡 and location 𝑙 with gateway availability as 𝑔during 
normal operation and 𝑐𝑜𝑢𝑛𝑡 𝑢, 𝑡, 𝑠, 𝑙, 𝑔  is an operation counting 
how many times user 𝑢 invokes behavior pair 𝑠  at time 𝑡 and 
location  𝑙  with availability 𝑔  during normal operation. The 
baseline score 𝑠𝑐𝑜𝑟𝑒 𝑁 ,  can be obtained by calculating the 
𝑠𝑐𝑜𝑟𝑒  for every contextual array stored within baseline 
dataset 𝑁 ,  and then selecting the 𝑠𝑐𝑜𝑟𝑒  with the smallest 
value. 

Since the normal score 𝑓 𝐸, 𝑁  of a context array is the sum 
of 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑏, 𝑙, 𝑔 and 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑢, 𝑡, 𝑠, 𝑙, 𝑔 , where values 
of the two decisions can be either 0 or 1, our anomaly detector 
𝑓 is a ternary classifier, which classifies the contextual arrays as 
either normal ( 𝑓 𝐸, 𝑁 2 ), suspicious ( 𝑓 𝐸, 𝑁 1 ), or 
abnormal (𝑓 𝐸, 𝑁 0).  

F. Threat-Aware Action Management 

In this phase, threat-aware action management is performed 
to handle suspicious behaviors by further classifying them as 
either normal or abnormal and handle anomaly behaviors by 
triggering mitigation actions. The meaning of threat-aware is 
that more efforts should be put to detect and mitigate the 
anomalous behaviors with higher potential impact. To achieve 
such goal, we need to make the detection rate of high-threat 
anomaly behaviors as high as possible, and in the meantime, 
reduce the overall false positive rate by ignoring the suspicious 
trivial behaviors. Based on time window T (we named it the 
threat–aware window), which slides along the current set of 
consecutive behaviors, the consecutive behaviors within 
window T are considered as high-impact if consist only of at 
least one behavior whose impact level is moderate or high. 
Otherwise, it is considered as a low-impact. The impact level of 
each behavior is determined based on the impact model shown 
in Table I. In this way, the detection rates of high-impact 
contextual arrays are increased by detecting a high-impact 
array as anomaly if its normal score 𝑓 𝐸, 𝑁  is either 0 or 1. 
Similarly, the false positive errors are minimized by 
considering a low-impact contextual array as an anomaly only 
if its normal score 𝑓 𝐸, 𝑁  is 0. 

Since the length of behavior sequence (|B|) and the length of 
threat-aware window (|T|) are the two parameters which affect 
the detection performance of our proposed approach, the 
process for determining |B| and |T| can be considered as a single 
parameter optimization problem. Given that the maximum 
length of consecutive behaviors observed during training data 
collection is 𝐶 , it is predictable that the detection 
performance of the proposed function is constant for any |𝐵| 
and |𝑇| whose value are greater than or equal to 𝐶 . This is 
because if the length of sliding window is set as greater than or 
equal to 𝐶 , we only need one window (no need to slide) to 
describe the consecutive behaviors whose length is smaller than 
or equal to 𝐶 . Consequently, we proposed a data training 
process to determine the proper value of |𝐵| and |𝑇| from the 
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value range of |𝐵| ∈ 2，𝐶  and |𝑇| ∈ 1，𝐶 . The data 
training process can be divided into two steps. In the first step, 
the value of |𝐵| is determined by setting |𝑇| as 𝐶 1 /2 if 
𝐶  is odd or as 𝐶 /2 if 𝐶  is even. After fixing the 
value of |𝑇|, we perform training 𝐶 1 times to generate 
baseline models based on every possible value of |𝐵| and select 
the value of |𝐵|  which can achieve the highest detection 
accuracy as the optimal value. In the second step, given the 
optimal value of |𝐵|, we perform data training 𝐶  times to 
generate baseline models based on every possible value of |𝑇| 
and select the value of |𝑇|  which can achieve the highest 
detection accuracy as the optimal value. The detection accuracy 
can be calculated as:  

 

Accuracy                           (8) 

 
where 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁 is true positive rate, true negative rate, 
true negative rate, false negative rate, respectively.  

 

 

Fig. 6 Mitigation Action Management Algorithm 
 

Whenever the behavior of a user is detected as an anomaly, 
the action management module will consider the user’s identity 
as suspicious and trigger secondary authentication by either 
sending a text message with a verification code to the user’s 
mobile phone or by conducting facial recognition. In the 
meantime, the home owner will be notified about the anomaly 
behaviors through a text massage. If the anomaly user passes 
the secondary authentication, it means that the current alarm is 
very likely to be a false alarm. Consequently, our action handler 
will consider the user’s identity as valid for a predefined time 
period (e.g. one hour). During such time period, a valid user 
will not be challenged with a secondary authentication again 
and all the behaviors triggered by the user will be considered as 
normal. The time period for considering a user as valid will be 
terminated early if the credential (e.g. HTTP Cookie) for the 
valid user has expired or the network address of the valid user 
has changed. Otherwise, if the suspicious user cannot pass the 
secondary authentication, the user will be identified as 
malicious and the user privilege will be terminated. The 

pseudocode for our mitigation action management scenario is 
shown in Fig. 6.  

V. EXPERIMENTAL RESULTS 

A. Training Stage 

In order to generate the daily usage data of a Smart Home 
environment, we invited one of our research group members at 
the University of Arizona Center for Cloud and Autonomic 
Computing to continuously log his/her daily usage of home 
appliances through a web interface (see Fig. 3). These daily 
usages include both physical usages and remote usages. Once 
the user inputs control commands via the interface, a packet 
will be sent from the web interface to the smart gateway as a 
normal record. Some of the SHS assets can be configured to 
automatically trigger a set of behaviors based on sensor inputs. 
Since the normal patterns of these automatically-triggered 
behaviors follow some pre-determined control logics, these 
normal patterns are much simpler than normal patterns of the 
behaviors being manually triggered. Hence, we evaluate the 
performance of our approach by only analyzing the behaviors 
which are triggered manually without following any 
pre-determined logic. A total of 8,110 normal records are 
collected in a 90-day period.  

 

 

Fig. 7 The temporal distribution of collected dataset 
 

The objective of our data training stage aims at generating 
baseline models for real-time detection. A baseline model is 
built using a baseline dataset 𝑁 ,  and its corresponding 
baseline scores 𝑠𝑐𝑜𝑟𝑒 𝑁 ,  and 𝑠𝑐𝑜𝑟𝑒 𝑁 , . Since there is 
one user involved in our dataset (𝑢 "𝐵𝑜𝑏") and the user’s 
physical location can be recognized as either at home (𝑙 0) or 
out of home (𝑙 1), we generated two baseline models which 
describe the user’s at-home usages and out-of-home usages 
separately as: 1)  𝑁 , , 𝑠𝑐𝑜𝑟𝑒 𝑁 ,  and  𝑠𝑐𝑜𝑟𝑒 𝑁 , ; 
2)  𝑁 , , 𝑠𝑐𝑜𝑟𝑒 𝑁 ,  and  𝑠𝑐𝑜𝑟𝑒 𝑁 , . In order to 
evaluate the detection performance over time, we perform data 
training four times for four time intervals by taking four 
different datasets N (including contextual arrays collected 
during the first 15 days, 30 days, 45 days, and 60 days) as the 
training dataset. It is noted that this data training is a one-class 
ABA process since no abnormal behaviors are involved. 
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B. Detection Stage 

During the detection phase, a set of cyberattack scenarios 
were simulated to generate anomalous behavior records for 
performance evaluation purpose. Those scenarios consist of 
single behavior or multiple malicious behaviors, and can be 
launched either by a user’s account being spoofed or by the 
smart gateway being compromised. The attack scenarios we 
simulated are as follows: 
1) Status Switching attacks are launched by continuously 

switching the operational status of home assets. We 
launched such an attack based on two scenarios: 1) sending 
about 100 control commands to a home asset every second 
for denial-of-service purpose; 2) sending three control 
commands to a non-critical home asset (e.g. lights) every 
second for prank purpose. 

2) Asset Manipulation attacks are launched by invoking 
control behaviors to critical home assets when home 
occupants are not aware. 

3) Break-in attacks are launched by opening the door, 
garage door or windows and then physically invoke some 
malicious behaviors. We invoke such attack by opening a 
door or window when the home occupants are more likely 
to be sleep or out of the house, for example at work. About 
65% of the behaviors which are invoked at night were done 
so without turning on the lights. About 80% of the attack 
scenarios involve at least one asset control behavior after 
the break-in. These asset control behaviors may include: 1) 
switching light on and off, 2) closing doors or windows, 3) 
manipulating critical appliances such as oven, faucets and 
monitors to cause financial loss and privacy leakage. The 
rest (about 20%) of the attack scenarios involve no asset 
control behavior after the break-in, which means intruders 
were trying to sneak in for stealing possessions.  

Approximately 10,520 attack records were generated during 
the online detection test. The temporal distribution of both 
normal and malicious records based on time slots is illustrated 

in Fig. 7. As shown in the figure, the majority of attacks were 
launched during the night when the home occupants were likely 
to be sleeping. Note that, since the data training are performed 
without a dataset which describes attack behaviors (namely 
anomaly dataset), the patterns of all the simulated attack 
scenarios are unknown by our baseline model. 

The detection rates of our approach were evaluated by 
counting the percentage of attack scenarios that have been 
detected against all attack scenarios launched. The false 
positive rate for analyzing normal behaviors was evaluated by 
taking the normal behaviors collected in a 30-day period as 
input for real-time detection. For instance, to evaluate the false 
positive rate for the baseline model generated based on the 
normal behaviors collected during the first 60 days, the normal 
behaviors collected between day 61 and day 90 were tested.  

C. Detection Results 

In the first experiment, we determine the effectiveness of the 
proposed approach by evaluating the detection performance 
variation of the approach in the time domain. After determining 
the optimized value of |B| and |T| through the data training 
process, detection was performed with |B|=3 and |T|=2. In Fig. 
8, the points in the detection performance curve from left to 
right indicate the detection performance of the baseline models 
that are generated based on the dataset collected in a 15-day, 
30-day, 45-day, and 60-day period, respectively. As the period 
increases, the false positive error rate of each baseline model is 
reduced; however, the detection rate also declined. The 
reduction of the false positive rate in Fig. 8 is caused by the fact 
that more usage patterns were gathered when the collection 
period is extended. On the other hand, since the normal usage 
dataset was generated by recording the asset usage behaviors of 
a user who has an unfixed life style (e.g. sometimes staying up 
late, sometimes staying at home during workday), some of 
his/her usage patterns were somehow similar to the attack 
scenarios. Consequently, the detection rate declined slightly 
when more patterns were collected. 

 

 

Fig. 8 Detection performance of baseline models generated based on datasets collected in different lengths of time 
 

In the second experiment, we determine the effectiveness of 
our threat-aware detection mechanism (introduced in Section 
IV.F). Our threat-aware mechanism can further classify the 
suspicious behaviors into either normal or abnormal based on 
the impact level of behaviors within sliding window T. In this 

way, the proposed approach can put more effort on detecting 
anomaly behaviors with higher potential impacts. Moreover, 
since normal users are likely to invoke more low-impact 
behaviors than attackers, this approach can avoid frequent false 
alarms by putting less effort on detecting low-impact anomaly 
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behaviors. The detection accuracies of the proposed approach 
with and without the threat-aware mechanism are shown in 
Table Ⅳ. The accuracy evaluation is made based on the 
training dataset which is collected in a 60-day period. The 
detection performance of our approach with the threat-aware 
mechanism is shown as the left column of the table. The middle 
column indicates the detection performance of the approach 
with a detection mechanism, which simply classifies all the 
suspicious behaviors as abnormal behaviors. The right column 
indicates the detection performance of the approach with a 
mechanism which simply regards all the suspicious behaviors 

as normal behaviors. Results in the table show that the proposed 
threat-aware mechanism can achieve the highest detection rate 
for detecting high-impact anomaly behaviors and trigger less 
false alarms (lower false positive rate) when analyzing 
low-impact normal behaviors. This indicates that our 
mechanism can put more effort on detecting attacks with higher 
potential impacts and put less effort on triggering trivial alarms. 
Moreover, the proposed approach with a threat-aware 
mechanism achieves the highest detection accuracy. This 
indicates that the threat-aware mechanism can achieve a better 
tradeoff between false positive rates and detection rates. 

 
TABLE Ⅳ 

PERFORMANCE EVALUATION OF THREAT AWARE MECHANISM 

 Proposed mechanism All suspicious as Abnormal All suspicious as Normal 

Detection Accuracy 93.59% 92.14% 87.4% 

Detection rate of high impact behaviors 96.85% 96.85% 83.61% 

FP rate of high impact behaviors 10.27% 10.27% 4.3% 

Detection rate of low impact behaviors 93.13% 94.36% 82.31% 

FP rate of low impact behaviors 5.73% 8.63% 5.17% 

 

 

Fig. 9 Detection performance of baseline models generated based on 
different values of |𝐵| 

 
In the third experiment, we evaluate how the value of |T| and 

|B| affect the detection performance of the proposed approach. 
The evaluation for |B| was made by generating multiple 
baseline models based on different values of |B| and comparing 
the detection performances of these baseline models. Similarly, 
the evaluation for |T| was made by comparing the detection 
performances of baseline models generated based on different 
values of |T|. The baseline models are generated based on the 
dataset in a 60-day period. Since the maximum length of 
consecutive behaviors observed within the training dataset is 
5(𝐶 5), the value ranges of |T| and |B| are |T|∈[1,5] and 
|B|∈[2,5]. By setting the value of |T| as 3, which is the median 
of [1,5], the detection accuracies (calculated based on (8)) of 
baseline models for |B|∈[2,5] are illustrated in Fig. 9. It is 
shown that the baseline model generated with |B|=3 achieves 
the highest detection accuracy (93.45%) and its detection 
accuracy increases 0.57% and 12.49% compared with the 
second best model (|B|=4) and the worst model (|B|=2). By 
setting the value of |B| as 3, which has been proved to be the 
optimal value for our training dataset, the detection accuracies 
of baseline models for |T|∈[1,5] are illustrated in Fig. 10. It is 
shown that the baseline model generated with |T|=2 achieves 

the best detection performance and its detection accuracy 
increases 0.14% and 2.79% compared with the second best 
model (|T|=3) and the worst model (|T|=1). The result of this 
experiment proves that tuning the value of |B| and |T| is 
necessary for achieving optimal detection performance. The 
baseline model generated based on the optimal value of |B| and 
|T| can obtain a better tradeoff between the detection rate and 
the false positive rate.  

 

 

Fig. 10 Detection performance of baseline models generated based on 
different values of |𝑇| 

 
In the fourth experiment, the detection performance of the 

baseline models for the user’s at-home usages and out-of-home 
usages are tested separately against the same types of attacks. 
The detection performance curves for the two types of baseline 
models are depicted in Fig. 11. As shown in this experiment, the 
baseline models for at-home usages obtained a lower false 
positive rate and lower detection rate. The reason for its lower 
false positive rate is that users invoke out-of-home behaviors 
(remote control behaviors) more casually by sometimes 
invoking behaviors without following any historical patterns. 
Those casual normal usages are more likely to be mistakenly 
detected as anomalous behaviors. The main reason for the 
lower detection rate is that there are more patterns in the 
at-home usage database which are similar to the attackers’ 
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usage patterns.  
 

 

Fig. 11 Detection performance of baseline models generated with 
𝑁  and 𝑁  

 
In the fifth experiment, we determine the effectiveness of our 

context modeling approach by comparing the performance of 
our contextual arrays with the three other types of contextual 
arrays. We removed the context attributes named Time Slot T 
from the first type of contextual array, so that the same behavior 

sequences triggered in a different time slot in a day are 
considered as identical. We removed the context attributes 
named Gateway Availability G from the second type of 
contextual array, so that the current availability of the smart 
gateway will not be taken into consideration when analyzing 
SHS behaviors. We removed the context attributes named 
Physical Location L from the third type of contextual array, and 
behaviors triggered within the home and out of the home are 
stored in the same baseline dataset N, instead of being stored 
separately in 𝑁  and 𝑁 . As shown in Fig. 12, it turns out 
that the proposed contextual array achieves better tradeoff than 
the other three types of arrays. The result in this experiment 
proves that all three attributes including Time Slot, Gateway 
Availability, and Physical Location can help the baseline model 
is describing the normal usage pattern more explicitly. Through 
this experiment, we validated that the context modeling method 
being proposed is effective in generating more accurate 
baseline models. 

 

 

Fig. 12 Detection performance of different types of contextual arrays 
 

 

Fig. 13 Detection accuracy for behavior sets with different numbers of involved behaviors 
 

In the sixth experiment, we evaluated the detection accuracy 
of the proposed approach for asset usages with different 
numbers of behaviors involved. For instance, a sample 
behavior sequence for describing a usage with one behavior is 
{“A1O”, “N/A”, “N/A”}. Moreover, an example of behavior 

sequences for describing a usage with four involved behaviors 
can be {“A1O”, “A1C”, “A1O”} and {“A1C”, “A1O”, 
“A1C”}. Fig. 13 illustrates the detection accuracy of attack 
scenarios and normal usages with different numbers of 
involved behaviors. The baseline model used in this experiment 
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is generated based on the dataset collected in a 60-day period. 
As shown in the figure, the detection accuracies for normal 
usages with different numbers of involved behaviors are all 
above 98%. The detection accuracy of attacks carried by a 
single behavior is as low as 61%, and the detection accuracy is 
increased to more than 94% when dealing with attacks with 
more than two involved behaviors. The result in this 
experiment indicates that our approach cannot detect 
single-behavior attacks efficiently, since the correlation of 
behaviors cannot be reflected if there is only one behavior 
included in a Behavior Sequence. 

VI. CONCLUSION 

In this paper, we have introduced a context-aware anomaly 
behavior analysis methodology which can detect attacks 
targeting SHS with low false positive rate. Based on a novel 
SHCDS, the heterogeneous information acquired from the SHS 
can be dynamically modeled into contextual arrays which are 
more precise and accurate. We have shown that the time and 
location attributes in the contextual array can help the behavior 
analyzer to achieve better detection performance. Since our 
behavior analysis is based on one-class learning, which means 
the baseline model is generated with users’ normal behaviors, it 
is possible for the behavior analyzer to detect diverse types of 
anomaly behaviors. We have shown that by using the 
contextual array with Context Sequence of length 3, we achieve 
a 2.1% false positive rate. Since our behavior analysis is based 
on finding the correlations among consecutive behaviors, it can 
achieve more than 94% detection rate for attacks carried by 
more than two behaviors. 

As to the future works, the proposed approach should be 
improved to achieve detection accuracy for attacks carried by 
only one behavior. Moreover, our proposed method cannot 
protect the assets which are operated without depending on any 
context information. Such independent assets may include 
vacuum cleaner, voice assistant, etc. Even though the 
operational state transitions of those assets are independent on 
context information, the on-off switching of some of these 
assets may still be related to context information. For instance, 
the on-off switching of voice assistant may be related to the 
presence of home occupants and has correlations with the state 
transition of other home appliance. As the second future work, 
we will integrate these independent assets into our Smart Home 
testbed and make security evaluations. Our third future work is 
to integrate home assets which can perform sophisticated state 
transitions (e.g. the mode changes of Nest thermostat) so that, 
the detection performance of the proposed approach on assets 
with sophisticated state transitions can be evaluated. Our fourth 
future work is to add more occupants to our Smart Home 
testbed. In this way, the model sets that can describe usage 
patterns of multiple users can be generated and the model drift 
that occurs with a change of the occupant can be evaluated. 

This work is proposed based on the outlook that more and 
more assets and services will be integrated into home systems 
with remote monitoring and control enabled. Such an outlook is 
becoming clear since many companies have already built SHS 
platforms (either open or private) for home asset venders 

[26]-[28]. This work is a first step in providing fine-grained 
intrusion detection for the SHS based on comprehensive 
context information. To implement such intrusion detection 
functionality on an existing integrated SHS, refined APIs and 
the privileges for functionality development will be needed. 
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