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 
Abstract—Lenstra’s attack uses Chinese remainder theorem as a 

tool and requires a faulty signature to be successful. This paper 
reports on the security responses of fourth and sixth order Lucas 
based (LUC4,6) cryptosystem under the Lenstra’s attack as compared 
to the other two Lucas based cryptosystems such as LUC and LUC3 
cryptosystems. All the Lucas based cryptosystems were exposed 
mathematically to the Lenstra’s attack using Chinese Remainder 
Theorem and Dickson polynomial. Result shows that the possibility 
for successful Lenstra’s attack is less against LUC4,6 cryptosystem 
than LUC3 and LUC cryptosystems. Current study concludes that 
LUC4,6 cryptosystem is more secure than LUC and LUC3 
cryptosystems in sustaining against Lenstra’s attack.  
 

Keywords—Lucas sequence, Dickson Polynomial, faulty 
signature, corresponding signature, congruence.  

I. INTRODUCTION 

UBLIC key Cryptography is an encryption technique for 
secret writing involving a public key and a private key. 

Public key is used to encrypt the plaintexts, whilst private key 
is used to decrypt the ciphertexts. This concept was introduced 
by Diffie and Hellman [2] in 1976. In 1978, Rivest, Shamir, 
and Adleman [5] discovered the first practical public-key 
encryption and signature scheme, which now is referred as 
RSA. The RSA scheme is based on hard mathematical 
problem and the intractability of factoring large integers. 

Smith and Lennon [8] proposed a cryptosystem which is 
analogous to the RSA scheme and based on Lucas function 
[9]. It was referred as LUC cryptosystem. LUC cryptosystem 
used the second order of Lucas sequence to generate the 
ciphertext or to recover the original plaintext through the 
process of encryption and decryption respectively. 
Subsequently, Said and John [6], [7] extended the LUC 
cryptosystem with a cubic equation and referred it as LUC3 
cryptosystem. Similarly, LUC3 cryptosystem used third order 
Lucas sequence to develop further the cryptosystem. Wong 
used the fourth and sixth order Lucas sequence to develop 
their LUC4,6 cryptosystem [10], [11] which was extended from 
LUC and LUC3 cryptosystem, based on the characteristics of 
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quartic equation. The security of LUC4,6 cryptosystem [10], 
[11] had been verified using Hastad’s attack [12], GCD attack 
[13], and garbage-man-in-the-middle (type 1) attack [14], 
respectively.  

At Bellcore press release, September 25th 1996, Boneh, 
Demilli and Lipton reported that they successfully identified 
the attack against RSA based on Chinese Remainder Theorem. 
However, they did not provide any further technical detail. 
The attack was able to recover the secret factors, p and q of 
the public modulus n from two signatures of the same 
plaintext, i.e. a real plaintext and a faulty plaintext. After that, 
Lenstra [1] wrote a memo to show that only the faulty 
signature was required for the attack. In this paper, these 
Lenstra’s attacks [3], [4] will be further extended to test on the 
LUC, LUC3, and LUC4,6 cryptosystems. 

II. THE LUC-TYPE CRYPTOSYSTEM 

A 𝑁-th order linear recurrence of Lucas sequence is a 
sequence of integers 𝑇௞ defined by 
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with initial values of 𝑇଴, 𝑇ଵ, ⋯ , 𝑇ேିଵ, where 𝑎௜are coefficients 
in 𝑁-th order polynomial, 
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Therefore, all the cryptosystems were developed based on 

Lucas sequence called LUC-type cryptosystems. In this 
manner, this study focused on the reaction of LUC, LUC3, and 
LUC4,6 cryptosystems under Lenstra’s attack. 

A. LUC Cruptosystem 

Suppose that n be the product of two different odd primes, 𝑝 
and 𝑞, and the public key, 𝑒 must be relatively primes to 
ሺ𝑝 െ 1ሻሺ𝑞 െ 1ሻሺ𝑝 ൅ 1ሻሺ𝑞 ൅ 1ሻ. Then, the encryption process 
of LUC cryptosystem can be defined as 

 

( ) ( ,1)mod ,eE M C V M n   (3) 
 

where ( ,1)eV M  is second order Lucas sequence, M is the 

plaintext, and C is the ciphertext.  
The corresponding decryption key, 𝑑 can be generated by  
 

1mod ( )ed n  (4) 
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where ( )n  is Euler function. The Euler totient function 

defined as 
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are the Legendre symbols of 

2( 4)C   with respect to 𝑝 and 𝑞. Therefore, there are four 

possible of decryption keys, 
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Similarly, the decryption process can be obtained by 

substituting 𝑒 and 𝑀 with 𝑑 and 𝐶 respectively into (3).  
 

( ) ( ,1) mod .dD C M V C n   (7) 

B. LUC3 Cryptosystem 

As in the LUC cryptosystems, LUC3 cryptosystem has a 
number 𝑛 which is the product of two prime numbers p and q. 
In the encryption process, the encryption key, 𝑒 must be 

chosen relatively prime to the Euler function ( )n p q   , in 

order to solve the congruence 1mod ( )ed n , and hence to 

find the decryption key 𝑑. 

In the LUC3 cryptosystem, p  and q  are defined as 
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1, if ( ) is of type [3] mod ;

1, if ( ) is of type [2,1] mod ;

1, if ( ) is of type [1] mod .
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and 
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1, if ( )  is of type [2,1] mod ;

1, if ( )  is of type [1] mod .
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where 3 2( ) 1f x x Px Qx     with P and Q are plaintexts. 

Note that type t[3] means ( )f x  is an irreducible cubic 

polynomial, type t[2,1] means ( )f x  is product of an 

irreducible quadratic polynomial and a linear polynomial, and 
type t[1] means that ( )f x  is product of three linear 

polynomials.  
In practice, since ( )n  depends on the type of an auxiliary 

polynomial, then the public key, 𝑒 must be relatively prime to 
𝑝 െ 1, 𝑞 െ 1, 𝑝 ൅ 1, 𝑞 ൅ 1, 𝑝ଶ ൅ 𝑝 ൅ 1, and 𝑞ଶ ൅ 𝑞 ൅ 1. 

The LUC3 cryptosystem is set up based on the third order 
Lucas sequence, 𝑉௡ which is derived from the cubic 

polynomial 𝑥ଷ െ 𝑃𝑥ଶ ൅ 𝑄𝑥 െ 1 ൌ 0, where 𝑃 and 𝑄 constitute 
the plaintexts. 

The encryption function is defined by 
 

1 2( , ) ( ( , ,1), ( , ,1)) ( , ) mode eE P Q V P Q V Q P C C n   (10) 
 

where 𝑛 ൌ 𝑝𝑞, 𝑉௘ሺ𝑃, 𝑄, 1ሻ and 𝑉௘ሺ𝑄, 𝑃, 1ሻ are the 𝑒-th term of 
the third order Lucas sequence, defined by  
 

3 2 1 modk k k kV PV QV V n      (11) 
 
with initial values 𝑉଴ሺ𝑃, 𝑄, 1ሻ ൌ 3, 𝑉ଵሺ𝑃, 𝑄, 1ሻ ൌ 𝑃 and 
𝑉ଶሺ𝑃, 𝑄, 1ሻ ൌ 𝑃ଶ െ 2𝑄, or 𝑉଴ሺ𝑄, 𝑃, 1ሻ ൌ 3, 𝑉ଵሺ𝑄, 𝑃, 1ሻ ൌ 𝑄 
and 𝑉ଶሺ𝑄, 𝑃, 1ሻ ൌ 𝑄ଶ െ 2𝑃. 𝑃 and 𝑄 are coefficients for cubic 
polynomial. 

The decryption key is ሺ𝑑, 𝑛ሻ where 𝑑 is the inverse of 𝑒 
modulo ( )n . To decrypt the plaintext, the receiver must 

know or be able to compute ( )n  and follow by calculating 
 

1 2 1 2 2 1

1 2

( , ) ( ( , ,1), ( , ,1))

( , ) mod
d dD C C V C C V C C

C C n




 (12) 

 
which would finally recover the original plaintext ሺ𝑃, 𝑄ሻ. 

C. LUC4,6 Cryptosystem 

As in the LUC and LUC3 cryptosystems, the Lucas 
sequence was used to generate the chipertext from the 
plaintext or recover the plaintext from the chipertext. In the 
LUC4,6 cryptosystem, the fourth and sixth order Lucas 
sequence had been selected to generate the ciphertext and 
recover the plaintext, where the fourth order Lucas sequence 
was used for the first and third plaintext or ciphertext and the 
sixth order Lucas sequence was used for the second plaintext 
or ciphertext. Therefore, there are three sets of plaintexts or 
ciphertexts. However, there is only one set of plaintext or 
ciphertext in LUC cryptosystems, whereas LUC3 is 2. 

The encryption key, ሺ𝑒, 𝑛ሻ can be made public, whilst 
ሺ𝑚ଵ, 𝑚ଶ, 𝑚ଷሻ is the set of plaintext. The prime number 𝑒 must 
be relatively prime to the Euler totient function ( )n p q    in 

order to solve the congruence 1mod ( )ed n  and, hence find 

the decryption key 𝑑.  

In the LUC4,6 cryptosystem, p  and q  are defined as 
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where 𝑓ሺ𝑥ሻ ൌ 𝑥ସ െ 𝑚ଵ𝑥ଷ ൅ 𝑚ଶ𝑥ଶ െ 𝑚ଷ𝑥 ൅ 1. Note that type 
t[4,1] means ( )f x  is an irreducible quartic polynomial, type 

t[3,1] means ( )f x  is product of an irreducible cubic 

polynomial and a linear polynomial, type t[2,1] means ( )f x  

is product of an irreducible quadratic polynomial and two 
linear polynomials, type t[2] means ( )f x  is product of two 

irreducible quadratic polynomials, and type t[1] means ( )f x  

is product of four linear polynomials. In fact, the receiver 
receives the ciphertext, ሺ𝑐ଵ, 𝑐ଶ, 𝑐ଷሻ but not the plaintext, 
ሺ𝑚ଵ, 𝑚ଶ, 𝑚ଷሻ. Therefore, it is necessary to make sure 𝑔ሺ𝑥ሻ ൌ
𝑥ସ െ 𝑐ଵ𝑥ଷ ൅ 𝑐ଶ𝑥ଶ െ 𝑐ଷ𝑥 ൅ 1 must in the same type as 𝑓ሺ𝑥ሻ. In 
practice, the encryption key 𝑒 must be relatively prime to 
𝑝 െ 1, 𝑞 െ 1, 𝑝 ൅ 1, 𝑞 ൅ 1, 𝑝ଶ ൅ 𝑝 ൅ 1, 𝑞ଶ ൅ 𝑞 ൅ 1, 𝑝ଷ ൅
𝑝ଶ ൅ 𝑝 ൅ 1, and 𝑞ଷ ൅ 𝑞ଶ ൅ 𝑞 ൅ 1 in order to cover all possible 
cases since ( )n  depends on the type of an auxiliary 

polynomial. Thus, a public-key cryptosystem will be set, 
based on the Lucas sequence, 𝑉௞ which is derived from the 
quartic polynomial, 𝑥ସ 𝑚ଵ𝑥ଷ ൅ 𝑚ଶ𝑥ଶ 𝑚ଷ𝑥 ൅ 1 ൌ 0. 

The encryption function is defined by 
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where 𝑛 ൌ 𝑝𝑞, ሺ𝑚ଵ, 𝑚ଶ, 𝑚ଷሻ constitute the plaintexts and the 
coefficients of quartic polynomial and the encryption 
key,ሺ𝑒, 𝑛ሻ. 𝑉௘ሺ𝑚ଵ, 𝑚ଶ, 𝑚ଷ, 1ሻ and 𝑉௘ሺ𝑚ଷ, 𝑚ଶ, 𝑚ଵ, 1ሻ are the e-
th term of the fourth order Lucas sequence. 𝑉௘ሺ𝑚ଶ, 𝑚ଵ𝑚ଷ െ
1, 𝑚ଵ

ଶ ൅ 𝑚ଷ
ଶ െ 2𝑚ଶ, 𝑚ଵ𝑚ଷ  െ 1, 𝑚ଶ, 1ሻ is e-th term of the 

sixth order Lucas sequence which can easily be obtained by 
using (1). 

To decrypt the ciphertexts, the receiver calculates 
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which will recover the original message ሺ𝑚ଵ, 𝑚ଶ, 𝑚ଷሻ. 

III. THE ATTACK 

Lenstra’s attack is an attack performed using the Chinese 
Remainder Therorem. It enables the cryptanalyst to get the 

secret factors of modulus. On the other hand, a greater 
common divisor (GCD) is used to get the secret factors during 
the final stage of calculation.  

The second of Dickson Polynomial is defined as 
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where 
2

k 
  

 is the largest integer less than 
2

k . It is easy to 

extend it to the third, fourth and sixth order of Dickson 
Polynomial. In the Lenstra’s attack, Dickson Polynomial is 
used to transform the Lucas sequence into polynomial to 
indicate that the secret factors of the modulus can be obtain by 
GCD method. 

A. Attack on LUC Cryptosystem 

In the LUC cryptosystem, let p and q be two primes, 
n pq  denotes the modulus, e is the encryption key, d is the 

decryption key, m is the plaintext, s is the corresponding 

signature, and s  is the faulty signature.  

Theorem 1. If the faulty signature, s  is not in congruence with 
corresponding signature s modulus p, but in congruence with 
corresponding signature s modulus q, then 
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polynomial,  
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is an irreducible quadratic polynomial, then 
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gcd( ( ,1) mod , )eV s m n n q  .       

B. Attack on LUC3 Cryptosystem 

Same as LUC cryptosystem, let p and q be two primes, 
n pq  denotes the modulus, e is encryption key, d is 

decryption key, 1 2( , )m m  are plaintexts, 1 2( , )s s  are 

corresponding signatures, and  1 2( , )s s  are faulty signatures.  

Theorem 2. If the faulty signature, 1s  is not in congruence 

with corresponding signature 1s  modulus p, while in 

congruence with corresponding signature 1s  modulus q, and 

the faulty signature, 2s  is not in congruence with 

corresponding signature 2s  modulus p, while in congruence 

with corresponding signature 2s  modulus q, then 
 

 
1 2 1gcd( ( , ,1) mod , )eV s s m n n q  , and 

 
2 1 2gcd( ( , ,1) mod , )eV s s m n n q  . 

 
Proof: Since  

 


1 1 1 1mods s q s k q   , and 2 2 2 2mods s q s k q    

 
where k1 and k2 are an any integer, then  

 

 
1 2 1 1 2 2( , ,1) ( , ,1)e eV s s V s k q s k q    and 

 
2 1 2 2 1 1( , ,1) ( , ,1)e eV s s V s k q s k q   . 

 
By using third order of Dickson polynomial,  
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i l i l

l

i

i j

e i j i
h h e i j i l i l

h l

i
s k q n

l

e i j i je
m q

i j ie i j

e i j i
k q s s k q n

h l



 



      

 

 
    

 

 
  

 

     
          

    
    

   







 

 

 
Therefore,  

 
 
1 2 1gcd( ( , ,1) mod , )eV s s m n n q  . 

 
Similar calculation is also applied to  
 

 
2 1 2gcd( ( , ,1) mod , )eV s s m n n q  .            

 

Theorem 3. If the faulty signatures,  
1 2( , )s s  are not in 

congruence with corresponding signatures 1 2( , )s s  modulus p, 

and only one of the faulty signature 1s  or 2s  in congruence 

with corresponding signature 1s  or 2s  modulus q, then, it is 

unable to get the secret factors. 

Proof: Suppose that 1 1 1s s k q   and 2 2 2s s k q  , where k1 

and k2 are an any integer, then 
 





2 3

1 1 2

2 3
1 1

0 0

2

( , ,1)

2( 1)
( )

2

( ) mod .

e e

e

i
e i j

i j

i

V s k q s

e i j i je
s k q

i j ie i j

s n

      
 

 



    
       



 . (18) 

 

Equation (18) cannot be transformed into 1 1 2( , )m f s s  due 

to inability to get  
 

2 3
2 3

1 2
0 0

2( 1)

2

e e
i

e i j i

i j

e i j i je
s s

i j ie i j

      
 

 

    
      

 . 

 
Therefore,  

 
 
1 2 1gcd( ( , ,1) mod , )eV s s m n n q  .            

 
Theorem 3 shows that it is necessary to get all faulty 

signatures in congruence with corresponding signatures 
modulus q for successful Lenstra’s attack. 

C. Attack on LUC4,6 Cryptosystem 

Same as LUC and LUC3 cryptosystems, let p and q be two 
primes, n pq  denotes the modulus, e is the encryption key, 

d is the decryption key, 1 2 3( , , )m m m  are plaintexts, 1 2 3( , , )s s s  

are the corresponding signatures, and   
1 2 3( , , )s s s  are the faulty 

signatures.  

Theorem 4. If the faulty signatures,   
1 2 3( , , )s s s  are not in 

congruence with corresponding signature 1 2 3( , , )s s s  modulus 

p, while in congruence with corresponding signature 

1 2 3( , , )s s s  modulus q, then 
 

  
1 2 3 1gcd( ( , , ,1) , )eV s s s m n q  , 

      22

2 1 3 1 3 2 1 3 2 2gcd( ( , 1, 2 , 1, ,1) , )eV s s s s s s s s s m n q      , 
 
and 

  
3 2 1 3gcd( ( , , ,1) , )eV s s s m n q  . 

 
Proof: Since  
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
1 1 1 1mods s q s k q   , 2 2 2 2mods s q s k q   , and 


3 3 3 3mods s q s k q    

 
where k1 k2, and k3 are any integer, then  

 

  

2 3 4
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1 1 2 2 3 3
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2 3
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           

  

 

   

      
          

 
    
 

  

 
Similar proving method is from Theorem 2. It is easy to get 
 

  

2 3 4

1 1 1

1

2 2 2
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1 2 3

1
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2 3
2 3 1

1 1
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2 2
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2 3( 1)
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e e e
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s k q
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s k q
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           

  

 
   







      
           

     
   
   

  
   

   





 3 3 3

3

3 3
1

mod
j

j l l l

l

s k q n




 

 
Therefore,  

 
  
1 2 3 1gcd( ( , , ,1) , )eV s s s m n q  . 

 
Similar calculation is also applied to  
 

      22

2 1 3 1 3 2 1 3 2 2gcd( ( , 1, 2 , 1, ,1) , )eV s s s s s s s s s m n q       
 

and  
 

  
3 2 1 3gcd( ( , , ,1) , )eV s s s m n q  . 

  

Theorem 5. If the faulty signatures,   
1 2 3( , , )s s s  are not in 

congruence with corresponding signatures 1 2 3( , , )s s s  modulus 

p, and at least one of the faulty signature 1s  or 2s  or 3s not in 

congruence with corresponding signature 1s  or 2s  or 3s  

modulus q, then, it is unable to get the secret factors. 

Proof: Suppose that 
1 1 1s s k q  , 

2 2 2s s k q  , and 


3 3 3s s k q  , where k1 k2, and k3 are an any integer, then 

 

  



2 3 4

1 2 3

1 1 2 2 3 3

0 0 0

2 3
1 1 2 2 3

( , , ,1)

( , , ,1)

2 3( 1)

2 3

( ) ( ) mod

e e e

e

e

i h

i j h

j
e i j i

V s s s

V s k q s k q s k q

e i j h i j he

i j h i je i j h

i j
s k q s k q s n

i

           

  

 

   

      
          

 
   
 

  (19) 

 
Since, (19) cannot be transformed into form 

1 1 2 3( , , )m f s s s , then 
 

  
1 2 3 1gcd( ( , , ,1) mod , )eV s s s m n n q  .        

 
Theorem 5 shows that it is necessary to get all faulty 

signatures in congruence with corresponding signatures 
modulus q for successful the Lenstra’s attack.  

IV. CONCLUSION 

In this paper, the Lenstra’s attack against LUC, LUC3 and 
LUC4,6 cryptosystem was presented. The Dickson polynomial 
helps to transform the Lucas sequence into polynomial. It 
gives the provisions for a successful Lenstra’s attack into the 
cryptosystems. Result cannot summarize the security 
capability comparison among the cryptosystems. However, the 
possibility for Lenstra’s attack to success in the LUC4,6 
cryptosystem is smaller than in LUC3 and LUC cryptosystems. 
This is because the LUC4,6 cryptosystem needs three faulty 
signatures in congruence with corresponding signature while, 
LUC3 cryptosystem requires only two faulty signatures and 
LUC cryptosystem needs only one. 
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