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Abstract—This work is the modeling and simulation of fluid 
flow (liquid) through porous media. This type of flow occurs in many 
situations of interest in applied sciences and engineering, fluid (oil) 
consists of several individual substances in pure, single-phase flow is 
incompressible and isothermal. The porous medium is isotropic, 
homogeneous optionally, with the rectangular format and the flow is 
two-dimensional. Modeling of hydrodynamic phenomena 
incorporates Darcy's law and the equation of mass conservation. 
Correlations are used to model the density and viscosity of the fluid. 
A finite volume code is used in the discretization of differential 
equations. The nonlinearity is treated by Newton's method with 
relaxation coefficient. The results of the simulation of the pressure 
and the mobility of liquid flowing through porous media are 
presented, analyzed, and illustrated. 
 

Keywords—Darcy equation, middle porous, continuity equation, 
Peng Robinson equation, mobility. 

I. INTRODUCTION 

HE important aspect in the study of porous media flow is 
the nature of the fluids in the pores, which determines the 

mathematical formulas of the model used to describe 
mechanical and thermodynamic phenomena related to flow. 
The simplest case is monophasic flow, where porous media 
are completely filled with single-phase fluid. Monophasic 
flows in porous media are of great interest in many situations 
to science and applied technology. For example, in some 
recently discovered oil or gas reservoirs, which are in the 
exploration state, the flow is essentially monophasic. In 
reservoir engineering, production is mainly the pressure that 
enters directly or indirectly into all phases of reservoir studies. 
It is used to characterize a reservoir, calculate reserves in 
place, and predict the future behavior of the reservoir so the 
prediction with the results of the numerical simulations, and 
the porous media have a lot of interest for the oil industry and 
from these results it is possible to understand some aspects of 
the flow, as a result, to determine the best schemes and 
exploration techniques. The present work aims at the modeling 
and the numerical simulation of fluxes in porous medium. 

The flux is considered isothermal, monophasic and can 
compressible. The fluid (oil) studied is a mixture, the porous 
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media is rectangular, and the flow is in two dimensions (2-D). 
The models used to describe the viscosity and density of the 
fluid are available. The finite volume method is used to solve 
numerically the differential equations that represent the 
transient motion in a porous medium. The results of pressure 
simulation and mobility of butane liquid and oil are presented, 
analyzed, and illustrated. Several works have addressed the 
problem of the flow of monophasic fluids through porous 
media, but with an experimental setup [1], [2]. 

II. MATHEMATICAL MODEL 

A. Flow Equation 

The oil mass conservation equations supplemented by the 
generalized Darcy law and the Neumann type boundary 
conditions allow us to write: 
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B. Thermodynamic Model Density 

This section describes the thermodynamic model used to 
calculate fluid density as a function of pressure and 
temperature. 

The model used is the state equation of Peng and Robinson 
[3], which can be written in the form of a cubic polynomial as 
a function of υ, as follows: 
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P is the pressure (atm), T the temperature (K) and, cm3 
molis the molar volume, R =82.053(atm.cm3 mol.K) and the 
universal constant of the gases, the molar mass will be 
determined by the following formula M  where M g 
mol,  is calculated by (2), the repulsion and attraction 
parameters a, bare obtained generally by applying critical 
constraints or by fitting on experimental data, the terms a and 
b of the Peng - Robinson equation are given: 
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b = 0.077796 RTc /Pcac 
ac0.457235 (RTc)

2/Pc 
m 0.374641.542260.26992

 

Pc, Tc are the critical parameters andis the acentric factor, 
Tr =T/Tc (Tr reduced temperature) [4]. 

C. Extension of the Peng-Robinson  

"The Classic Mix Rule" gives the following expressions for 
the repulsion and mix attraction parameters 
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where xi are the mole fractions for the constituents (i), ai and 
bi represent the repulsion and attraction parameters 
corresponding to the constituents (i), Tmc is the critical 
temperature of mixture, Pmc is the critical pressure of mixture, 
mc is the parameter of repulsion critical of mixture, m is the 
constant alpha for mixing [5]. 

D. The Crude Oil of Hassi-Messaoud (HMD) 

The oil which is located in Hassi-Messaoud (southern 
Algeria) and very light is contained in the conditions of 
temperature and pressure of the deposit more than 25℅ of 7 C, 
30℅ to 40 ℅ of methane and 0.13 ℅ of sulfur. 

The critical pressure of the oil is Pc =2.051 MPa and the 
critical temperature is Tc =661.714 K. The rule of 
pseudocritical coordinates w xi wi will give us directly the 
value of the acentric factor w =0.597. Critical molar is 
c6259.018 cm3 /g mol. The molar mass is M =211.939 
g mol. 

E. Correlation for the Viscosity 

For the calculation of the viscosity of the fluid, the 
formulation used is the Jossi correlation [6], given by the 
following equation: 
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The reduced density is defined by: 
 

,c
r

c


 

   Or
1 21

6 32 .T M P 
  

 
is the value of the viscosity at low pressure, 
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F. The Domain Geometry  

Here, we consider that the geometry of the porous medium 
is essentially 2-D, (Fig. 1). 

The initial conditions can be written in the initial time (t =0) 
as follows: 
 

P (x, y ,0)P0 (x, y) x Lx et 0 y Ly, 
 

and the boundary conditions are of types Neumann which 
describes the absence of mass flux across the boundaries of 
the porous medium, mathematically represented by u.nˆ 0,  
x, y 

 

 

Fig. 1 Geometry of the Porous Medium 

G. Dimension of the Tank 

Here, we simulate a case with "real" data reported from 
Hassi-Messaoud. 
 

 

Fig. 2 Pressure variation along the tank 

III. FINITE VOLUME METHODS 

The finite volume scheme consists of assigning an unknown 
at the center of each cell centered mesh. The goal is to obtain a 
numerical solution of mathematical model, summarized as: 
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By the Gauss-Seidel method with relaxation coefficient, the 
knowledge of the pressure field makes it possible to calculate 
the components of mobility density and speed. 
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IV. RESULTS AND DISCUSSION 

a) Cas N ° 1: The emptying is simulated under modes of 
injection and extraction of fluid where the values 
(pressure, mobility) always vary with time, according to 
the model of the wells described by (6). For this, we 
consider in the injection well a constant pressure equal to 
Pw(0,L,/2(atm and the point of extraction 
Pw(L,L,/2(atm). Simulations have been made for 
several distinct times (each 3600 s), and it is verified that 
the model reaches the unsteady state before 10800 s. 
Attempts at higher times have been made and the 
behavior does not change. Fig. 2 shows the variation of 
the pressure along the tank after 10800 s of injection, so 
that the pressure in the blocks, which contains the wells, 
tends to approach respectively the pressures in the bottom 
of the tank. 

 

 

Fig. 3 Density distribution after 10800 injection seconds 
 

This extraction process has a much similar distribution 
varying between values of 345.745 atm to 155.426 atm. 

Fig. 3 shows the density distributions of (petroleum) oil by 
the Peng-Robinson model. It is observed that the oil is denser, 
whose variation along the porous medium changes until it 
reaches an approximate value g/cm3neighborhoods of the 
extraction well and 0.0676531 g/cm3in the block containing 
the injection well. 

Fig. 5 shows the velocity vector field distribution of the oil 
(oil) and butane gas along the porous medium during 
(10800s), of which a pressure difference is imposed (p2> p1), 
or the velocity is in the opposite direction of the greatest slope. 

 

Fig. 4 Distribution of the density after 10 seconds of injection 
 

 

Fig. 5 Pressure field in a homogeneous porous injection medium 
 

 

Fig. 6 Velocity vector field distribution after 10800 injection seconds 
 

b) Cas N ° 2: In the second case one seeks to study the 
phenomenon of depression of a porous medium, which 
was initially found completely filled with the crude oil 
(crude oil) with an initial pressure of Pint= Pg =600 atm). 
The exploration regime is done by employing two 
localized extraction wells as described in Fig. 6. The 
process is performed at output pressure values that vary 
with time. The program stops in the case where the time t 
=3672 s second or the pressure P1,10=Pw1,10. After that 
time, the extraction well (1, 10) will become a non-
producing well. 
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Fig. 7 Pressure field in a homogeneous porous medium after 100 
seconds 

 

 

Fig. 8 Pressure field in a homogeneous porous medium in (3672) 
 

 

Fig. 9 Density distribution after t = 10 seconds 

 

Fig. 10 Density distribution after t = 3672 seconds 

.  

Fig. 11 Velocity vector field distribution after t = 100 seconds 
 

 

Fig. 12 Velocity vector field distribution after t = 3672 seconds 
 

In this exploration regime as can be seen in Figs. 7 and 8, 
before and after (3600 s), the pressure distribution has slightly 
lower values. 

The pressure varies a lot with the time along the tank 
having values closer to the pressure at the bottom of the well 
Pw1,10and P w20,10

By observing Figs. 9 and 10, it can be noticed that the 
density of the oil, obtained by the Peng-Robinson model, 
varies slightly with time, from 0.06412 g/cm3 at t = 10 seconds 
at 0.06404 g/cm3 at time t = 40 minutes in the extraction well 
(20,10). On the other hand, in the well (1,10) there is a 
variation of 0.0703901 g/cm3 at t= 10 seconds and 
0.0681g/cm3 at t=3672 s. The density which initially has 
relatively high values tends to decrease, due to continuous 
extraction with great mobility. The velocity vector field 
always shows the direction of flow due to the pressure 
gradient as shown in Fig. 11. 

After t =3672 s, the extraction well at 1.20 turns to an 
injection well due to the decrease in reservoir pressure Fig. 11. 

V. CONCLUSION 

A model for the emptying of a monophasic fluid has been 
formulated to study the properties of flows in porous media. 
The Peng-Robinson equation is used to give the density. The 
viscosity is considered subordinate to the pressure, it is 
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described through approximate correlations. Darcy's law and 
the mass conservation equation are combined to describe the 
variation of pressure values, with the variation of time, the 
along the porous medium. Drainage properties, such as density 
and fluid mobility, are obtained from the pressure values. The 
present work uses the finite volume method with the iterative 
method (Gauss-Seidel method with relaxation coefficient w), 
allowing us to solve the highly nonlinear differential equations 
that govern the emptying. This methodology provided a fully 
free digital algorithm for storage and implicit computation of 
the associated Jacobian matrix. 

The results of the simulations involving oil as substance, 
has a practical interest in the production sector, presented in 
the three-dimensional graphic form by describing the mobility 
of the emptying, under several injection and extraction 
regimes. have been able to prove the basic characteristics of 
emptying in porous media: basic compressibility and high 
mobility. 

REFERENCES 
[1] E. Fauvel et al. / J. of Supercritical Fluids 28 (2004) 47–56. 
[2] Y. K. Leung, J. W. Ho: Comparati6e Biochemistry and Physiology, Part 

B 124 (1999) 451–456. 
[3] Ding-Yu Peng and Donald B. Robinson-Ind. Chem, Fundam, Vol.15 

No.1, 196. 
[4] Havard Devold Oil and gas production handbook an introduction to oil 

and gas production- 2006 ABB ATPA Oil and Gas. 
[5] Martin S. Raymond William L. Introduction oil and gas production. 

American petroleum institute edition june 1996. 
[6] Jossi, J. A., Stiel, L. I., & Thodos, G. (1962). The viscosity of pure 

substances in the dense gaseous and liquidphases. A. I. Ch. E. Journal, 
8(1), 59–63. 


