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Abstract—Networks can be utilized to represent project planning 
problems, using nodes for activities and arcs to indicate precedence 
relationship between them. For fixed activity duration, a simple 
algorithm calculates the amount of time required to complete a 
project, followed by the activities that comprise the critical path. 
Program Evaluation and Review Technique (PERT) generalizes the 
above model by incorporating uncertainty, allowing activity durations 
to be random variables, producing nevertheless a relatively crude 
solution in planning problems. In this paper, based on the findings of 
the relevant literature, which strongly suggests that a Beta 
distribution can be employed to model earthmoving activities, we 
utilize Monte Carlo simulation, to estimate the project completion 
time distribution and measure the influence of skewness, an element 
inherent in activities of modern technical projects. We also extract 
the activity criticality index, with an ultimate goal to produce more 
accurate planning estimations.  
 

Keywords—Beta distribution, PERT, Monte Carlo Simulation, 
skewness, project completion time distribution. 

I. INTRODUCTION 

UBSTANTIAL research has been carried out to develop 
methodologies to estimate the completion time distribution 

of a project. Methodologies can be roughly categorized into 
three distinct categories: deterministic analysis, analytical 
delimitation and simulation approaches. The latter ones 
provide a powerful framework enabling the elicitation of the 
required statistical measurements for any technical project. 
Reference [18] was the first to exploit Monte Carlo methods to 
analyze the time allocation of a project and then set a 
criticality index for each activity. 

The estimation of the duration of a project (and 
consequently of its total cost) is a very important and 
challenging sector of technical project management, 
happening during the planning and commissioning contracting 
phases. In these cases, correct estimates allow project 
managers to minimize potential losses. In summary, a 
project’s risk analysis has a major impact on the investment 
decisions [15]. 

The paper analyzes at first the features of nodal networks 
for technical project management. The description of the 
classic PERT and the Monte Carlo simulation methods are 
following. Finally, the reasons of the rejection of Markov-
PERT methods for stochastic network analysis are 
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demonstrated. 

II. NETWORKS AND PERT 

Many scheduling problems can be represented as networks 
[12]. The original PERT ( , )G V A  network is a directed acyclic 

graph, where 1 2{ , , , }NV v v v   is the set of nodes, 

constituting the activities of the project and A  is the set of 
arcs, representing the priorities/limitations. 

 

 

Fig. 1 An activity on node (AoN) network of six activities 
 
The existing relationships between the activities are more 

complex. Finally, we observe cases where the initiation of an 
activity depends on percentage completion of another. 

The adjacency list of a large network graph is more efficient 
due to its lower complexity comparing to the adjacency 
(connectivity) matrix. In this work, however, the adjacency 
matrix was employed to construct the PERT network and 
served as input when creating the list of all n  paths from 
source to sink nodes. 

The number of paths increases exponentially when nodes 
are added to the network. Thus, finding all possible paths that 
include both the source and the sink nodes is generally 
infeasible. In fact, the aforementioned problem is among the 
most famous ones in the scientific field of computational 
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graph theory. 
PERT, the first attempt to incorporate uncertainty into 

project networks, is a popular method with proven value when 
managing complex projects [14], [10], considered Beta ( B ) 
distribution as an adequate candidate to model the duration of 
an activity in the arbitrary interval  ,c d . Its probability 

density function is defined by   
 

1 1

1

( ) ( )
( ; , , , )

( , )( )

x c d x
B x c d

B d c

 

  
 

 

 

 



                (1) 

 
where 𝛼, 𝛽 ൐ 0, 𝑎 ൑ 𝑥 ൑ 𝑏 . PERT mandates that the mean 

x  and the variance 2
x  of the duration x  of an activity can 

be estimated by the formulas: 
 

( 4 ) / 6x c m d                                 (2) 

 
2 2( ) / 36x d c                                (3) 

 

where c  is the optimistic, m is the most likely, and d is the 
pessimistic duration of an activity. 
 

 

Fig. 2 Graphical representation of classical PERT for 
12, 16, 20c m d    

 
By the Central Limit Theorem, the distribution function of 

the duration of a project follows a normal distribution. Thus, if 
𝑋 ∈ 𝑁ሺ𝜇, 𝜎ଶሻ, the formula used to calculate the probability of 
completing a project in the time interval ሾ𝑐, 𝑑ሿ is: 

 

( )
c d d c

P c X d P Z
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     
 (4) 

 
Despite the numerous efforts to defend this original 

approach [6], [15], [16] criticism was relentless and centered 
on PERT's estimated values. The claim was that formulas (2) 
and (3) did not originate directly from formula (1) of the 
generalized Beta distribution, implying thus lack of a sound 

theoretical basis, leading research to the 1959-1987 period 
where the main goal was to extract the relationship between 
the aforementioned formulas [14]. 

From 1987 and onwards, several researchers attempted 
either to modify the original PERT [7], [4], [5], or propose 
other approaches which estimated the activity time and 
consequently the project. Reference [9] reported that PERT's 
success is based on the process of assessing the timescales and 
not its estimated values. Based on the above, it is more than 
clear that the original PERT is not an “attractive” piece of 
research. 

III. MONTE CARLOS SIMULATION 

Monte Carlo simulation is a process in which random 
numbers are generated according to the probability 
distributions that are assumed to be associated with the source 
of uncertainty, such as the durations of the activities that 
constitute a project. The simulation takes into account 
potentially, all possible situations that may actually occur and 
estimates the probability that an event could become reality. 

In stochastic PERT networks, it is assumed that random 
variables describing the duration of activities are connected 
via nodes. If the duration of each activity is considered to be 
linked to a probability distribution, then the problem of 
estimating the completion time of a project through simulation 
appears directly [12]. This approach is mostly suitable to cases 
where the probability of achieving a time goal and therefore a 
financial one is a prerequisite [19]. Therefore, given that this 
approach outperforms PERT [17], it had to be in the center of 
our research. We also aim to demonstrate that simulation 
techniques, in combination with other tools should be a first-
line option when our goal is to get good estimates. 

Probability density functions and random numbers are the 
important concepts in the Monte Carlo simulation. They 
define how likely an event can become reality by “attaching” a 
probability mass to an interval. The experiments are then 
conducted by randomly sampling from the probability density 
functions incorporated in the model. The result is thus a 
distribution. 

A critical element of the Monte Carlo simulation is the 
choice of the number of iterations. The proper selection of the 
number of iterations balances between the numerical accuracy 
of the results and the reduction of the computational cost and 
the convergence. The convergence of the results is based on 
the Law of Large Numbers.  

A. Probabilistic Modelling of the Activities  

Simulation of technical projects duration, should usually 
firstly assess the underlying distribution of the random process 
by using a probability distribution. Typical choices involve 
gaussian, B, triangular and other. Although in many cases the 
underlying probabilistic properties of the project remain 
unknown to the researcher, they are usually deduced by the 
available data on similar procedures, or are elicited from 
professionals, experienced on the nature of the included 
activities. References [18], [1] showed through the creation of 
a 

1 2   plane (skewness – kurtosis) and its subsequent 
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transformation to 
1 2Θ -Θ , that earthmoving activities, an 

activity widely used in a variety of technical projects, can be 
modelled by the B  distribution, a fact which provides the 
distribution with a particularly practical power, which is 
beyond the usual practice that stipulates its use because of its 
exceptional flexibility. 

In this paper, we confine ourselves to the simple assumption 
that the time duration of the activities is independent and 
identically distributed (i.i.d) random variables coming from 
the B  distribution. 

 

 

Fig. 3 Level 1 2Θ -Θ with known sampling distributions  

B. Implementation of the Monte Carlo Simulation in PERT 
Networks 

In deterministic activity-time projects, the total duration of 
the project is the length of the most time-consuming path in 
the network. We take advantage of this property, but our 
approach models the durations of activities as random 
variables derived from the generalized B distribution. The 
calculation of the duration of the project is achieved through 
the summation of the activity times on the critical path [11]. 

The time to complete all activities on the 
thn  path is a random 

variable nX , [17] 

 

n

n i
i P

X T


                                        (5) 

 
where Ti is a scalar random variable. The network represents 
the priority relations between activities so that the length of 
the largest (critical) path through the network is the project’s 
completion time, also described by the objective of finding the 
cumulative distribution function (CDF) of the random variable 
of the critical pathway, expressed by [17]: 
 

 project m ax , w here 1, 2, ,nT X n m        (6) 

 

while the variance of this time, by the i.i.d. property, equals 
the sum of the variances of the duration of the critical 
activities and is given by the relation: 
 

2 2
T i

i T

 


                                   (7) 

 
A realization of a network occurs when duration values 

have been assigned through sampling, for each of its activities 
[18]. This realization can be divided into three steps: 
 Input of the nodal project network. 
 Determination of the duration of each activity through 

sampling from the corresponding probability distribution 
function ( B  distribution). 

 Calculation of the total project duration. 
The application of the Monte Carlo technique to a PERT 

network is in plain words the combination of sampling with 
the use of the most time-consuming path algorithm for a large 
set of realizations. 

C. Activity Criticality 

By the term activity critical index, we define the probability 
of an activity to belong to the critical path, an extremely 
important index which points to the amount of attention that 
the project manager must pay to that particular activity [18]. 
The reason is simple and lies in the fact that the critical path is 
not unique in the stochastic analysis of the project as the 
completion time of the activity changes, which is another 
significant weakness of the original PERT. 

D. Analysis of the Results 

The simulation algorithm outputs the sample mean, 
standard deviation, minimum value, maximum value, median 
and percentiles of the time duration distribution, visualizes the 
results in a histogram, paired with the empirical cumulative 
distribution and finally the probability of an activity belonging 
to the critical path.  

The first statistical parameter to be considered is the mean 
duration of the project. The calculation will be through: 

 

ˆ ii N
T

N
                                        (8) 

 

where N  is the number of realizations of critical paths. In 
practice, for thousands of iterations we can be sure that the 
mean value of the sample converges to the real mean, due to 
the Law of Large Numbers which states that 𝐸ሾ𝑋ሿ → 𝜇, when 

N  . The formula 
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gives the standard deviation of the sample and the formula 
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  2Var T                                    (10) 

 
gives the sample variation.  
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provide the skewness and the kurtosis of the empirical 
distribution. 

IV. PERT AND MARKOV CHAINS 

In all attempts to model PERT networks with Markov 
chains [3], [2], [8] the decisive assumption is that the duration 
of the activities are random variables modelled either by an 
exponential distribution with 0   and thus 1/    or a 

first class Erlang distribution [2] which is again a “masked” 
exponential distribution. This is happening because in state 0, 
the Markov chains of continuous time, one waits for an 
exponentially distributed time with parameter (0, )   and 

then one is transferred to state 1. Therefore, the probability 

density function of the waiting time is given by ( ) t
Tf t e  

for 0t  . This example is generalized for N states and is 

called Poisson process of rate   [13]. Unfortunately, this 
allocation does not show any practical basis for modelling 
technical projects and consequently it is extremely important 
to look for different modeling methods including distributions 
having some practical advantages [20]. 

V. IMPLEMENTATION 

The algorithmic implementation of the selected method is 
presented. The components of the algorithm are described, 
such as the selected PERT networks, the simulation scenarios 
are formulated, the algorithm is explained, and the results are 
presented. The computational complexity of the algorithm is 
discussed, and the required times are extensively presented. 

A. Description of the Simulation Algorithm 

Three nodal PERT networks were selected arbitrarily, the 
characteristics of which are summarized in the Table I. 

 
TABLE I 

PERT NODE NETWORK PROPERTIES 

 Small Medium Large 

Number of nodes 6 12 14 

Number of edges 8 15 33 

Density 0.222 0.104 0.168 

 
Then four sets of four scenarios with the following key 

features were created through the input function. 

Set 1. Each scenario has common estimated  ,c d  times, but 

combinations ( , )   change in each scenario. 

Set 2. Each scenario has common estimated  ,c d  high 

fluctuation times but combinations ( , )   change in each 

scenario. 
Set 3. Each scenario has common estimated times  ,c d  but 

combinations ( , )   change in each activity and in each 

scenario. 
Set 4. Each scenario has common estimated  ,c d  high 

fluctuation times but combinations ( , )  change in each 

activity and in each scenario. 
They are presented in detail in Tables IX-XII of the Annex. 

It is easy to see how combinations of the parameters ( , )   

were chosen having in mind the qualitative distinction of 
skewness. Activities that usually occur in earthmoving 
technical projects were grouped by specifying sets of shape 
parameters, introduced mainly by domain experts. 

Then, upon a user's instruction, the algorithm reads the 
selected number of files and stores them in a structure to 
ensure easy handling. Then, the number of iterations of the 
simulation is arbitrarily selected. In this research, 100, 10000 
and 25000 iterations are performed to highlight the importance 
of an obvious sensible choice. The paths that contain both the 
source and the sink node are extracted and stored. For each 
selected scenario, the simulation begins by initially sampling 
the duration of each activity. Then the critical path is extracted 
and thus the duration of one realization is estimated, leading 
eventually to the project duration distribution. Criticality 
indices are calculated simultaneously. 

B. Simulation Results 

The stored simulation data are the input to the visualization 
function. The visualization includes histograms and the 
creation of the S-curve. The results are presented in two pairs, 
initially sets 1 and 3 and then 2 and 4. 

The difference in the mean value is not significant inside 
the first set (close to 1%). The statistical parameter that 
appears to change substantially when increasing the number of 
samples (especially after rapid increase) is the standard 
deviation, whereas in the interval between 10,000 and 25,000 
iterations it converges to a certain value. Therefore, it would 
be more appropriate to have a representation of the variance of 
the standard deviation for the interval between 100 and 25,000 
iterations. This also indicates that the factor determining the 
required number of iterations is the standard deviation. 
Overall, the results seem to converge well between 10,000 and 
25,000 iterations, with differences close to 1%. 

The percentage is extracted with the formula 
 

100%ref

ref

x x
p

x


                          (13) 

where refx  is the time of classical PERT. 
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Fig. 4 Set 3: The first row presents a histogram of 4 scenarios for 100 
reps, the second for 10,000 and the third for 25,000 reps. The 

difference between the second and the third scenario is minimal 
 

Indicatively, the integration times are presented and 
compared with the completion times of the classical PERT, 
calculated using commercial software. The double dividing 
line separates the three selected networks. 

 
 
 

TABLE II 
SET 1: COMPARISON OF SIMULATION RESULTS 

 Monte Carlo PERT  

Set         % diff in   

1 104.5 5.1 104.5 4.17 0.01 

2 100.3 4.5 104.5 4.17 -4.05 

3 95.4 3.5 104.5 4.17 -8.67 

4 89.3 1.8 104.5 4.17 -14.58 

1 166.0 6.1 166 4.58 -0.01 

2 159.3 5.4 166 4.58 -4.02 

3 151.9 4.2 166 4.58 -8.51 

4 142.2 2.2 166 4.58 -14.33 

1 164.5 5.8 164.5 3.89 -0.02 

2 158.5 5.1 164.5 3.89 -3.63 

3 151.9 4.0 164.5 3.89 -7.66 

4 143.3 2.1 164.5 3.89 -12.86 

 
TABLE III 

SET 3: COMPARISON OF SIMULATION RESULTS 

 Monte Carlo PERT  

Set         % diff in   

1 94.7 3.5 104.5 4.17 -9.36 

2 96.7 4.2 104.5 4.17 -7.48 

3 103.1 5.1 104.5 4.17 -1.31 

4 96.5 4.0 104.5 4.17 -7.68 

1 149.0 3.9 166 4.58 -10.23 

2 151.9 4.5 166 4.58 -8.50 

3 158.8 5.5 166 4.58 -4.37 

4 149.9 4.2 166 4.58 -9.69 

1 150.6 3.9 164.5 3.89 -8.46 

2 151.3 4.2 164.5 3.89 -8.03 

3 161.3 5.7 164.5 3.89 -1.94 

4 150.9 4.0 164.5 3.89 -8.26 

 
Concerning the criticality index, the results of the 

simulation show clearly (with approximately 100% 
probability) what activities are in this category. Table IV 
summarizes the results. 

The first row refers to the small, the second to the medium 
one and the third to the large network. Results in this section, 
do not vary. 

1. High Variance Set 

It was deemed appropriate to carry out an experiment with a 
dataset of high variance. The pattern of fast convergence of 
the mean value was generally maintained, as was the slow 
convergence of the standard deviation. Generally, deviations 
follow the high variance of the input data and thus large 
variations (of the order of 10%) are observed in the resulting 
distribution tails. 

Indicatively, the integration times are presented and 
compared with the completion times of the classical PERT, 
calculated using commercial software. The double dividing 
line separates the three selected networks. 

In this experiment, there were some notable results in terms 
of the activity's criticality index. Due to the high variance of 
the input data and the nature of the project (through the 
selection the combinations ( , )  , the simulation produced 

different results than the PERT method. Some examples are 
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listed. 
 

TABLE IV 
SETS 1 AND 3, CRITICAL ACTIVITIES 

Repeats Scenarios 1.1 and 3.1 Scenarios 1.2 and 3.2 Scenarios 1.3 and 3.3 Scenarios 1.4 and 3.4 PERT 

100 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 

10000 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 

25000 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 1,3,5,6 

100 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 

10000 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 

25000 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 1,3,4,6,9,11,12 

100 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 

10000 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 

25000 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 1,3,6,9,13,14 

 
TABLE V 

SET 2: COMPARISON OF SIMULATION RESULTS 

 Monte Carlo PERT  

Set         % diff in   

1 77.8 13.0 77.5 10.8 -0.45 

2 62.6 11.5 77.5 10.8 19.19 

3 45.8 9.0 77.5 10.8 40.95 

4 23.8 4.7 77.5 10.8 69.25 

1 115.1 14.8 108.5 16.7 -6.06 

2 93.2 13.1 108.5 16.7 14.09 

3 68.4 10.4 108.5 16.7 36.93 

4 35.5 5.5 108.5 16.7 67.29 

1 113.7 11.9 93 18.1 -22.23 

2 93.1 11.0 93 18.1 -0.08 

3 69.1 9.1 93 18.1 25.69 

4 35.8 5.0 93 18.1 61.45 

 
TABLE VI 

SET 4: COMPARISON OF SIMULATION RESULTS 

 Monte Carlo PERT  

Set         % diff in   

1 34.23 6.99 77.50 10.8 -55.83 

2 47.84 9.63 77.50 10.8 -38.28 

3 56.07 10.27 77.50 10.8 -27.65 

4 45.07 8.95 77.50 10.8 -41.84 

1 56.33 9.28 108.50 16.7 -48.08% 

2 66.15 10.66 108.50 16.7 -39.04 

3 81.01 11.78 108.50 16.7 -25.34 

4 55.06 8.72 108.50 16.7 -49.25 

1 56.35 8.67 93.00 18.1 -39.41 

2 78.05 11.27 93.00 18.1 -16.08 

3 89.91 12.07 93.00 18.1 -3.33 

4 64.19 9.63 93.00 18.1 -30.98 

 
TABLE VII 

COMPARISON OF THE SMALL NETWORK FOR 25,000 REPS 

Activity 
%Monte Carlo 

Scenario 1 
% Monte Carlo 

Scenario 3 
PERT 

1 100,00 100,00 X 

2 54,60 57,74 X 

3 45,40 42,26  

4 54,60 57,74 X 

5 100,00 100,00 X 

6 100,00 100,00 X 

 
 

TABLE VIII 
COMPARISON OF NETWORK CRITICAL ACTIVITY CRITERIA FOR 25,000 REPS 

Activity %Monte Carlo Scenario 3 PERT 

1 100,00 X 

2 30,17 X 

3 66,80 X 

4 3,03 X 

5 59,22 X 

6 10,05 X 

7 30,72 X 

8 1,60 X 

9 79,60 X 

10 18,80 X 

11 35,10 X 

12 0,86 X 

13 64,05 X 

14 100,00 X 

C. Simulation Cycle Completion Times 

All simulation cycles were carried out on a standard 
computer. The computational complexity of the sampler is 

 1/2O N .  

D. Summary 

The components of the algorithm, such as the selected 
PERT networks, were described, the simulation scenarios 
were formulated, the structure of the algorithm analyzed, and 
the statistical analysis of the results were presented. The 
comparison of the results of the simulation with those of the 
classical PERT method was compared both at the time level 
and at the level of activity criticality. Finally, the 
computational complexity of the algorithm was discussed, and 
the required times were extensively presented. 

VI. CONCLUSIONS 

 Computational Experience 

After repeated iterations of the simulation cycles it was 
clear that the results of the proposed method differ remarkably 
from those of the original PERT. Especially in cases where 
skewness is inherent in the nature of activity, which is nearly 
always the case nowadays, using Monte Carlo simulation to 
produce estimates for the duration of the project, is necessary. 
The Activity Criticality Index adds value to the model by 
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incorporating an important element of project planning 
without adding more computational burden. 

In terms of computational statistics, the developed 
algorithm is fully in line with the characteristics of the Monte 
Carlo simulation for technical projects developed by [18] 
explored in previous decades by many researchers until today. 
The framework is easily accessible to the average researcher, 
both due to the increased computational power and the 
availability of various commercial software packages. No 
unexpected values or results have been identified, trends were 
maintained and, in general, the method has successfully met 
every experiment. Value convergence is achieved quickly, and 
the 10000 iterations assertion, that is commonly found in the 
literature in all experiments except for one.  

 Further Research 

The estimation of a project’s duration is part of risk 
analysis, an essential management sector, responsible to 
identify potential temporal and thus financial setbacks. 

It would be very beneficial to observe the behavior of the 
particular method in cases where data gathered from 
earthmoving activities exist, where instead of manually 
creating the set of the  ,   parameters, approaches such as 

the Maximum Likelihood Estimation (MLE) or Type II 
Maximum Likelihood estimation (also known as Empirical 
Bayes) could be employed to estimate them. Then, using 
domain expertise, a relevant grouping of the activities could 
be performed serving as input to the Monte Carlo simulation.  

 

 

Fig. 5 Set 1 and 3. The correlation between the classic PERT (red on the left) and the other results 
 

 

Fig. 6 Total 4, small network. Direct convergence of the mean value in scenarios 1 and 2 (red and green) 
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Fig. 7 Total 1, small network: Convergence of   and   values 

 

 

Fig. 8 Total 1, small network: Convergence of sigmoidal curves 
 

In this paper, we have assumed that the duration of the 
activities are independent and identically distributed variables 
and relied on the central limit theorem for the distributional 
convergence of the results. This is a limiting assumption, often 
violated in real circumstances because some activities of the 
project may for example be affected by a common pool of 
resources. A simulation approach when there is dependence in 
the tasks of the project is therefore an interesting task. 
Nevertheless the next step would be to supplement this 
method with Grey Analysis methodologies, such as the GM(1, 
1). Grey Analysis is made up of prediction models and is 
constantly gaining ground. In the event of a lack of real data, 

domain expert can supervise the creation of artificial data to 
simulate both the scheduling the execution phase of a project.  

Finally, in the present study, we choose the duration limits 
[ , ]c d  of each activity using domain expertise, and of course 

this is a highly debatable proposition. The Grey Analysis’ 
methodologies can go around this by predicting the [ , ]c d  

field. This new piece of information is then a new input to the 
Monte Carlo simulation and will redefine the project 
completion time through new information. This powerful 
combination has not yet been explored in international 
literature and the authors believe that its results will be 
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extremely interesting. 

APPENDIX 
TABLE IX 

SCENARIOS FEATURES, SET 1 

Tasks 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Durations 

                c  d  

1 2 2 2 3 2 5 2 13 10 30 

2 2 2 2 3 2 5 2 13 8 12 

3 2 2 2 3 2 5 2 13 29 31 

4 2 2 2 3 2 5 2 13 4 16 

5 2 2 2 3 2 5 2 13 5 19 

6 2 2 2 3 2 5 2 13 40 45 

7 2 2 2 3 2 5 2 13 12 28 

8 2 2 2 3 2 5 2 13 7 21 

9 2 2 2 3 2 5 2 13 32 48 

10 2 2 2 3 2 5 2 13 7 13 

11 2 2 2 3 2 5 2 13 10 17 

12 2 2 2 3 2 5 2 13 9 11 

13 2 2 2 3 2 5 2 13 15 25 

14 2 2 2 3 2 5 2 13 10 14 

 
TABLE X 

SCENARIOS FEATURES, SET 2 

Tasks 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Durations 

                c  d  

1 2 2 2 3 2 5 2 13 1 30 

2 2 2 2 3 2 5 2 13 1 30 

3 2 2 2 3 2 5 2 13 1 30 

4 2 2 2 3 2 5 2 13 1 30 

5 2 2 2 3 2 5 2 13 1 30 

6 2 2 2 3 2 5 2 13 1 30 

7 2 2 2 3 2 5 2 13 1 30 

8 2 2 2 3 2 5 2 13 1 30 

9 2 2 2 3 2 5 2 13 1 30 

10 2 2 2 3 2 5 2 13 1 30 

11 2 2 2 3 2 5 2 13 1 30 

12 2 2 2 3 2 5 2 13 1 30 

13 2 2 2 3 2 5 2 13 1 30 

14 2 2 2 3 2 5 2 13 1 30 

 
TABLE XI 

SCENARIOS FEATURES, SET 3 

Tasks 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Durations

               c d
1 2 5 2 2 2 3 2 13 10 30 

2 2 13 2 5 2 4 2 13 8 12 

3 2 5 2 13 2 5 2 13 29 31 

4 2 13 2 2 2 6 2 13 4 16 

5 2 5 2 5 2 7 2 13 5 19 

6 2 13 2 13 2 8 2 13 40 45 

7 2 5 2 2 2 9 2 13 12 28 

8 2 13 2 5 2 10 2 13 7 21 

9 2 5 2 13 2 11 2 13 32 48 

10 2 13 2 2 2 12 2 13 7 13 

11 2 5 2 5 2 13 2 13 10 17 

12 2 13 2 13 2 14 2 13 9 11 

13 2 5 2 3 2 15 2 13 15 25 

14 2 13 2 5 2 2 2 13 10 14 

TABLE XII 
SCENARIOS FEATURES, SET 4 

Tasks
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Durations

           c d
1 2 5 2 3 2 2 2 3 1 30 

2 2 13 2 5 2 5 2 4 1 30 

3 2 5 2 13 2 3 2 5 1 30 

4 2 13 2 3 2 13 2 6 1 30 

5 2 5 2 5 2 2 2 7 1 30 

6 2 13 2 13 2 5 2 8 1 30 

7 2 5 2 3 2 3 2 9 1 30 

8 2 13 2 5 2 13 2 10 1 30 

9 2 5 2 13 2 2 2 11 1 30 

10 2 13 2 3 2 5 2 12 1 30 

11 2 5 2 5 2 3 2 13 1 30 

12 2 13 2 13 2 13 2 14 1 30 

13 2 5 2 5 2 2 2 15 1 30 

14 2 13 2 3 2 5 2 2 1 30 
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