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Abstract—The driving behavior in area-based (i.e., non-lane 
based) traffic is induced by the presence of other individuals in the 
choice space from the driver’s visual perception area. The driving 
behavior of a subject vehicle is constrained by the potential leaders 
and leaders are frequently changed over time. This paper is to 
determine a stochastic model for a parameter of modified intelligent 
driver model (MIDM) in area-based traffic (as in developing 
countries). The parametric and non-parametric distributions are 
presented to fit the parameters of MIDM. The goodness of fit for 
each parameter is measured in two different ways such as graphically 
and statistically. The quantile-quantile (Q-Q) plot is used for a 
graphical representation of a theoretical distribution to model a 
parameter and the Kolmogorov-Smirnov (K-S) test is used for a 
statistical measure of fitness for a parameter with a theoretical 
distribution. The distributions are performed on a set of estimated 
parameters of MIDM. The parameters are estimated on the real 
vehicle trajectory data from India. The fitness of each parameter with 
a stochastic model is well represented. The results support the 
applicability of the proposed modeling for parameters of MIDM in 
area-based traffic flow simulation. 
 

Keywords—Area-based traffic, car-following model, micro-
simulation, stochastic modeling. 

I. INTRODUCTION 

ICROSCOPIC simulation has long been a topic of 
research. Numerous microscopic simulation models 

have been developed to advance the microscopic flow theory 
[1]. All microsimulation models require a set of parameters. In 
practice, there is no hard and fast rule to determine what 
values of parameters of models accurately represent an 
individual driver’s behavior. Overall, in many cases, the 
model parameters are not estimated rigorously due to the 
limited availability of details vehicle trajectory data [2]. 
However, the importance of modeling estimated parameters in 
a microscopic simulation cannot be overlooked. 

This paper focuses on the stochastic modeling for 
parameters of MIDM in area-based traffic. In area-based 
traffic which is frequently termed as non-lane based traffic in 
the literature of traffic flow, modeling drivers generally ignore 
the lane markings and perceive the entire road space while 
progressing longitudinally. The traditional car-following (CF) 
for longitudinal and lane changing (LC) for lateral movements 
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models are not directly applicable in this traffic regime. 
Recently such system has gained interest, and numbers of the 
simple and modified models are proposed for modeling the 
area-based traffic. For instance, [3] refers a simulation 
framework for modeling area-based heterogeneous traffic 
flow, [4] refers the strip-based space discretization framework 
for modeling the driving behaviors of non-lane based mixed 
traffic and the latent leader acceleration model is proposed in 
[5] for modeling driving behavior in weak lane discipline. 

The driving behavior in area-based heterogeneous traffic 
has significantly different from the lane-based traffic. The 
subject vehicle frequently changes its lateral position in 
different lanes while progressing longitudinally. The dynamics 
of such vehicles define the variability of the state of traffic 
(speed and density) being experienced by the subject vehicle. 
Such variability influences the lateral and longitudinal 
movements of the subject vehicles, i.e. it follows the current 
direction of motion or move laterally (refer to [6] for details of 
modeling the area-based traffic in two steps approach in 
sequential order such as area selection using a discrete choice 
framework and vehicle movement modeling with a modified 
CF model). Firstly, a discrete choice modeling framework is 
developed for area-based traffic flow in terms of alternative 
selection to microscopically capture the dynamic of the 
subject vehicle in presence of the other mixed vehicles in its 
choice space from the visual perception area. The choice space 
of the subject vehicle is divided by numbers of realistic radial 
cones considering the possible moving directions of the 
subject vehicle in the next time step that forms the alternatives 
for his decision. The modeling framework consisted of 
alternatives from choice space of the driver’s visual perception 
area, attributes of the alternatives and modeling the selection 
of an alternative. Secondly, the vehicle following behavior 
model is developed to simulate the next position of the subject 
vehicle along the direction of the selected alternative. The 
intelligent driver model (IDM) [7] is modified to incorporate 
such driving maneuverability in area-based traffic condition, 
and the model is known as the MIDM. 

Based on the information that is available in data, the 
realistic bounds for each parameter of MIDM are defined for 
an individual vehicle from randomly selected subject vehicles. 
A univariate dataset is developed by calibrating the parameters 
of MIDM. This paper focuses on the modeling of parameters 
of MIDM. The purpose of this paper is to provide a robust 
simulation framework for the parameters of a microscopic 
simulation model in area-based traffic.  
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II. MODIFIED INTELLIGENT DRIVER MODEL 

The acceleration profile from IDM model is defined as a 
continuous function of the speed, spacing and relative speed of 
a subject vehicle (S) to the leading vehicle (L) by (1) 
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where  𝑎௠௔௫ is the maximum acceleration of vehicle (S), 𝑣ௗ is 
the desired speed of the vehicle (S),  𝑔 is the spacing between 
a subject vehicle to a leading vehicle, 𝑔∗ is the desired 
minimum gap (space headway), and 𝛿 is an acceleration 
exponent (model parameter). The desired space headway is 
measured using (2) 
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where 𝑔଴ represents minimum spacing in congested traffic; the 
term 𝑔ଵ represents nonlinear jam distance, 𝑇 is for safety time 
headway, and b for the desired deceleration. The IDM brakes 
stronger than comfortable deceleration when the gap becomes 
too small which basically makes the model collision-free. 

The driving behaviors in area-based heterogeneous traffic 
condition are significantly different from the lane-based 
traffic. The driving behavior in such regime induced by the 
presence of other individuals in the choice space from visual 
perception area of individual driver and captures the vehicle to 
vehicle interactions. In constraint driving situation, a subject 
vehicle is constrained by the potential leaders and leaders are 
changed over time. The choice space is partitioned into a 
defined number of radial cones. In each of these directions, a 
possible leader can be identified from a set of potential 
leaders. The leading vehicle induces an attractive interaction 
on the subject vehicle. Therefore, a subject vehicle 
acceleration profile can be derived from the corresponding 
leader acceleration which is basically described by a stimulus-
response framework. For a given leader (L), the spacing (𝑔ሻ 
between a subject vehicle (S) and a leader (L) is described by 
(3) 

 
𝑔 ൌ 𝑟 cos ∆𝜃                                   (3) 

 
which is the vector projection of a leader along specified 
alternative, and ∆𝜃  is the angle between position vector 𝒓 and 
the direction of alternative (refer to [6] for more details about 
variables definition and measurement). The subject vehicle 
reacts to stimuli coming from the chosen leader. The relative 
speed is modeled as stimuli for subject vehicle defined by the 
difference between vector projection of leader’s speed and 
vector projection of subject vehicle’s speed along the direction 
of selected alternative (refer to [6] for details about variables) 
as in (4) 
 

∆𝑣 ൌ 𝑣௅ cos ∆𝜓௅ െ𝑣ௌ cos ∆𝜓௦                    (4) 
 
where,  𝑣ௌ and 𝑣௅ represent a resultant speed of a subject (S) 

vehicle and a leader (L), respectively; ∆𝜓௦ and ∆𝜓௅ represent 
angles in between the direction of an alternative occupied by a 
leader (L) and the direction of 𝑣ௌ and 𝑣௅, respectively. 

The IDM which is (1) is then modified based on the 
specifications of (3) and (4); called MIDM and defined as in 
(5) 
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The desired speed (𝑣ௗ), maximum acceleration (𝑎௠௔௫), 

desired deceleration (b), safety time headway (𝑇), linear jam 
distance (𝑔଴), non-linear jam distance (𝑔ଵ) and acceleration 
exponent (𝛿) are calibrated parameters for MIDM in (5). 

III. METHODOLOGY 

The modeling approach is developed for two regimes of 
stochastic modeling. One is a parametric distribution from an 
aggregated point of graphical and statistical analysis. The 
other approach is a non-parametric distribution for the 
parameters of MIDM which are not well suited for parametric 
distribution. 

The following basic steps are considered for stochastic 
modeling for the parameters of MIDM in area-based traffic:  
Step1. Develop an estimated dataset for parameters of MIDM 

- The real vehicle traffic trajectory data are used to 
estimate the parameters of MIDM. The raw trajectory 
data [8] are used to develop a database for estimated 
parameters for the car. MIDM has a set of six 
parameters with a constant acceleration exponent ( 
𝛿 ൌ 4). The parameters are estimated over randomly 
selected individual subject vehicle from the 
aforementioned data. A univariate dataset is developed 
by calibrating the parameters of MIDM where each 
parameter can be modeled by a probability distribution. 
For this, we consider a vector of 130 randomly selected 
vehicles from area-based heterogeneous traffic in the 
aforementioned data. 

Step2. Modeling with parametric distribution – Each 
calibrated parameter of MIDM builds up a continuous 
dataset. The goodness of fit that means how well data 
fit with a specific parametric distribution is described 
graphically and statistically. The quantile-quantile (Q-
Q) plot (refer to [9] for details about the graphical 
representation of data using Q-Q plot) for each 
estimated parameter is used to represent graphically for 
the fitness of data with a specific distribution. The 
Kolmogorov-Smirnov (K-S) test (refer [10] for details 
about the K-S test) is performed for several commonly 
used probability distributions to find the suited model 
statistically for an individual parameter. 

Step3. Modeling with non-parametric distribution - The 
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probability density function (PDF) and cumulative 
density function (CDF) can be estimated from the 
empirical data by using a non-parametric distribution 
such as kernel distribution. Such kernel distribution is a 
function of a kernel density estimator, a smoothing 
function, and a bandwidth value. 

IV. RESULTS AND DISCUSSIONS 

A. Parametric Distribution 

The Q-Q plot for each estimated parameter is used to 
represent graphically for the fitness of data with a specific 
distribution. The normal, gamma, and Weibull distributions 
are considered to compare empirical quantiles from data with 
the quantiles of specific theoretical distributions. The 

nonlinearity of the points in normal Q-Q plot for all 
parameters of MIDM except desired speed indicates a 
departure from normality (refer to Fig. 1). The linearity of 
point pattern from the Q-Q plot is justified with reference line. 
For desired speed, the left end of point pattern from normal Q-
Q plot is above and the right end of pattern is below from the 
reference line that indicates a short tail at both ends. Since the 
point patterns are curved with positive slopes for other 
parameters, the normal distribution is not properly fitted with 
them. Similarly, the nonlinearity of the points in Gamma and 
Weibull Q-Q plots for each parameter of MIDM except 
desired deceleration has measured the departure from such 
distributions (refer Fig. 2 and Fig. 3). 

 

 

Fig. 1 Normal quantile-quantile (Q-Q) plots for estimated parameters of MIDM 
 

 

Fig. 2 Gamma quantile-quantile (Q-Q) plots for estimated parameters of MIDM 
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Fig. 3 Weibull quantile-quantile (Q-Q) plots for estimated parameters of MIDM 
 

TABLE I 
A LIST OF K-S TEST ON ESTIMATED PARAMETERS OF MIDM 

K-S Test Performance, 𝛼 = 0.05 (reference value) 

Distribution K-S Statistics 
Desired 
speed 

Maximum 
acceleration 

Desired 
deceleration 

Safety time 
headway 

Linear jam 
Distance 

Non-linear 
jam distance 

Normal 

p 0.056 0.0038 0.0325 0.029 6.67E-05 1.00E-04 
ks 0.1159 0.1538 0.1245 0.1262 0.1972 0.1932 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Accepted Rejected Rejected Rejected Rejected Rejected 

Log 
normal 

p 4.01E-115 2.58E-92 6.09E-60 5.38E-90 1.45E-36 7.31E-44 
ks 0.9979 0.8932 0.7189 0.8819 0.5602 0.6141 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Rejected Rejected Rejected Rejected 

GEV 

p 8.04E-06 2.74E-08 2.22E-06 1.85E-05 5.20E-12 2.49E-11 
ks 0.2164 0.2613 0.2274 0.209 0.3172 0.3077 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Rejected Rejected Rejected Rejected 

Gamma 

p 0.0317 9.23E-04 0.2419 0.0058 0.0427 0.0486 
ks 0.1249 0.1702 0.0888 0.1484 0.1203 0.1182 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Accepted Rejected Rejected Rejected 

Weibull 

p 0.0724 0.0021 0.1222 0.0111 0.0351 0.0197 
ks 0.1116 0.1608 0.1024 0.1398 0.1404 0.1319 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Accepted Rejected Accepted Rejected Rejected Rejected 

F 

p 6.13E-114 2.20E-25 4.75E-11 3.40E-21 7.57E-06 6.30E-08 
ks 0.9928 0.4655 0.3037 0.4247 0.217 0.2552 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Rejected Rejected Rejected Rejected 

Student's t 

p 1.57E-113 4.93E-63 7.82E-47 4.00E-33 1.54E-37 1.84E-36 
ks 0.991 0.7373 0.6348 0.5328 0.5677 0.5594 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Rejected Rejected Rejected Rejected 

Exponential 

p 3.02E-20 2.08E-07 1.30E-04 1.27E-05 4.17E-06 1.49E-04 
ks 0.4148 0.2462 0.1906 0.2124 0.2221 0.1893 
cv 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 

decision Rejected Rejected Accepted Rejected Rejected Rejected 

 
The K-S test is performed for several commonly used 

probability distributions to find the suited model statistically 
for an individual parameter. The test is performed based on 
test statistic (ks), significance level (𝛼 ൌ 0.05), p-value and 
critical value (cv). A list of the K-S test is presented in 
TABLE I. The K-S test statistic is less than the critical value, 
and p-value is greater than significance level 𝛼 ൌ 0.05 for 
desired speed in normal and Weibull distributions and desired 

deceleration in Gamma and Weibull distributions but all other 
cases it is higher. Therefore, it is hypothesized that desired 
speed and desired deceleration can be modeled by a 
parametric distribution and other parameters can be modeled 
by a non-parametric distribution. 

B. Non-Parametric Distribution 

Based on the graphical and statistical analysis provided, the 
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desired speed and desired acceleration follow some parametric 
distributions. The maximum acceleration, safety time 
headway, linear and non-linear jam distance cannot be 
modeled accurately by using a parametric distribution. In this 
case, the PDF and CDF can be estimated from the empirical 
data of maximum acceleration, safety time headway, linear 
and non-linear jam distance by using a non-parametric 
distribution such as kernel distribution. To understand the 
effects of different kernel smoothing functions on the shape of 
the estimated PDF from maximum acceleration, safety time 
headway, linear and non-linear jam distance are illustrated in 
Fig. 4-Fig. 7, respectively. Finally, for simplicity, the normal 
smoothing function is considered for kernel CDF to compare 
with empirical CDF for mentioned parameters. The 
illustrations in Fig. 8 - Fig. 10 indicate that non-parametric 
distribution is properly fitted with maximum acceleration, 
safety time headway, linear and non-linear jam distance of 
MIDM. 

 

 

Fig. 4 Kernel density curves for different smoothing functions for 
maximum acceleration 

 

 

Fig. 5 Kernel density curves for different smoothing functions for 
safety time headway 

 

Fig. 6 Kernel density curves for different smoothing functions for 
linear jam distance 

 

 

Fig. 7 Kernel density curves for different smoothing functions for 
non-linear jam distance 

 

 

Fig. 8 The goodness of fit measured by kernel CDF with empirical 
CDF of maximum acceleration 
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Fig. 9 The goodness of fit measured by kernel CDF with empirical 
CDF of safety time headway 

 

 

Fig. 10 The goodness of fit measured by kernel CDF with empirical 
CDF of linear jam distance 

 

 

Fig. 11 Simulated and observed trajectory for a Car-I 

V. MODEL VALIDATION 

The performance of the proposed stochastic modeling for 
parameters of MIDM in area-based traffic is tested for 

randomly selected four cars (Car-I, Car-II, Car-III and Car-IV) 
using microsimulation of MIDM. The simulated trajectory 
generates the lateral and longitudinal distance errors due to the 
simulated position of a subject vehicle from MIDM. The 
simulated and observed 3D trajectories for Car-I, Car-II, Car-
III and Car-IV are shown in Fig. 11-Fig. 14. 
 

 

Fig. 12 Simulated and observed trajectory for a Car-II 
 

 

Fig. 13 Simulated and observed trajectory for a Car-III 
 

 

Fig. 14 Simulated and observed trajectory for a Car-IV 
 
The performance of MIDM is measured by the root mean 

square error (RMSE) (refer [11] for details about the RMSE) 
of the deviation of the simulated trajectory with that of 
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observed trajectory. The RMSE is 5.75 m, 6.56 m, 6.62 m, and 
6.68 m for Car-I, Car-II, Car-III and Car-IV, respectively. The 
simulated results from microsimulation of MIDM perform 
well for area-based traffic flow. However, the proposed 
stochastic modeling for parameters of MIDM can be 
implemented in area-based traffic flow modeling. 

VI. CONCLUSION 

The parametric and non-parametric distributions are 
considered to model the estimated parameters of MIDM in 
area-based traffic. The nonlinearity of the points in theoretical 
Q-Q plots for estimated parameters of MIDM indicates a 
departure from the theoretical distributions. The point patterns 
of Q-Q plots are curved with positive and negative slopes 
indicate estimated data for parameters are not properly fitted 
with theoretical distributions.  

The linearity of the points in normal Q-Q plot for the 
estimated desired speed of MIDM indicates data is fitted with 
a normal distribution. Similarly, the linearity of the points in 
Gamma and Weibull Q-Q plots for the estimated desired 
deceleration parameter of MIDM indicate estimated parameter 
can be modeled with them. 

The K-S test statistic is less than the critical value for 
desired speed in the normal distribution and desired 
deceleration in Gamma and Weibull distributions but all other 
cases it is higher. Therefore, it is hypothesized that desired 
speed and desired deceleration can be modeled by a 
parametric distribution and other parameters can be modeled 
by a non-parametric distribution. 

The PDF and CDF are estimated from the empirical data of 
maximum acceleration, safety time headway, linear and non-
linear jam distance by using a non-parametric kernel 
distribution. The results indicate that non-parametric 
distribution is properly fitted with estimated maximum 
acceleration, safety time headway, linear and non-linear jam 
distance parameters of MIDM. 

The stochastic modeling for all estimated parameters of 
MIDM can be further implemented for a microscopic 
simulation in area-based traffic. The findings are from data 
available which is the main limitation for such type of 
modeling for parameters of MIDM in area-based traffic 
conditions. 
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