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Box Counting Dimension of the Union L of
Trinomial Curves When α ≥ 1

Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract—In the present work, we consider one category of curves
denoted by L (p, k, r, n). These curves are continuous arcs which are
trajectories of roots of the trinomial equation zn = αzk + (1 − α),
where z is a complex number, n and k are two integers such that
1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting
by L the union of all trinomial curves L (p, k, r, n) and using the
box counting dimension as fractal dimension, we will prove that the
dimension of L is equal to 3/2.
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I. INTRODUCTION

CONSIDER the subset L of the plane defined as the union

of all trinomial curves L (p, k, r, n), located outside the

unit disk. These continuous arcs are trajectories of roots of the

trinomial equation

zn = αzk + (1− α) (1)

where z is a complex number, n and k are two integers such

that 1 ≤ k ≤ n− 1 and α is a real parameter greater than 1.

The main goal of this work is to calculate the box counting

dimension [2], [5] of L.

Box counting dimension is one of the most widely used

fractal dimensions. Its popularity is largely due to its relative

ease of mathematical calculation. This dimension is also called

Minkowski dimension. Let E be any non-empty bounded

subset of IRn and let Nε(E) be the smallest number of sets of

diameter at most ε which can cover E. The lower box counting
dimension of E denoted by dimBE or δ (E) and the upper
box counting dimension of E denoted by dimBE or Δ(E)
are respectively defined as follows [2], [5]:

δ(E) = lim inf
ε−→0

logNε(E)/− log ε

Δ(E) = lim sup
ε−→0

logNε(E)/− log ε

If these are equal, the box counting dimension of E is this

common value, simply denoted by dimB E

dimB E = lim
ε−→0

logNε(E)/− log ε.

This is sometimes referred to as fractal dimension. Let

us note that there are several equivalent definitions of box

counting dimension that are occasionally more convenient to
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use.

The main purpose of this work is to calculate the box counting

dimension for the union of all trinomial curves L (p, k, r, n)
introduced in [4]. In order to prove that this dimension is equal

to 1.5, we will demonstrate some auxiliary results.

II. BOX COUNTING DIMENSION IN THE PLANE

In [2], it was proved that the box counting dimension of a

subset can be expressed as follows.

Proposition. If F is a subset of IRn, then

dimBF = n− lim inf
γ−→0

log voln(Fγ)/ log γ and

dimBF = n− lim sup
γ−→0

log voln(Fγ)/ log γ

where Fγ = {x ∈ IRn : |x− y| ≤ γ for some y ∈ F}
is the γ-parallel body of F and voln(Fγ) the n-dimensional

volume of Fγ .

We can also find in [2, p. 44], the two following properties:

(i) dimB and dimB are monotonic.

(ii) dimB is finitely stable, i.e.

dimB(E ∪ F ) = max{dimBE, dimBF},

though dimB is not.

Moreover, according to [5], Δ is monotonic: if E1 is

included in E2, then

Δ(E1) ≤ Δ(E2).

The properties of Δ are also checked by δ, with the

exception of the stability. An example of the non-stability of

the lower box counting dimension δ is given in [5, p. 32-33];

it’s an example of perfect sets E1 and E2 on the line, such as

δ (E1 ∪ E2) �= max {δ (E1) , δ (E2)}.

On account of this last inconvenience of the lower

box-counting dimension δ given by the property (ii), we will

only use in this work the upper dimension Δ. Moreover, we are

interested in the box counting dimension Δ in the plane IR2.

Assuming that F is a subset of IR2, for γ > 0, the γ-parallel

body F (γ) of F will be called Minkowski sausage of F . The

2-dimensional volume vol2(F (γ)) of F (γ) is exactly the plane

Lebesgue measure or the area of F (γ), which will be denoted

by |F (γ)|2. Thus,

Δ(F ) = 2− lim sup
γ−→0

log |F (γ)|2 / log γ.

According to section 2.6 of [5], to easily calculate Δ(E),
it is interesting to know some equivalent definitions, in order

to use one or the other, depending on how the problem arises.

It may be more convenient to replace the continuous variable
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ε with a discrete sequence εn that tends to 0. Here is what

condition:

Lemma [5]. For any sequence (εn) of real numbers that

converges to 0, such as the ratio

log εn/ log εn+1

converges to 1, we have

Δ(E) = lim
n−→∞ logN (εn) / |log εn| .

This condition imposed on the sequence εn indicates that it

must not tend too fast to 0.

Remark. (γn) = (1/n2) is an example of sequences that

can be used with the previous lemma.

Now, we will state some results of [1] which we shall make

use to calculate the box counting dimension Δ for the union

L of trinomial curves L(p, k, r, n).
In Theorem 3 of [1], the area of the Minkowski sausage of

a curve is increased in the following manner:

Theorem. Suppose that C is a curve with finite length

L(C). For any ε > 0, we have

|C(ε)|2 ≤ 2 εL (C) + πε2.

Furthermore, Theorem 2 of [1] state the result below, giving

a bound for the length of a monotonic curve (see Fig. 1).

Theorem. Suppose that C is a curve defined by:

x(θ) = ρ(θ) cos θ, y(θ) = ρ(θ) sin θ,

where θ1 ≤ θ ≤ θ2 and ρ(θ1) = R1 and ρ(θ2) = R2.

If ρ(θ) is a monotonic function, then the curve C has a

finite length L(C) such that

L(C) ≤ |R1 −R2|+max(R1, R2) |θ1 − θ2| .

Fig. 1 A curve A with finite length

III. BOX COUNTING DIMENSION OF THE SUBSET L

Putting z = ρeiθ in the trinomial equation (1), we have:

ρneinθ = αρkeikθ + (1− α).

This means that

ρn[cosnθ + i sinnθ] = αρk[cos kθ + i sin kθ] + (1− α).

By identifying the imaginary part of the two members of the

equality and when θ �= lπ/n, where l is an integer, it follows

that

ρn−k = α sin kθ/ sinnθ.

On the other side, we can divide (1) by zn and consider

the imaginary part. If α �= 0 and θ �= lπ/(n − k), where l is

an integer, we can deduce that

ρk =
(α− 1)

α

sinnθ

sin(n− k)θ
.

Moreover, we can find the α-free equation of trajectories of

roots of (1), linking only ρ and θ, which is as follows

ρn−k sinnθ − ρn sin(n− k)θ = sin kθ.

In this paper, we will restrict our study to the case 1 ≤ α <
+∞. According to [3], un angle θ is called feasible in the

case 1 ≤ α < +∞, if θ verify the equalities of signes:

signe(sinnθ) = signe(sin kθ) = signe(sin(n− k)θ).

At the present time, let us define the curves L (p, k, r, n)
illustrated in Fig. 2.

According to [4], the cases n = 2 and n = 3 are particular

cases, because the trajectories solutions of (1), where α > 1
for these cases are linear. Hence, the definition of a trinomial

curve L (p, k, r, n) is as follows:

Assume that n is an integer larger than or equal to 4.

The trinomial curve L(p, k, r, n) is the set of roots of (1)
with α > 1 and the feasible angles belong to the interval

[2πp/(n− k), (2r + 1)π/n], where p and r are nonzero

integers verifying r ≥ p and k is an integer such that

(r − p)n/r < k < [2(r − p) + 1]n/(2r + 1).
Proposition 2.1 of [4] prove the existence of the curves

L(p, k, r, n). In addition, the proof of this proposition gives

us that:

sinnθ > 0, sin kθ > 0, sin(n− k)θ > 0,

for any θ such that 2πp/(n− k) < θ < (2r + 1)π/n.

Fig. 2 Trinomial curves L (p, k, r, n)

Now, let us recall that a very important property for the

trinomial arcs L(p, k, r, n) was proved in [4]. This property

gives that the function ρ (θ) for these curves is monotonic.

In fact, each curve L(p, k, r, n) can be expressed in polar

coordinates (ρ, θ) by a function ρ (θ). Therefore, we have the

following result.
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Theorem. Let L(p, k, r, n) be a trinomial curve. For any

integer k such that (r − p)n/r < k < [2(r − p) +
1]n/(2r + 1), ρ(θ) is an increasing function on the interval

[2πp/(n− k), (2r + 1)π/n].
This main result will be used in the estimation of the fractal

dimension Δ of the union L of the curves L(p, k, r, n). At first,

there are some basic remarks.

Remark. According to [4], the subset L is symmetric with

respect to the real axis. Then, because the upper box counting

dimension Δ is finitely stable, we will estimate the fractal

dimension Δ(L) only for the trinomial curves L(p, k, r, n)
located on the upper half plane.

Let us consider a trinomial curve L(p, k, r, n). Let R be a

real number greater than 1 and θ0 the feasible angle which

corresponds to R, so 2πp/(n − k) < θ0 < (2r + 1)π/n. In

the rest of this section, we will consider the restrictions of

the curves L(p, k, r, n) located inside the disk with radius R.

These restrictions will also be denoted by L(p, k, r, n) and

their union by L. From [4], we obtain that ρ [2πp/(n− k)] =
1. This implies that such a curve L(p, k, r, n) joins the two

points of polar coordinates (1, 2πp/(n− k)) and (R, θ0).
To state the main result of this work, we need the following

lemma which we shall make use.

Lemma. For any integer n greater than or equal to 4, the

length of the trinomial curve L(p, k, r, n) is smaller than 2R−
1.

Proof. Consider an arc L(p, k, r, n) with finite length

L(L(p, k, r, n)). By the previous results, we have

L(L(p, k, r, n)) ≤ R[θ0 − 2πp/(n− k)] +R− 1

< R[(2r + 1)π/n− 2πp/(n− k)] +R− 1.

Because k > (r − p)n /r, we obtain that

L(L(p, k, r, n)) < 2R− 1.

Theorem. The fractal dimension Δ(L) of the union L of

all trinomial curves L(p, k, r, n) is equal to 3/2.

Proof. Looking at the trinomial curves L(p, k, r, n) outside

the unit disk (see Fig. 2), we remark that we can divide the

union L into the two families of trinomial curves:

a. The curves L(p, k, r, n) located in the first quadrant of

the plane. We denote by L1 the union of these curves.

b. The curves L(p, k, r, n) located in the second quadrant

of the plane. We denote by L2 the union of these curves.

Because the upper box-counting dimension Δ is finitely

stable, we can have that

Δ(L) = Δ (L1 ∪ L2) = max[Δ (L1) ,Δ(L2)].

So, we proceed at the start by calculating Δ(L1). Then, the

estimation of Δ(L2) can be established in the same way.

First, we have to show that Δ(L1) ≤ 3/2. Next, we have to

prove that Δ(L1) ≥ 3/2. Thus, let us begin by proving that

Δ(L1) ≤ 3/2. Assume that n is an integer greater than 4 and

(n − 3) the number of the n first curves L(p, k, r, j) where

j ≥ 4. Let us set:

εn = 1/(n+ 1)2.

One can remark that the area of the sausage of L1 is smaller

than or equal to the sum of the areas of the sausages of the

(n− 3) first curves L(p, k, r, j) which join the points of polar

coordinates (1, 2πp/(j − k)) and (R, θ0) and the area of the

sausage of the sector: S = {(ρ, θ) : 1 < ρ < R, 0 < θ <
θc / 2π/(n+ 1) < θc < 3π/(n+ 1)}. This implies that

|L1(εn)|2 ≤ |S(εn)|2 +
n∑

j=4

|L(p, k, r, j)(εn)|2 .

Concerning the sector S, we can obtain that

|S(εn)|2 ≤ 1

2

[
R2 − (1− εn)

2
]
θc + 2εn(R− 1 + εn)

+ Rεnθc +
1

2
πε2n

=
1

2
(R2 − 1)θc + 2(R− 1)εn + (R+ 1)εnθc

+ (2 + π/2)ε2n − 1

2
ε2nθc

≤ 3π

2

(
R2 − 1

)√
εn + 2(R− 1)εn

+ 3π(R+ 1)εn
√
εn + (2 + π/2)ε2n − πε2n

√
εn

= O(
√
εn)

On the other hand, consider a trinomial curve L(p, k, r, j),
where j ≥ 4. Using the result that ρ (θ) is increasing for each

L(p, k, r, j) and by the majoration above of the length of a

curve, we can find that

|L(p, k, r, j)(εn)|2 ≤ 2(2R− 1)εn[1 +
2

(2R− 1)
εn].

So, we can obtain that:

n∑
j=4

|L(p, k, r, j)(εn)|2 ≤ 2(2R− 1)(n− 3)εn ×

[1 +
2

(2R− 1)
εn]

≤ 2(2R− 1)
√
εn[1 +

2

(2R− 1)
εn]

= O(
√
εn)

Therefore, it follows that

Δ(L1) = lim sup
n−→+∞

(2− log |L1(εn)|2 / log εn)
≤ lim sup

n−→+∞
(2− logO(

√
εn)/ log εn)

= 3/2.

With an analogue argument, one gets

Δ(L2) = lim sup
n−→+∞

(2− log |L2(εn)|2 / log εn) ≤ 3/2.

Consequently, it yields that

Δ(L) = max{Δ(L1),Δ(L2)} ≤ 3/2.
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At this stage, to complete the proof, we have to show that

Δ(L) ≥ 3/2. Like before, we will demonstrate that Δ(L1) ≥
3/2. Thus, we consider a sequence (εj) which is distinct from

that of the first part. Let εj = π/j2, where j > 4. Remarking

that the sausage L1(εj) contains the sector

S′ = {(ρ, θ) : 1 < ρ < (R+ 2)/3, 0 < θ < 2π/j},
we conclude that

|L1(εj)|2 ≥ [
1

9
(R+ 2)2 − 1]π/j = O

√
εj

So, we obtain

Δ(L1) = lim sup
j−→+∞

(2− log |L1(εj)|2 / log εj) ≥ 3/2.

As before, with a same manner, we can deduce that

Δ(L2) = lim sup
j−→+∞

(2− log |L2(εj)|2 / log εj) ≥ 3/2.

Then, it follows that

Δ(L) = max{Δ(L1),Δ(L2)} ≥ 3/2

and the result is so proved.

IV. CONCLUSION

In the present work, it was proved that the fractal dimension

Δ(L) of the set L is equal to 1.5. The fact that this dimension

is a non integer value prove the fractal structure of the set L. To

calculate it, we considered the restrictions of these trinomial

curves L(p, k, r, n) inside a disk with radius R where R is a

real number greater than 1. A further estimation of this fractal

dimension when R tends to infinity would be interesting.
Currently, we are working on the implementation with a

JAVA program of these trinomial arcs L(p, k, r, n). On the

other side, the programmation of this calculation of the upper

box-counting dimension Δ(L) would be of great importance.

Another perspective is to estimate the Hausdorff dimension of

this subset L.
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